Contents
Academic literature on the topic 'HopsWorks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HopsWorks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "HopsWorks"
Kashyap, Pradyumna Krishna. "Project-based Multi-tenant Container Registry For Hopsworks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284561.
Full textDet har skett en betydande tillväxt i dataanvändningen under det senaste decen- niet, molnteknologier och big data-plattformar har vunnit popularitet eftersom de hjälper till att bearbeta sådan data i stor skala. Hopsworks är en sådan hante- rad plattform för att skala ut datavetenskap. Det är en öppen källkodsplattform för utveckling och drift av Machine Learning-modeller, tillgänglig på plats och som en hanterad plattform i molnet. Eftersom de flesta av dessa plattformar tillhandahåller datavetenskapsmiljöer för att samla in de bibliotek som krävs för att arbeta med, ger Hopsworks användare Anaconda-miljöer.Hopsworks tillhandahåller multi-tenancy, vilket säkerställer en säker modell för att hantera känslig data i den delade plattformen. De flesta av Hopsworks- funktionerna är uppbyggda kring projekt, varje projekt innehåller en Anaconda- miljö som ger användarna ett antal bibliotek som kan bearbeta data. Varje projektskapning utlöser skapandet av en basanacondamiljö och varje tillagt bibliotek uppdaterar denna miljö. För en lokal applikation, eftersom datave- tenskapsteam är olika och arbetar för att bygga repeterbara och skalbara mo- deller, blir det allt viktigare att hantera dessa miljöer på en central plats lokalt. Syftet med avhandlingen är att tillhandahålla en säker lagring för dessa Anaconda- miljöer. Eftersom Hopsworks använder ett Kubernetes-kluster för att betjäna modeller kan dessa miljöer containeriseras och lagras i ett säkert container- register i Kubernetes-klustret. Den medföljande lösningen syftar också till att utvidga Hopsworks-funktionen för flera hyresgäster till det lokala lagrade vär- det. Implementeringen består av två delar; Den första är att vara värd för ett kompatibelt register med öppen källkod för att lagra behållaravbildningarna iett lokalt Kubernetes-kluster med feltolerans och genom att undvika en enda felpunkt. Den andra är att utnyttja multihyresfunktionen i Hopsworks genom att lagra bilderna i det självförsörjande säkra registret med projektnivåisole- ring.
Moré, Andre, and Ermias Gebremeskel. "HopsWorks : A project-based access control model for Hadoop." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175742.
Full textI dagsläget så genereras och samlas det in oerhört stora mängder data som växer i ett allt högre tempo för varje dag som går. Den korrekt analyserade datan skulle kunna erbjuda stora möjligheter för företag men problemet är att det är väldigt resurskrävande att bearbeta. Att göra det möjligt för organisationer att dela med sig utav datan skulle effektivisera det hela tack vare återanvändandet av data men det dyker då upp olika frågor kring lagliga samt etiska aspekter när man delar dessa data. Syftet med denna rapport är att få en djupare förståelse för dom olika åtkomstmetoder som kan användas vid delning av data för att sedan kunna välja den metod som man ansett vara mest lämplig att använda sig utav i en plattform. Plattformen kommer att användas av användare som vill skapa projekt där man vill analysera, dela och arbeta med DataSets, vidare kommer plattformens säkerhet att implementeras med en projekt-baserad åtkomstkontroll på API nivå och detaljerad rollbaserad åtkomstkontroll på filsystemet för att ge dataägaren full kontroll över den data som delas
Yedurupak, Aruna Kumari. "Multitenant PrestoDB as a service." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-222359.
