Academic literature on the topic 'Hopf bifurcation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hopf bifurcation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hopf bifurcation"
Xu, Chaoqun, and Sanling Yuan. "Spatial Periodic Solutions in a Delayed Diffusive Predator–Prey Model with Herd Behavior." International Journal of Bifurcation and Chaos 25, no. 11 (October 2015): 1550155. http://dx.doi.org/10.1142/s0218127415501552.
Full textSONG, YONGLI, JUNJIE WEI, and MAOAN HAN. "LOCAL AND GLOBAL HOPF BIFURCATION IN A DELAYED HEMATOPOIESIS MODEL." International Journal of Bifurcation and Chaos 14, no. 11 (November 2004): 3909–19. http://dx.doi.org/10.1142/s0218127404011697.
Full textYan, Xiang-Ping, and Wan-Tong Li. "Global existence of periodic solutions in a simplified four-neuron BAM neural network model with multiple delays." Discrete Dynamics in Nature and Society 2006 (2006): 1–18. http://dx.doi.org/10.1155/ddns/2006/57254.
Full textXu, Changjin, Maoxin Liao, and Xiaofei He. "Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays." International Journal of Applied Mathematics and Computer Science 21, no. 1 (March 1, 2011): 97–107. http://dx.doi.org/10.2478/v10006-011-0007-0.
Full textZhai, Yanhui, Ying Xiong, Xiaona Ma, and Haiyun Bai. "Global Hopf Bifurcation Analysis for an Avian Influenza Virus Propagation Model with Nonlinear Incidence Rate and Delay." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/242410.
Full textZhang, Huayong, Ju Kang, Tousheng Huang, Xuebing Cong, Shengnan Ma, and Hai Huang. "Hopf Bifurcation, Hopf-Hopf Bifurcation, and Period-Doubling Bifurcation in a Four-Species Food Web." Mathematical Problems in Engineering 2018 (September 27, 2018): 1–21. http://dx.doi.org/10.1155/2018/8394651.
Full textCai, Yongli, Zhanji Gui, Xuebing Zhang, Hongbo Shi, and Weiming Wang. "Bifurcations and Pattern Formation in a Predator–Prey Model." International Journal of Bifurcation and Chaos 28, no. 11 (October 2018): 1850140. http://dx.doi.org/10.1142/s0218127418501407.
Full textXu, Changjin. "Bifurcation Analysis for a Predator-Prey Model with Time Delay and Delay-Dependent Parameters." Abstract and Applied Analysis 2012 (2012): 1–20. http://dx.doi.org/10.1155/2012/264870.
Full textNiu, Ben, Yuxiao Guo, and Yanfei Du. "Hopf Bifurcation Induced by Delay Effect in a Diffusive Tumor-Immune System." International Journal of Bifurcation and Chaos 28, no. 11 (October 2018): 1850136. http://dx.doi.org/10.1142/s0218127418501365.
Full textGUO, SHANGJIANG, and YUAN YUAN. "PATTERN FORMATION IN A RING NETWORK WITH DELAY." Mathematical Models and Methods in Applied Sciences 19, no. 10 (October 2009): 1797–852. http://dx.doi.org/10.1142/s0218202509004005.
Full textDissertations / Theses on the topic "Hopf bifurcation"
Fujihira, Takeo. "Hamiltonian Hopf bifurcation with symmetry." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444087.
Full textHarlim, John. "Codimension three Hopf and cusp bifurcation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58343.pdf.
Full textSalih, Rizgar Haji. "Hopf bifurcation and centre bifurcation in three dimensional Lotka-Volterra systems." Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3504.
Full textPacha, Andújar Juan Ramón. "On the quasiperiodic hamiltonian andronov-hopf bifurcation." Doctoral thesis, Universitat Politècnica de Catalunya, 2002. http://hdl.handle.net/10803/5830.
Full textNostre objectiu és entendre la dinàmica local en un entorn de l'òrbita periòdica ressonant per tal de provar, analíticament, l'existència dels tors invariants bifurcats segons l'esquema descrit dalt. Això el portem a terme mitjançant l'anàlisi següent:
(i) Primer de tot obtenim d'una manera constructiva (això és, donant algorismes) una forma normal ressonant en un entorn de l'òrbita periòdica crítica. Aquesta forma normal la portem fins a qualsevol ordre arbitrari r. Així doncs, mostrem que el hamiltonià inicial es pot posar com la suma de la forma normal (integrable) més una resta no integrable. A partir d'aquí, podem estudiar la dinàmica de la forma normal, prescindint dels altres termes i, amb aquest tractament (formal) del problema, som capaços d'identificar els paràmetres que governen tant l'existència de la bifurcació com la seva tipologia (directa, inversa). Cal, remarcar que el que es fa fins aquí, no és només un procés qualitatiu, ja que a més ens permet derivar parametritzacions molt acurades dels tors no pertorbats.
