Journal articles on the topic 'Hopf Equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hopf Equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tobisch, Elena, and Efim Pelinovsky. "Modular Hopf equation." Applied Mathematics Letters 97 (November 2019): 1–5. http://dx.doi.org/10.1016/j.aml.2019.05.009.
Full textN O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform." International Journal of Science and Research (IJSR) 12, no. 6 (2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.
Full textWang, Chuncheng. "Normal Forms for Partial Neutral Functional Differential Equations with Applications to Diffusive Lossless Transmission Line." International Journal of Bifurcation and Chaos 30, no. 02 (2020): 2050028. http://dx.doi.org/10.1142/s0218127420500285.
Full textGhosal, Amitava. "Wiener‐Hopf Equation Revisited." Kybernetes 23, no. 6/7 (1994): 128–32. http://dx.doi.org/10.1108/03684929410068415.
Full textMilitaru, G. "The hopf modules category and the hopf equation." Communications in Algebra 26, no. 10 (1998): 3071–97. http://dx.doi.org/10.1080/00927879808826329.
Full textBoziev, Oleg L., and Mukhamed A. Abazokov. "APPROXIMATION OF THE HOPF EQUATION BY LOADED EQUATIONS." Bulletin of the Moscow State Regional University (Physics and Mathematics), no. 1 (2020): 28–36. http://dx.doi.org/10.18384/2310-7251-2020-1-28-36.
Full textWANG, JINGNAN, and WEIHUA JIANG. "HOPF BIFURCATION ANALYSIS OF TWO SUNFLOWER EQUATIONS." International Journal of Biomathematics 05, no. 01 (2012): 1250001. http://dx.doi.org/10.1142/s1793524511001349.
Full textZHENG, HUIHUI, FANGSHU LI, and TIANSHUI MA. "HOPF CO-BRACE, BRAID EQUATION AND BICROSSED." Mathematical Reports 25(75), no. 3 (2023): 481–93. http://dx.doi.org/10.59277/mrar.2023.25.75.3.481.
Full textSgibnev, M. S. "Homogeneous conservative Wiener-Hopf equation." Sbornik: Mathematics 198, no. 9 (2007): 1341–50. http://dx.doi.org/10.1070/sm2007v198n09abeh003886.
Full textMirsaburova, Gulbaxor. "DERIVATION OF THE WIENER-HOPF INTEGRAL EQUATION." Multidisciplinary Journal of Science and Technology 4, no. 10 (2024): 284–92. https://doi.org/10.5281/zenodo.14001950.
Full textDzhunushaliev, Vladimir, and Vladimir Folomeev. "Nonperturbative QED on the Hopf Bundle." Physical Sciences Forum 2, no. 1 (2021): 43. http://dx.doi.org/10.3390/ecu2021-09286.
Full textARNOLD, LUDWIG, N. SRI NAMACHCHIVAYA, and KLAUS R. SCHENK-HOPPÉ. "TOWARD AN UNDERSTANDING OF STOCHASTIC HOPF BIFURCATION." International Journal of Bifurcation and Chaos 06, no. 11 (1996): 1947–75. http://dx.doi.org/10.1142/s0218127496001272.
Full textWu, Hui, and Xiaohui Zhang. "On the BiHom-Type Nonlinear Equations." Mathematics 10, no. 22 (2022): 4360. http://dx.doi.org/10.3390/math10224360.
Full textIwata, Yoritaka. "Abstract Formulation of the Miura Transform." Mathematics 8, no. 5 (2020): 747. http://dx.doi.org/10.3390/math8050747.
Full textMcGregor, M. T. "On a Wiener-Hopf Integral Equation." Journal of Integral Equations and Applications 7, no. 4 (1995): 479–83. http://dx.doi.org/10.1216/jiea/1181075899.
Full textLi, Junyu. "Hopf bifurcation of the sunflower equation." Nonlinear Analysis: Real World Applications 10, no. 4 (2009): 2574–80. http://dx.doi.org/10.1016/j.nonrwa.2008.03.002.
Full textLiu, Hai-liang. "On discreteness of the Hopf equation." Acta Mathematicae Applicatae Sinica, English Series 24, no. 3 (2008): 423–40. http://dx.doi.org/10.1007/s10255-008-8021-1.
Full textShabat, A. B. "Periodic solutions of the Hopf equation." Theoretical and Mathematical Physics 177, no. 2 (2013): 1471–78. http://dx.doi.org/10.1007/s11232-013-0116-z.
Full textFeldkord, Sven, Marco Reit, and Wolfgang Mathis. "Discretization analysis of bifurcation based nonlinear amplifiers." Advances in Radio Science 15 (September 21, 2017): 43–47. http://dx.doi.org/10.5194/ars-15-43-2017.
