Academic literature on the topic 'Hot carrier solar cell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hot carrier solar cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hot carrier solar cell"

1

Ikeri, H. I., A. I. Onyia, and F. N. Kalu. "Hot carrier exploitation strategies and model for efficient solar cell applications." Chalcogenide Letters 18, no. 11 (2021): 745–57. http://dx.doi.org/10.15251/cl.2021.1811.745.

Full text
Abstract:
Hot carriers are electrons or holes that are created in semiconductors upon the absorption of photons with energies greater than the fundamental bandgap. The excess energy of the hot carrier cools to the lattice temperature via carrier–phonon scattering and wasted as heat in [the] picoseconds timescale. The hot-carrier cooling represents a severe loss in the solar cells that have significantly limits their power conversion efficiencies. Hot carrier solar cells aim to mitigate this optical limitation by effective utilization of carriers at elevated energies. However, exploitation of hot carrier
APA, Harvard, Vancouver, ISO, and other styles
2

Conibeer, Gavin, Robert Patterson, Lunmei Huang, et al. "Modelling of hot carrier solar cell absorbers." Solar Energy Materials and Solar Cells 94, no. 9 (2010): 1516–21. http://dx.doi.org/10.1016/j.solmat.2010.01.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Konovalov, Igor, and Vitali Emelianov. "Hot carrier solar cell as thermoelectric device." Energy Science & Engineering 5, no. 3 (2017): 113–22. http://dx.doi.org/10.1002/ese3.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sogabe, Tomah, Kodai Shiba, and Katsuyoshi Sakamoto. "Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell." Electronic Materials 3, no. 2 (2022): 185–200. http://dx.doi.org/10.3390/electronicmat3020016.

Full text
Abstract:
The hot-carrier effect and hot-carrier dynamics in GaAs solar cell device performance were investigated. Hot-carrier solar cells based on the conventional operation principle were simulated based on the detailed balance thermodynamic model and the hydrodynamic energy transportation model. A quasi-equivalence between these two models was demonstrated for the first time. In the simulation, a specially designed GaAs solar cell was used, and an increase in the open-circuit voltage was observed by increasing the hot-carrier energy relaxation time. A detailed analysis was presented regarding the spa
APA, Harvard, Vancouver, ISO, and other styles
5

König, D., Y. Takeda, and B. Puthen-Veettil. "Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts." Applied Physics Letters 101, no. 15 (2012): 153901. http://dx.doi.org/10.1063/1.4757979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Würfel, P., A. S. Brown, T. E. Humphrey, and M. A. Green. "Particle conservation in the hot-carrier solar cell." Progress in Photovoltaics: Research and Applications 13, no. 4 (2005): 277–85. http://dx.doi.org/10.1002/pip.584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

König, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51 (October 22, 2012): 10ND02. http://dx.doi.org/10.1143/jjap.51.10nd02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

König, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51, no. 10S (2012): 10ND02. http://dx.doi.org/10.7567/jjap.51.10nd02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boyer-Richard, Soline, Fei Fan, Nicolas Chevalier, et al. "Preliminary study of selective contacts for hot carrier solar cells." EPJ Photovoltaics 15 (2024): 38. http://dx.doi.org/10.1051/epjpv/2024031.

Full text
Abstract:
Hot carrier solar cells are a concept of photovoltaic devices, which offers the opportunity to harvest solar energy beyond the Shockley-Queisser limit. Unlike conventional photovoltaic devices, hot carrier solar cells convert excess kinetic energy into useful electrical power rather than losing it through thermalisation mechanisms. To extract the carriers while they are still “hot”, efficient energy-selective contacts must be developed. In previous studies, the presence of the hot carrier population in a p-i-n solar cell based on a single InGaAsP quantum well on InP substrate at room temperatu
APA, Harvard, Vancouver, ISO, and other styles
10

Ferry, D. K. "In search of a true hot carrier solar cell." Semiconductor Science and Technology 34, no. 4 (2019): 044001. http://dx.doi.org/10.1088/1361-6641/ab0bc3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hot carrier solar cell"

1

Vezin, Thomas. "Uneven temperatures in hot carrier solar cells : optical characterization and device simulation." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX061.

Full text
Abstract:
Les cellules solaires à porteurs chauds promettent des rendements théoriques supérieurs à 66%. N´néanmoins, les dispositifs réels ont des rendements nettement inférieurs, de l’ordre de 10%. Pour comprendre cette différence, il est nécessaire de complexifier notre compréhension des cellules solaires à porteurs chauds en introduisant des effets non-idéaux. Dans cette thèse, nous étudions deux effets ≪ d’écart de température ≫: (i) l’existence d’un gradient de température dans l’absorbeur (température inhomogène) et (ii) l’existence de deux températures différentes pour les électrons et les trous
APA, Harvard, Vancouver, ISO, and other styles
2

Rodière, Jean. "Optoelectronic characterization of hot carriers solar cells absorbers." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066703/document.