Full textDe senaste åren, har det varit en avsevärd ökning vad gäller mängden av data som produceras, lagras och som används för analys av olika organisationer. Organisationer spenderar mer pengar för att undersöka och extrahera information och insikter i enorma datavolymer på flera terabyte eller petabyte. Storskalig dataanalys är en central funktionalitet som tillhandahålls av Big Data plattformar. I tidigare tillvägagångssätt hämtade data plattformaro-strukturerade data i form av filer, texter och videoklipp. I nutid, så har Hadoop-stacken spelat en kärnroll i Big Data, och blivit en viktig öppen källkod mjukvara som används för att processera och analysera Big Data. Hops är en Hadoop distribution som har utvecklats av KTH och RISE SICS. Hops tillför ändringar till Hadoop stacken genom att migrera metadata för YARN och HDFS till NDB, en öppen källkod i-minnet distribuerad databas. HopsWorks är ett användargränssnitt för Hops och tillför stöd för flera användare, med tillgång till självservice och tjänster såsom Hadoop, Flink, Spark, Kafka och Kibana. HopsWorks stödjer i nuläget inte någon SQL på Hadoop tjänst, även om arbete utförs i nuläget för att integrera Hive. Presto är en av de mest populära SQL på Hadoop plattformarna, men i nuläget så stödjer inte Presto flera användare. Den här uppsatsen utreder stöd för flera användare i Presto med hjälp av HopsWorks, både vad gäller säkerhetsproblem och självservice i HopsWorks. Presto är en distribuerad SQL frågespråk motor som kan ställa frågor mot upp till petabyte med data. Eftersom HopsWorks tillhandahåller ett gränssnitt för att interagera med tjänster, beslutade vi oss att bygga ett gränssnitt för Presto på det existerande öppen källkod gränssnittet för Presto, vid namn AirPal, utvecklat av Airbnb. Den utvecklade lösningen för uppsatsen kan delas in i två delar. Den första delen, att hantera två separata applikationer (HopsWorks och AirPal) som kör med hjälp av två Java virtuella maskiner och använder en ProxyServlet för att kontrollera trafik mellan dom. Den andra, HopsWorks-Presto-service som tillhandahåller HopsWorks åtkomstkontroll (Dataägare och Dataforskare) och en självservice säkerhetsmodell. Utvärderingen i uppsatsen är att genom ett kvalitativt tillvägagångssätt jämföra HopsWorks-Presto-service med en fristående PrestoDB och jämföra HopsWorks-Presto-service med HopsWorks utan Presto-service.
Sheikholeslami, Sina. "Ablation Programming for Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258413.
Full textEftersom maskininlärningssystem används i ett ökande antal applikationer från analys av data från satellitsensorer samt sjukvården till smarta virtuella assistenter och självkörande bilar blir de också mer och mer komplexa. Detta innebär att mer tid och beräkningsresurser behövs för att träna modellerna och antalet designval och hyperparametrar kommer också att öka. På grund av denna komplexitet är det ofta svårt att förstå vilken effekt varje komponent samt designval i ett maskininlärningssystem har på slutresultatet.En enkel metod för att få insikt om vilken påverkan olika komponenter i ett maskinlärningssytem har på systemets prestanda är att utföra en ablationsstudie. En ablationsstudie är en vetenskaplig undersökning av maskininlärningssystem för att få insikt om effekterna av var och en av dess byggstenar på dess totala prestanda. Men i praktiken så är ablationsstudier ännu inte vanligt förekommande inom maskininlärning. Ett av de viktigaste skälen till detta är det faktum att för närvarande så krävs både stora ändringar av koden för att utföra en ablationsstudie, samt extra beräkningsoch tidsresurser.Vi har försökt att ta itu med dessa utmaningar genom att använda en kombination av distribuerad asynkron beräkning och maskininlärning. Vi introducerar maggy, ett ramverk med öppen källkodsram för asynkron och parallell hyperparameteroptimering och ablationsstudier med PySpark och TensorFlow. Detta ramverk möjliggör bättre resursutnyttjande samt ablationsstudier och hyperparameteroptimering i ett enhetligt och utbyggbart API.
Dessalegn, Muruts Misganu. "Multi-Tenant Apache Kafka for Hops : Kafka Topic-Based Multi-Tenancy and ACL- Based Authorization for Hops." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206086.
Full textConference papers on the topic "HopsWorks"
Ismail, Mahmoud, Ermias Gebremeskel, Theofilos Kakantousis, Gautier Berthou, and Jim Dowling. "Hopsworks: Improving User Experience and Development on Hadoop with Scalable, Strongly Consistent Metadata." In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2017. http://dx.doi.org/10.1109/icdcs.2017.41.
Full text