Journal articles on the topic 'Hot carrier solar cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hot carrier solar cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ikeri, H. I., A. I. Onyia, and F. N. Kalu. "Hot carrier exploitation strategies and model for efficient solar cell applications." Chalcogenide Letters 18, no. 11 (2021): 745–57. http://dx.doi.org/10.15251/cl.2021.1811.745.
Full textConibeer, Gavin, Robert Patterson, Lunmei Huang, et al. "Modelling of hot carrier solar cell absorbers." Solar Energy Materials and Solar Cells 94, no. 9 (2010): 1516–21. http://dx.doi.org/10.1016/j.solmat.2010.01.018.
Full textKonovalov, Igor, and Vitali Emelianov. "Hot carrier solar cell as thermoelectric device." Energy Science & Engineering 5, no. 3 (2017): 113–22. http://dx.doi.org/10.1002/ese3.159.
Full textSogabe, Tomah, Kodai Shiba, and Katsuyoshi Sakamoto. "Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell." Electronic Materials 3, no. 2 (2022): 185–200. http://dx.doi.org/10.3390/electronicmat3020016.
Full textKönig, D., Y. Takeda, and B. Puthen-Veettil. "Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts." Applied Physics Letters 101, no. 15 (2012): 153901. http://dx.doi.org/10.1063/1.4757979.
Full textWürfel, P., A. S. Brown, T. E. Humphrey, and M. A. Green. "Particle conservation in the hot-carrier solar cell." Progress in Photovoltaics: Research and Applications 13, no. 4 (2005): 277–85. http://dx.doi.org/10.1002/pip.584.
Full textKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51 (October 22, 2012): 10ND02. http://dx.doi.org/10.1143/jjap.51.10nd02.
Full textKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51, no. 10S (2012): 10ND02. http://dx.doi.org/10.7567/jjap.51.10nd02.
Full textBoyer-Richard, Soline, Fei Fan, Nicolas Chevalier, et al. "Preliminary study of selective contacts for hot carrier solar cells." EPJ Photovoltaics 15 (2024): 38. http://dx.doi.org/10.1051/epjpv/2024031.
Full textFerry, D. K. "In search of a true hot carrier solar cell." Semiconductor Science and Technology 34, no. 4 (2019): 044001. http://dx.doi.org/10.1088/1361-6641/ab0bc3.
Full textKonovalov, I., V. Emelianov, and R. Linke. "Hot carrier solar cell with semi infinite energy filtering." Solar Energy 111 (January 2015): 1–9. http://dx.doi.org/10.1016/j.solener.2014.10.028.
Full textPiccone, Ashley. "Combining hot-carrier and multijunction solar cells increases efficiency, lowers cost." Scilight 2022, no. 21 (2022): 211106. http://dx.doi.org/10.1063/10.0009522.
Full textKönig, Dirk, and Yao Yao. "Practical concept of an all-optical hot carrier solar cell." Japanese Journal of Applied Physics 54, no. 8S1 (2015): 08KA03. http://dx.doi.org/10.7567/jjap.54.08ka03.
Full textFarrell, D. J., Y. Takeda, K. Nishikawa, T. Nagashima, T. Motohiro, and N. J. Ekins-Daukes. "A hot-carrier solar cell with optical energy selective contacts." Applied Physics Letters 99, no. 11 (2011): 111102. http://dx.doi.org/10.1063/1.3636401.
Full textLimpert, S., S. Bremner, and H. Linke. "Reversible electron–hole separation in a hot carrier solar cell." New Journal of Physics 17, no. 9 (2015): 095004. http://dx.doi.org/10.1088/1367-2630/17/9/095004.
Full textConibeer, Gavin, Santosh Shrestha, Shujuan Huang, et al. "Hot carrier solar cell absorber prerequisites and candidate material systems." Solar Energy Materials and Solar Cells 135 (April 2015): 124–29. http://dx.doi.org/10.1016/j.solmat.2014.11.015.
Full textCao, Wenkai, Zewen Zhang, Rob Patterson, et al. "Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy." RSC Advances 6, no. 93 (2016): 90846–55. http://dx.doi.org/10.1039/c6ra20165b.
Full textSambur, Justin, Rachelle Austin, Andres Montoya-Castillo, Thomas Sayer, Amber Krummel, and Yusef Farah. "(Invited) Hot Carrier Extraction from Monolayer MoS2 Photoelectrodes Revealed by in Situ Transient Absorption Spectroscopy." ECS Meeting Abstracts MA2025-01, no. 56 (2025): 2727. https://doi.org/10.1149/ma2025-01562727mtgabs.
Full textSambur, Justin, Rachelle Austin, Yusef Farah, and Amber Krummel. "(Invited) Energy Level Alignment at Monolayer MoS2/Electrolyte Interfaces." ECS Meeting Abstracts MA2022-01, no. 12 (2022): 864. http://dx.doi.org/10.1149/ma2022-0112864mtgabs.
Full textSambur, Justin. "(Invited) Energy Level Alignment and Hot Carrier Extraction in Monolayer Semiconductor Photoelectrochemical Cells." ECS Meeting Abstracts MA2023-01, no. 13 (2023): 1300. http://dx.doi.org/10.1149/ma2023-01131300mtgabs.
Full textSambur, Justin, Rachelle Austin, Rafael Almaraz, et al. "(Invited) Photoelectrochemistry of Monolayer 2D Semiconductors: Quantifying Band Gap Renormalization Effects and Hot Carrier Extraction." ECS Meeting Abstracts MA2024-01, no. 12 (2024): 1015. http://dx.doi.org/10.1149/ma2024-01121015mtgabs.