Full text
Abstract:
La cellule photovoltaïque à porteurs chauds est un dispositif de conversion de l’énergie solaire en énergie électrique dont les rendements théoriques approchent les 86%. Additionnellement à une cellule photovoltaïque standard, ce dispositif permet de convertir l’excédent d’énergie cinétique des porteurs photogénérés, en énergie électrique. Pour cela, le phénomène de thermalisation doit être réduit et des contacts électriques sélectifs en énergie ajoutés. Afin de déterminer les performances potentielles des absorbeurs, tout en surmontant le défi de fabrication des contacts électriques sélectifs
APA, Harvard, Vancouver, ISO, and other styles
3

Rodière, Jean. "Optoelectronic characterization of hot carriers solar cells absorbers." Electronic Thesis or Diss., Paris 6, 2014. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2014PA066703.pdf.

Full text
Abstract:
La cellule photovoltaïque à porteurs chauds est un dispositif de conversion de l’énergie solaire en énergie électrique dont les rendements théoriques approchent les 86%. Additionnellement à une cellule photovoltaïque standard, ce dispositif permet de convertir l’excédent d’énergie cinétique des porteurs photogénérés, en énergie électrique. Pour cela, le phénomène de thermalisation doit être réduit et des contacts électriques sélectifs en énergie ajoutés. Afin de déterminer les performances potentielles des absorbeurs, tout en surmontant le défi de fabrication des contacts électriques sélectifs
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Chu-Wei School of Photovoltaic Engineering UNSW. "Theoretical and experimental study of energy selective contacts for hot carrier solar cells and extensions to tandem cells." Awarded by:University of New South Wales. School of Photovoltaic Engineering, 2005. http://handle.unsw.edu.au/1959.4/23065.

Full text
Abstract:
Photovoltaics is currently the fastest growing energy source in the world. Increasing the conversion efficiency towards the thermodynamic limits is the trend in research development. ???Third generation??? photovoltaics involves the investigation of ideas that may achieve this goal. Among the third generation concepts, the tandem cell structure has experimentally proven to have conversion efficiencies higher than a standard p-n junction solar cell. The alternative hot carrier solar cell design is one of the most elegant approaches. Energy selective contacts are crucial elements for the operati
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Qingrong. "Hot Carriers in Thin-film Absorbers." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303146.

Full text
Abstract:
Solar energy is one of the most promising sources of confronting the energy crisis. And hot carrier solar cell can be the future to increase the efficiency of solar cells to exceed to the theoretical efficiency limit, Shockley-Queisser limit. After theoretical understanding of some essential aspects of hot carrier solar cell, to better understand the properties of hot carriers and the thermalization mechanisms behind it, analysis is conducted based on the photoluminescence spectra of GaAs thin-film absorber samples with different thicknesses. According to the results of the analysis, informati
APA, Harvard, Vancouver, ISO, and other styles
6

Behaghel, Benoît. "Fabrication and investigation of III-V quantum structured solar cells with Fabry-Pérot cavity and nanophotonics in order to explore high-efficiency photovoltaic concepts : towards an intermediate band assisted hot carrier solar cell." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066729/document.

Full text
Abstract:
Le photovoltaïque (PV) s’est imposé comme un acteur majeur de l’énergie. L’innovation dans ce domaine passera sans doute par le PV à haut rendement sur des couches minces flexibles et légères permettant son déploiement dans les applications mobiles. Cette thèse étudie le développement de cellules solaires III-V à structures quantiques visant des concepts PV hauts rendements tels les cellules solaires à bande intermédiaire (IBSC). Ces IBSC se sont montrés limités du fait de l’échappement thermique des porteurs à température ambiante ainsi que la faible absorption optique sous le gap. Nous avons
APA, Harvard, Vancouver, ISO, and other styles
7

Behaghel, Benoît. "Fabrication and investigation of III-V quantum structured solar cells with Fabry-Pérot cavity and nanophotonics in order to explore high-efficiency photovoltaic concepts : towards an intermediate band assisted hot carrier solar cell." Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066729.