Full textLeung, A. Y. T., and T. Ge. "An Algorithm for Higher Order Hopf Normal Forms." Shock and Vibration 2, no. 4 (1995): 307–19. http://dx.doi.org/10.1155/1995/581272.
Full textALGABA, ANTONIO, MANUEL MERINO, FERNANDO FERNÁNDEZ-SÁNCHEZ, and ALEJANDRO J. RODRÍGUEZ-LUIS. "HOPF BIFURCATIONS AND THEIR DEGENERACIES IN CHUA'S EQUATION." International Journal of Bifurcation and Chaos 21, no. 09 (2011): 2749–63. http://dx.doi.org/10.1142/s0218127411030106.
Full textMitsioulis, G. "A Wiener–Hopf theory for a semi-infinite dielectric slab." Canadian Journal of Physics 68, no. 11 (1990): 1348–51. http://dx.doi.org/10.1139/p90-192.
Full textTang, Diandian, Shirui Zhang, and Jingli Ren. "Dynamics of a general jerky equation." Journal of Vibration and Control 25, no. 4 (2018): 922–32. http://dx.doi.org/10.1177/1077546318805583.
Full textBluman, G. W., and S. Kumei. "Symmetry-based algorithms to relate partial differential equations: II. Linearization by nonlocal symmetries." European Journal of Applied Mathematics 1, no. 3 (1990): 217–23. http://dx.doi.org/10.1017/s0956792500000188.
Full textLosson, J�r�me, and Michael C. Mackey. "A Hopf-like equation and perturbation theory for differential delay equations." Journal of Statistical Physics 69, no. 5-6 (1992): 1025–46. http://dx.doi.org/10.1007/bf01058760.
Full textWEI, JUNJIE, and DEJUN FAN. "HOPF BIFURCATION ANALYSIS IN A MACKEY–GLASS SYSTEM." International Journal of Bifurcation and Chaos 17, no. 06 (2007): 2149–57. http://dx.doi.org/10.1142/s0218127407018282.
Full textMATSKEVICH, S. E. "BURGERS EQUATION AND KOLMOGOROV–PETROVSKY–PISKUNOV EQUATION ON MANIFOLDS." Infinite Dimensional Analysis, Quantum Probability and Related Topics 14, no. 02 (2011): 199–208. http://dx.doi.org/10.1142/s0219025711004341.
Full textMOUS, ILHEM, and ABDELHAMID LAOUAR. "A Numerical Solution of a Coupling System of Conformable Time-Derivative Two-Dimensional Burgers’ Equations." Kragujevac Journal of Mathematics 48, no. 1 (2024): 7–23. http://dx.doi.org/10.46793/kgjmat2401.007m.
Full textAgore, A. L. "Constructing Hopf braces." International Journal of Mathematics 30, no. 02 (2019): 1850089. http://dx.doi.org/10.1142/s0129167x18500891.
Full textAnikonov, Yu E., M. V. Neshchadim, and A. P. Chupakhin. "Multidimensional Hopf equation and some exact solutions." Sibirskii zhurnal industrial'noi matematiki 25, no. 1 (2022): 5–13. http://dx.doi.org/10.33048/sibjim.2022.25.101.
Full textSgibnev, M. S. "On the Inhomogeneous Conservative Wiener–Hopf Equation." Siberian Mathematical Journal 58, no. 6 (2017): 1090–103. http://dx.doi.org/10.1134/s0037446617060180.
Full textGUO, QIAN, and CHANGPIN LI. "HOPF BIFURCATION OF A DELAYED DIFFERENTIAL EQUATION." International Journal of Bifurcation and Chaos 17, no. 04 (2007): 1367–74. http://dx.doi.org/10.1142/s0218127407017860.
Full textLorenz, Martin. "On the class equation for Hopf algebras." Proceedings of the American Mathematical Society 126, no. 10 (1998): 2841–44. http://dx.doi.org/10.1090/s0002-9939-98-04392-5.
Full textDybin, V. B. "THE WIENER-HOPF EQUATION AND BLASCHKE PRODUCTS." Mathematics of the USSR-Sbornik 70, no. 1 (1991): 205–30. http://dx.doi.org/10.1070/sm1991v070n01abeh001938.
Full textAfanasyev, Nikolaevich, and Vitalievich Titov. "Modified Wiener-Hopf equation in identification problems." Journal of Applied Engineering Science 16, no. 4 (2018): 592–98. http://dx.doi.org/10.5937/jaes16-14637.
Full textBuchstaber, V. M., and E. V. Koritskaya. "Quasilinear Burgers-Hopf equation and Stasheff polytopes." Functional Analysis and Its Applications 41, no. 3 (2007): 196–207. http://dx.doi.org/10.1007/s10688-007-0017-8.
