Academic literature on the topic 'Hopf-Galois correspondence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hopf-Galois correspondence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hopf-Galois correspondence"

1

JORGENSEN, PALLE E. T., and XIU-CHI QUAN. "COVARIANCE GROUP C*-ALGEBRAS AND GALOIS CORRESPONDENCE." International Journal of Mathematics 02, no. 06 (1991): 673–99. http://dx.doi.org/10.1142/s0129167x91000375.

Full text
Abstract:
The main purpose of this paper is to establish a Galois correspondence for a given covariant group system, its associated C*-algebra and Hopf C*-algebra. On the way to this, we first study covariance group C*-algebras and their representations, and prove a result which is simpler but yet very similar to the C*-algebra case in the main body of the paper. We then show that there is a Galois correspondence between the lattice of normal subgroups of the given covariant group system and a corresponding lattice of certain invariant *-subalgebras of the covariant group C*-algebra; in particular, ther
APA, Harvard, Vancouver, ISO, and other styles
2

Crespo, T., A. Rio, and M. Vela. "On the Galois correspondence theorem in separable Hopf Galois theory." Publicacions Matemàtiques 60 (January 1, 2016): 221–34. http://dx.doi.org/10.5565/publmat_60116_08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Childs, Lindsay N. "Skew braces and the Galois correspondence for Hopf Galois structures." Journal of Algebra 511 (October 2018): 270–91. http://dx.doi.org/10.1016/j.jalgebra.2018.06.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferreira, V. O., L. S. I. Murakami, and A. Paques. "A Hopf–Galois correspondence for free algebras." Journal of Algebra 276, no. 1 (2004): 407–16. http://dx.doi.org/10.1016/s0021-8693(03)00502-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kohl, Timothy. "Characteristic subgroup lattices and Hopf–Galois structures." International Journal of Algebra and Computation 29, no. 02 (2019): 391–405. http://dx.doi.org/10.1142/s0218196719500073.

Full text
Abstract:
The Hopf–Galois structures on normal field extensions [Formula: see text] with [Formula: see text] are in one-to-one correspondence with the set of regular subgroups [Formula: see text] of [Formula: see text], the group of permutations of [Formula: see text] as a set, that are normalized by the left regular representation [Formula: see text]. Each such [Formula: see text] corresponds to a Hopf algebra [Formula: see text] that acts on [Formula: see text]. Such regular subgroups need not be isomorphic to [Formula: see text] but must have the same order. One can divide all such [Formula: see text
APA, Harvard, Vancouver, ISO, and other styles
6

De Commer, Kenny, and Johan Konings. "A Correspondence Between Homogeneous and Galois Coactions of Hopf Algebras." Algebras and Representation Theory 23, no. 4 (2019): 1387–416. http://dx.doi.org/10.1007/s10468-019-09892-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Childs, Lindsay N. "On the Galois correspondence for Hopf Galois structures arising from finite radical algebras and Zappa-Szép products." Publicacions Matemàtiques 65 (January 1, 2021): 141–63. http://dx.doi.org/10.5565/publmat6512105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Westreich, Sara. "A Galois-Type Correspondence Theory for Actions of Finite-Dimensional Pointed Hopf Algebras on Prime Algebras." Journal of Algebra 219, no. 2 (1999): 606–24. http://dx.doi.org/10.1006/jabr.1999.7864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

DAVID, MARIE-CLAUDE, and NICOLAS M. THIÉRY. "EXPLORATION OF FINITE-DIMENSIONAL KAC ALGEBRAS AND LATTICES OF INTERMEDIATE SUBFACTORS OF IRREDUCIBLE INCLUSIONS." Journal of Algebra and Its Applications 10, no. 05 (2011): 995–1106. http://dx.doi.org/10.1142/s0219498811005099.

Full text
Abstract:
We study the four infinite families KA(n), KB(n), KD(n), and KQ(n) of finite-dimensional Hopf (in fact Kac) algebras constructed, respectively, by A. Masuoka and L. Vainerman: isomorphisms, automorphism groups, self-duality, lattices of coideal sub-algebras. We reduce the study to KD(n) by proving that the others are isomorphic to KD(n), its dual, or an index 2 subalgebra of KD(2n). We derive many examples of lattices of intermediate subfactors of the inclusions of depth 2 associated to those Kac algebras, as well as the corresponding principal graphs, which is the original motivation. Along t
APA, Harvard, Vancouver, ISO, and other styles
10

van Oystaeyen, F., and Y. Zhang. "Galois-type correspondences for Hopf Galois extensions." K-Theory 8, no. 3 (1994): 257–69. http://dx.doi.org/10.1007/bf00960864.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hopf-Galois correspondence"

1

Bui, Hoan-Phung. "Correspondence theorems in Hopf-Galois theory for separable field extensions." Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/312548.

Full text
Abstract:
La théorie de Galois a eu un impact sur les mathématiques plus important que ce qu'elle laissait présager au départ. Son résultat le plus important est le théorème de correspondance qui s'énonce de la manière suivante :si L/K est une extension de corps finie galoisienne et si G = Gal(L/K) est son groupe de Galois, alors il existe une correspondance biunivoque entre les corps intermédiaires de L/K et les sous-groupes de G. Explicitement, si G_0 est un sous-groupe de G, alors on lui associe l'ensemble des G_0-invariants L^(G_0) qui est un corps intermédiaire de L/K. D'autre part, si L_0 est un c
APA, Harvard, Vancouver, ISO, and other styles
2

Neto, Octávio Bernardes Ferreira. "Correspondência do tipo Galois para ações de álgebras de Hopf em álgebras primas." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-28102008-013856/.

Full text
Abstract:
Demonstramos um teorema da correspondência do tipo Galois para ações de álgebras de Hopf pontuais de dimensão finita em álgebras primas. A correspondência acontece entre subálgebras racionalmente completas e comódulo subálgebras. As subálgebras racionalmente completas são subálgebras da álgebra prima, enquanto os comódulo subálgebras são comódulo subálgebras do produto smash entre o centralizador da álgebra prima em sua álgebra de quocientes de Martindale simétrica e a álgebra de Hopf.<br>A Galois-type correspondence theorem for prime algebras acted upon by a finite dimensional pointed Hopf al
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!