Full text
Abstract:
Le photovoltaïque (PV) s’est imposé comme un acteur majeur de l’énergie. L’innovation dans ce domaine passera sans doute par le PV à haut rendement sur des couches minces flexibles et légères permettant son déploiement dans les applications mobiles. Cette thèse étudie le développement de cellules solaires III-V à structures quantiques visant des concepts PV hauts rendements tels les cellules solaires à bande intermédiaire (IBSC). Ces IBSC se sont montrés limités du fait de l’échappement thermique des porteurs à température ambiante ainsi que la faible absorption optique sous le gap. Nous avons
APA, Harvard, Vancouver, ISO, and other styles
8

Hirst, Louise. "A spectroscopic study of strain-balanced InGaAs/GaAsP quantum well structures as absorber materials for hot carrier solar cells." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10474.

Full text
Abstract:
In this thesis, five intrinsic loss mechanisms which fundamentally limit solar energy conversion efficiency are identified. The three dominant mechanisms are thermalisation loss, below Eg loss and Boltzmann loss. Targeting these three losses through alternative device design is the only way substantial efficiency enhancement might be achieved. The hot carrier solar cell targets these dominant mechanisms and hence has a theoretical limiting efficiency, under maximum solar concentration, in excess of 80%. Despite clear efficiency advantages, a hot carrier solar cell has never been experimentally
APA, Harvard, Vancouver, ISO, and other styles
9

Le, bris Arthur. "Etude de faisabilité d'un dispositif photovoltaïque à porteurs chauds." Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00646713.

Full text
Abstract:
La cellule photovoltaïque à porteurs chauds se caractérise par une population électronique hors équilibre thermique avec le réseau, ce qui se traduit par une température électronique supérieure à la température du matériau. Il devient alors possible de récupérer non seulement l'énergie potentielle des porteurs, mais également leur énergie cinétique, et donc d'extraire un surcroît de puissance qui n'est pas exploitée dans des cellules conventionnelles. Cela permet d'atteindre des rendements potentiels proches de la limite thermodynamique. L'extraction des porteurs hors équilibre se fait au moye
APA, Harvard, Vancouver, ISO, and other styles
10

Ho, Carr Hoi Yi. "Toward better performing organic solar cells: impact of charge carrier transport and electronic interactions in bulk heterojunction blends /Ho Hoi Yi, Carr." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/359.

Full text
Abstract:
Organic photovoltaic (OPV) is an exciting energy harvesting technique. Although its power conversion efficiency (PCE) now exceeds 10% in a research laboratory, the processing window of an OPV cell is still narrow. A fundamental understanding of the OPV materials is desired. This thesis presents the charge carrier transport properties and electronic interactions in the bulk heterojunction (BHJ) active layer of OPV cells. They were found to be well correlated with OPV device performances. Space-charge-limited current (SCLC) measurements and admittance spectroscopy (AS) were employed to study the
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hot carrier solar cell"

1

United States. National Aeronautics and Space Administration., ed. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell: Annual status report for NASA grant #NAG 3-1490. National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hot carrier solar cell"

1

Takeda, Yasuhiko. "Requisites for Highly Efficient Hot-Carrier Solar Cells." In Lecture Notes in Nanoscale Science and Technology. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8148-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kita, Takashi, Yukihiro Harada, and Shigeo Asahi. "Influences of Carrier Generation and Recombination on the Solar Cell Conversion Efficiency." In Energy Conversion Efficiency of Solar Cells. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9089-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sah, Santosh Prasad, and Atsushi Nishikata. "Enhancing Corrosion Resistance of Stainless Steel by Hot-Dip Aluminizing for High-Temperature Solar Thermal Application." In CO2 Free Ammonia as an Energy Carrier. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4767-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vitanov, P., K. Ivanova, D. Velkov, Y. G. Kuddan, and N. Tyutyundzhiev. "The Behavior Of Pv Module Parameters As A Function Of Solar Cell Temperature In Hot Climates." In Photovoltaic and Photoactive Materials — Properties, Technology and Applications. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0632-3_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gibelli, François, Laurent Lombez, and Jean-François Guillemoles. "Hot-Carrier Solar Cells: Modeling Carrier Transport." In Advanced Micro- and Nanomaterials for Photovoltaics. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-814501-2.00004-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Igor, Vurgaftman. "Solar Cells, Thermophotovoltaics, and Nonlinear Devices Based on Quantum Wells." In Bands and Photons in III-V Semiconductor Quantum Structures. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198767275.003.0015.