Full textValverde, J. C. "Simplest Normal Forms of Hopf–Neimark–Sacker Bifurcations." International Journal of Bifurcation and Chaos 13, no. 07 (2003): 1831–39. http://dx.doi.org/10.1142/s0218127403007667.
Full textFeng, Cheng, Yun-dong Li, and Gui-yu Ou. "Hopf Bifurcation of a Standing Cantilever Pipe Conveying Fluid with Time Delay." Mathematical Problems in Engineering 2022 (December 24, 2022): 1–15. http://dx.doi.org/10.1155/2022/3588068.
Full textZenyuk, Dmitry Alexeevich, and Georgii Gennadyevich Malinetskii. "Amplitude equation formalism for reaction—subdiffusion systems." Keldysh Institute Preprints, no. 93 (2021): 1–15. http://dx.doi.org/10.20948/prepr-2021-93.
Full textARINO, OVIDE, and EVA SÁNCHEZ. "AN INTEGRAL EQUATION OF CELL POPULATION DYNAMICS FORMULATED AS AN ABSTRACT DELAY EQUATION — SOME CONSEQUENCES." Mathematical Models and Methods in Applied Sciences 08, no. 04 (1998): 713–35. http://dx.doi.org/10.1142/s0218202598000329.
Full textALGABA, A., M. MERINO, E. FREIRE, E. GAMERO, and A. J. RODRÍGUEZ-LUIS. "ON THE HOPF–PITCHFORK BIFURCATION IN THE CHUA'S EQUATION." International Journal of Bifurcation and Chaos 10, no. 02 (2000): 291–305. http://dx.doi.org/10.1142/s0218127400000190.
Full textLiu, Qingsong, Yiping Lin, and Jingnan Cao. "Global Hopf Bifurcation on Two-Delays Leslie-Gower Predator-Prey System with a Prey Refuge." Computational and Mathematical Methods in Medicine 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/619132.
Full textZhao, Huitao, Yiping Lin, and Yunxian Dai. "Stability and Global Hopf Bifurcation Analysis on a Ratio-Dependent Predator-Prey Model with Two Time Delays." Abstract and Applied Analysis 2013 (2013): 1–15. http://dx.doi.org/10.1155/2013/321930.
Full textBabeshko, V. A., O. V. Evdokimova, O. M. Babeshko, M. V. Zaretskaya, and V. S. Evdokimov. "THE EXACT SOLUTION OF THE WIENER–HOPF EQUATION ON THE SEGMENT FOR CONTACT PROBLEMS AND PROBLEMS OF THE THEORY OF CRACKS IN A LAYERED MEDIUM." Доклады Российской академии наук. Физика, технические науки 509, no. 1 (2023): 39–44. http://dx.doi.org/10.31857/s2686740023020025.
Full textVitanov, Nikolay K. "On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations." Axioms 12, no. 12 (2023): 1106. http://dx.doi.org/10.3390/axioms12121106.
Full textLiu, Ming, and Xiaofeng Xu. "Bifurcation Analysis in a Two-Dimensional Neutral Differential Equation." Abstract and Applied Analysis 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/367589.
Full textNIU, BEN, and JUNJIE WEI. "BIFURCATION ANALYSIS OF A NFDE ARISING FROM MULTIPLE-DELAY FEEDBACK CONTROL." International Journal of Bifurcation and Chaos 21, no. 03 (2011): 759–74. http://dx.doi.org/10.1142/s0218127411028775.
Full textALGABA, ANTONIO, FERNANDO FERNÁNDEZ-SÁNCHEZ, MANUEL MERINO та ALEJANDRO J. RODRÍGUEZ-LUIS. "ANALYSIS OF THE T-POINT–HOPF BIFURCATION WITH ℤ2-SYMMETRY: APPLICATION TO CHUA'S EQUATION". International Journal of Bifurcation and Chaos 20, № 04 (2010): 979–93. http://dx.doi.org/10.1142/s0218127410026265.
Full textZhou, Xiaobing, Murong Jiang, and Xiaomei Cai. "Hopf Bifurcation Analysis for the van der Pol Equation with Discrete and Distributed Delays." Discrete Dynamics in Nature and Society 2011 (2011): 1–16. http://dx.doi.org/10.1155/2011/569141.
Full textJI, J. C., X. Y. LI, Z. LUO, and N. ZHANG. "TWO-TO-ONE RESONANT HOPF BIFURCATIONS IN A QUADRATICALLY NONLINEAR OSCILLATOR INVOLVING TIME DELAY." International Journal of Bifurcation and Chaos 22, no. 03 (2012): 1250060. http://dx.doi.org/10.1142/s0218127412500605.
Full text