(ii) A continuació, calculem acotacions "òptimes" per a la resta. D'aquesta manera, esperem provar que un bon nombre de tors (en sentit de la mesura) es preserven quan s'afegeix la pertorbació.
(iii) Finalment, apliquem mètodes KAM per establir que la majoria (veure comentari dalt) dels tors bifurcats sobreviuen. Aquests mètodes es basen en la construcció d'un esquema de convergència quadràtica capaç de contrarestar l'efecte dels petits divisors que apareixen quan s'aplica teoria de pertorbacions per trobar solucions quasi-periòdiques. En el nostre cas, a més, resulta que alguna de les condicions "típiques" que s'imposen sobre les freqüències (intrínseques i normals) dels tors no pertorbats, no estan ben definides per als tors bifurcats, de manera que ens ha calgut desenvolupar un tractament més específic.
keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory.
Classificació AMS: 37J20, 37J25, 37J40
This work is placed into the context of the three-degree of freedom Hamiltonian systems, where we consider families of periodic orbits undergoing transitions stable-complex unstable. More precisely: Let L be the parameter of the family and assuming that, for values of L smaller than some critical value say, L', the characteristic multipliers of the periodic orbits lie on the unit circle, when L=L' they colllide pairwise (critical or resonant periodic orbit) and, for L > L' leave the unit circle towards the complex plane (Krein collision with opposite signature).
From numerical studies on some concrete symplectic maps (for instance, D. Pfennniger, Astron. Astrophys. 150, 97-111, 1985) it is known the rising (under certain irrationality conditions), of quasi-periodic bifurcation phenomena, in particular, the appearance of unfolded 2D invariant tori families. Moreover, the bifurcation takes place in a way that resembles the classical Andronov-Hopf one, in the sense that either stable invariant objects (elliptic tori) unfold "around" linear unstable periodic orbits, or conversely, unstable invariant structures (hyperbolic tori) appear "surrounding" stable periodic orbits.
Our objective is, thus, to understand the (local) dynamics in a neighbourhood of the critical periodic orbit well enough to prove analytically, the existence of such quasi-periodic solutions together with the bifurcation pattern described above. This is carried out through three steps:
(i) First, we derive, in a constructive way (i. e., giving algorithms), a resonant normal form around the critical periodic orbit up to any arbitrary order r. Whence, we show that the initial raw Hamiltonian can be casted --through a symplectic change--, into an integrable part, the normal form itself, plus a (non-integrable) remainder. From here, one can study the dynamics of the normal form, skipping the remainder off. As a result of this (formal) approach, we are able to indentify the parameters governing both, the presence of the bifurcation and its type (direct, inverse). We remark that this is not a merely qualitative process for, in addition, accurate parametrizations of the bifurcated families of invariant tori are derived in this way.
(ii) Beyond the formal approach, we compute "optimal" bounds for the remainder of the normal form, so one expects to prove the preservation of a higher (in the measure sense) number of invariant tori --than, indeed, with a less sharp estimates--.
(iii) Finally, we apply KAM methods to establish the persistence of (most, in the measure sense) of the bifurcated invariant tori. These methods involve the design of a suitable quadratic convergent scheme, able to overcome the effect of the small divisors appearing in perturbation techniques when one looks for quasi-periodic solutions. In this case though, some of the "typical" conditions that one imposes on the frequencies (intrinsic and normal) of the unperturbed invariant tori do not work, due to the proximity to parabolic tori, so one is bound to sketch specific tricks.
keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory
AMS classification: 37J20, 37J25, 37J40
Lee, Yoon-Mee. "Hopf Bifurcation in a Parabolic Free Boundary Problem." DigitalCommons@USU, 1992. https://digitalcommons.usu.edu/etd/7138.
Full textDupuis, Étienne. "De l'existence d'hypertores près d'une bifurcation de Hopf-Hopf avec résonance 1:2." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ57112.pdf.
Full textBateman, Craig A. "Hopf bifurcation analysis for depth control of submersible vehicles." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA276213.
Full textAlolyan, Ibraheem. "Global minimization of Hopf bifurcation surfaces with application to nematic electroconvection." Access citation, abstract and download form; downloadable file 7.34 Mb, 2004. http://wwwlib.umi.com/dissertations/fullcit/3131651.
Full textLewis, Gregory M. "Double Hopf bifurcations in two geophysical fluid dynamics models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ48653.pdf.
Full textHaaf, Hermann. "Existence of periodic travelling waves to reaction-diffusion equations with excitable-oscillatory kinetics." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387347.