Full text
Abstract:
This chapter describes the basic principles behind the solar-cell operation using both an empirical picture and fundamental thermodynamic relationships. It considers how semiconductor materials are selected for use in solar cells and why materials with different gaps need to be stacked to improve the conversion efficiency. It also discusses advanced solar-cell concepts such as quantum-well, intermediate-band, and hot-carrier solar cells. Thermophotovoltaic devices that are similar to solar cells, but designed for emission peaks at much lower effective temperatures than the surface of the sun (
APA, Harvard, Vancouver, ISO, and other styles
7

Ghasemzadeh, Farzaneh, and Mostafa Esmaeili Shayan. "Nanotechnology in the Service of Solar Energy Systems." In Nanotechnology and the Environment. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93014.

Full text
Abstract:
Nanotechnology can help to address the existing efficiency hurdles and greatly increase the generation and storage of solar energy. A variety of physical processes have been established at the nanoscale that can improve the processing and transmission of solar energy. The application of nanotechnology in solar cells has opened the path to the development of a new generation of high-performance products. When competition for clean energy options is growing, a variety of potential approaches have been discussed in order to expand the prospects. New principles have been explored in the area of so
APA, Harvard, Vancouver, ISO, and other styles
8

Aïssa, Brahim, Fahhad Alharbi, and Nouar Tabet. "Solar cell fundamentals." In Photovoltaic Technology for Hot and Arid Environments. Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/pbpo144e_ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aïssa, Brahim, Marie Buffiere, and Mohammad I. Hossain. "Solar cell technologies." In Photovoltaic Technology for Hot and Arid Environments. Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/pbpo144e_ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shrestha, Santosh, Gavin Conibeer, and Shujuan Huang. "Solar Cells Based on Hot Carriers and Quantum Dots." In Advanced Nanomaterials for Solar Cells and Light Emitting Diodes. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-813647-8.00006-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hot carrier solar cell"

1

Baranowski, Izak, Stephen M. Goodnick, and Dragica Vasileska. "Monte Carlo simulation of hot phonon dynamics in InAs/AlAsSb hot carrier solar cell absorbers." In Physics, Simulation, and Photonic Engineering of Photovoltaic Devices XIV, edited by Alexandre Freundlich, Karin Hinzer, Ian R. Sellers, and Henning Helmers. SPIE, 2025. https://doi.org/10.1117/12.3056757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Legrand, Marie, Maxime Giteau, Daniel Suchet, et al. "Bridging the Gap Between Steady-State and Transient Characterization of Carrier Cooling for Hot-Carrier Solar Cells." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10748812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cavassilas, Nicolas, Fabienne Michelini, Marc Bescond, and Thibault Joie. "Hot-carrier solar cell NEGF-based simulations." In SPIE OPTO, edited by Alexandre Freundlich, Laurent Lombez, and Masakazu Sugiyama. SPIE, 2016. http://dx.doi.org/10.1117/12.2212612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Conibeer, Gavin, Santosh Shrestha, Shujuan Huang, et al. "Hot carrier solar cell absorbers: materials, mechanisms and nanostructures." In SPIE Solar Energy + Technology, edited by Oleg V. Sulima and Gavin Conibeer. SPIE, 2014. http://dx.doi.org/10.1117/12.2067926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hanna, Mark C., Zhenghao Lu, and Arthur J. Nozik. "Hot carrier solar cells." In Future generation photovoltaic technologies. AIP, 1997. http://dx.doi.org/10.1063/1.53477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hirst, Louise C., Matthew P. Lumb, Raymond Hoheisel, Simon P. Philipps, Andreas W. Bett, and Robert J. Walters. "Hot-carrier solar cell spectral insensitivity: Why develop the hot-carrier solar cell when we have multi-junction devices?" In SPIE OPTO, edited by Alexandre Freundlich and Jean-François Guillemoles. SPIE, 2014. http://dx.doi.org/10.1117/12.2040698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Basu, Indranil, Amit Kumar Mandali, Pijus Kanti Samanta, et al. "Hot carrier solar cell (HCSC): A new generation nano-structured solar cell." In 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). IEEE, 2017. http://dx.doi.org/10.1109/iemecon.2017.8079608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pusch, Andreas, Milos Dubajic, Nicholas J. Ekins-Daukes, and Stephen Bremner. "Fundamental Aspects of Hot Carrier Solar Cell Operation." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Liu, Mengzhu Hu, and Sailing He. "Hot-carrier solar cell based on plasmonic nanofocusing." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Taylor, P. C., J. D. Fields, and R. T. Collins. "On the road toward a hot carrier solar cell." In SPIE Optics + Photonics for Sustainable Energy, edited by Oleg V. Sulima and Gavin Conibeer. SPIE, 2015. http://dx.doi.org/10.1117/12.2190910.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hot carrier solar cell"

1

Hardin, Brian, Craig Peters, and Edward Barnard. Three-dimensional minority carrier lifetime mapping of thin film semiconductors for solar cell applications. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1411710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!