Full textBooks on the topic "Hopf bifurcation"
van der Meer, Jan-Cees. The Hamiltonian Hopf Bifurcation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0080357.
Full textGoodrich, John W. Hopf bifurcation in the driven cavity. [Washington, D.C.]: NASA, 1989.
Find full textE, Gustafson Karl, Halasi Kadosa, United States. National Aeronautics and Space Administration., and Lewis Research Center. Institute for Computational Mechanics in Propulsion., eds. Hopf bifurcation in the driven cavity. [Washington, D.C.]: NASA, 1989.
Find full textG, Chen, ed. Hopf bifurcation analysis: A frequency domain approach. Singapore: World Scientific, 1996.
Find full textDellnitz, Michael. Hopf-Verzweigung in Systemen mit Symmetrie und deren numerische Behandlung. Ammersbek bei Hamburg: Verlag an der Lottbek, 1989.
Find full textFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Find full textMagal, Pierre. Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. Providence, R.I: American Mathematical Society, 2009.
Find full text1963-, Ruan Shigui, ed. Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models. Providence, R.I: American Mathematical Society, 2009.
Find full textOral, Zeki Okan. Hopf bifurcations in path control of marine vehicles. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textJan Cornelis van der Meer. Hamiltonian Hopf Bifurcation. Springer London, Limited, 2006.
Find full textBook chapters on the topic "Hopf bifurcation"
Smith, Hal. "Hopf Bifurcation." In An Introduction to Delay Differential Equations with Applications to the Life Sciences, 87–118. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7646-8_6.
Full textDiekmann, Odo, Sjoerd M. Verduyn Lunel, Stephan A. van Gils, and Hanns-Otto Walther. "Hopf bifurcation." In Applied Mathematical Sciences, 287–301. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4206-2_11.
Full textSun, Xiaojuan. "Hopf Bifurcation." In Encyclopedia of Systems Biology, 903. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_531.
Full textChen, Yushu, and Andrew Y. T. Leung. "Hopf Bifurcation." In Bifurcation and Chaos in Engineering, 176–229. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1575-5_6.
Full textMisbah, Chaouqi. "Hopf Bifurcation." In Complex Dynamics and Morphogenesis, 115–38. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-1020-4_5.
Full textLiebscher, Stefan. "Zero-Hopf Bifurcation." In Bifurcation without Parameters, 103–8. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10777-6_11.
Full textLiebscher, Stefan. "Double-Hopf Bifurcation." In Bifurcation without Parameters, 109–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10777-6_12.
Full textMisbah, Chaouqi. "Bifurcation de Hopf." In Dynamiques complexes et morphogenèse, 109–28. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0194-0_5.
Full textGolubitsky, Martin, and David G. Schaeffer. "The Hopf Bifurcation." In Applied Mathematical Sciences, 337–96. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5034-0_8.
Full textMaruyama, Toru. "Hopf Bifurcation Theorem." In Monographs in Mathematical Economics, 301–45. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2730-8_11.
Full textConference papers on the topic "Hopf bifurcation"
Lin, Guojian, Balakumar Balachandran, and Eyad H. Abed. "Bifurcation Behavior of a Supercavitating Vehicle." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14052.
Full textIkeda, Takashi. "Bifurcation Phenomena Caused by Two Nonlinear Dynamic Absorbers." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34714.
Full textRand, Richard, Albert Barcilon, and Tina Morrison. "Parametric Resonance of Hopf Bifurcation." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84016.
Full textCadou, Jean-Marc, Yann Guevel, and Gregory Girault. "Stability Analysis of 2D Flows by Numerical Tools Based on the Asymptotic Numerical Method: Application to the One and Two Sides Lid Driven Cavity." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82446.
Full textWang, Yuefang, Lefeng Lu¨, and Yingxi Liu. "On Multiple Hopf Bifurcations of Airflow Excited Vibration of a Translating String." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34451.
Full textSterpu, Mihaela. "Bifurcation in coupled Hopf oscillators." In MATHEMATICAL ANALYSIS AND APPLICATIONS: International Conference on Mathematical Analysis and Applications. AIP, 2006. http://dx.doi.org/10.1063/1.2205043.
Full textBajaj, Anil K., Joseph M. Johnson, and Seo Il Chang. "Amplitude Dynamics of an Autoparametric Two Degree-of-Freedom System." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0326.
Full textYu, Pei. "A General Formula for Controlling Hopf Bifurcation." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32397.
Full textMarquez, Richard. "Hopf bifurcation in TCP/adaptive RED." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434898.
Full textVerduzco, F., and J. Alvarez. "Hopf bifurcation control for affine systems." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1386712.
Full text