Full textKonovalov, Igor, and Bernd Ploss. "Modeling of hot carrier solar cell with semi-infinite energy filtering." Solar Energy 185 (June 2019): 59–63. http://dx.doi.org/10.1016/j.solener.2019.04.050.
Full textKamide, K. "Current–voltage curves and operational stability in hot-carrier solar cell." Journal of Applied Physics 127, no. 18 (2020): 183102. http://dx.doi.org/10.1063/5.0002934.
Full textAšmontas, Steponas, Oleksandr Masalskyi, Ihor Zharchenko, Algirdas Sužiedėlis, and Jonas Gradauskas. "Some Aspects of Hot Carrier Photocurrent across GaAs p-n Junction." Inorganics 12, no. 6 (2024): 174. http://dx.doi.org/10.3390/inorganics12060174.
Full textGupta, Ritesh Kant, Rabindranath Garai, Mohammad Adil Afroz, and Parameswar Krishnan Iyer. "Regulating active layer thickness and morphology for high performance hot-casted polymer solar cells." Journal of Materials Chemistry C 8, no. 24 (2020): 8191–98. http://dx.doi.org/10.1039/d0tc00822b.
Full textWang, Junyi, Youlin Wang, Xiaohang Chen, Jincan Chen, and Shanhe Su. "Hot carrier-based near-field thermophotovoltaics with energy selective contacts." Applied Physics Letters 122, no. 12 (2023): 122203. http://dx.doi.org/10.1063/5.0143300.
Full textLimpert, Steven C., and Stephen P. Bremner. "Hot carrier extraction using energy selective contacts and its impact on the limiting efficiency of a hot carrier solar cell." Applied Physics Letters 107, no. 7 (2015): 073902. http://dx.doi.org/10.1063/1.4928750.
Full textBehaghel, B., R. Tamaki, H.-L. Chen, et al. "A hot-carrier assisted InAs/AlGaAs quantum-dot intermediate-band solar cell." Semiconductor Science and Technology 34, no. 8 (2019): 084001. http://dx.doi.org/10.1088/1361-6641/ab23d0.
Full textWang, Gang, Li Ping Liao, Ahmed Mourtada Elseman, et al. "An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite." Nano Energy 68 (February 2020): 104383. http://dx.doi.org/10.1016/j.nanoen.2019.104383.
Full textFarrell, Daniel J., Hassanet Sodabanlu, Yunpeng Wang, Masakazu Sugiyama, and Yoshitaka Okada. "Can a Hot-Carrier Solar Cell also be an Efficient Up-converter?" IEEE Journal of Photovoltaics 5, no. 2 (2015): 571–76. http://dx.doi.org/10.1109/jphotov.2014.2373817.
Full textCalderón-Muñoz, Williams R., and Cristian Jara-Bravo. "Hydrodynamic modeling of hot-carrier effects in a PN junction solar cell." Acta Mechanica 227, no. 11 (2016): 3247–60. http://dx.doi.org/10.1007/s00707-015-1538-5.
Full textGiteau, Maxime, Daniel Suchet, Stéphane Collin, Jean-François Guillemoles, and Yoshitaka Okada. "Detailed balance calculations for hot-carrier solar cells: coupling high absorptivity with low thermalization through light trapping." EPJ Photovoltaics 10 (2019): 1. http://dx.doi.org/10.1051/epjpv/2019001.
Full textChen, Yuzhong, Yujie Li, Yida Zhao, Hongzhi Zhou, and Haiming Zhu. "Highly efficient hot electron harvesting from graphene before electron-hole thermalization." Science Advances 5, no. 11 (2019): eaax9958. http://dx.doi.org/10.1126/sciadv.aax9958.
Full textGradauskas, J., O. Masalskyi, S. Asmontas, A. Suziedelis, A. Rodin, and I. Zharchenko. "HOT CARRIER PHOTOCURRENT AS AN INTRINSIC LOSS IN A SINGLE JUNCTION SOLAR CELL." Ukrainian Journal of Physical Optics 25, no. 1 (2024): 01106–12. http://dx.doi.org/10.3116/16091833/ukr.j.phys.opt.2024.01106.
Full textZhang, Yi, Huilong Chen, Junfeng Qu, Jiayu Zhang, and Gavin Conibeer. "Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells." Nanomaterials 14, no. 24 (2024): 2041. https://doi.org/10.3390/nano14242041.
Full textChen Shuhan, 陈舒涵, 刘晓春 Liu Xiaochun, 王丽娜 Wang Lina та 弓爵 Gong Jue. "钙钛矿材料在热载流子太阳能电池中的研究进展". Laser & Optoelectronics Progress 60, № 13 (2023): 1316021. http://dx.doi.org/10.3788/lop230819.
Full textGradauskas, Jonas, Steponas Ašmontas, Algirdas Sužiedėlis, et al. "Influence of Hot Carrier and Thermal Components on Photovoltage Formation across the p–n Junction." Applied Sciences 10, no. 21 (2020): 7483. http://dx.doi.org/10.3390/app10217483.
Full textWATANABE, Daiki, Yukihiro HARADA, and Takashi KITA. "Fundamental Device Characteristics of Hot Carrier Solar Cell Using InAs/GaAs Quantum Dot Superlattices." Journal of the Society of Materials Science, Japan 66, no. 9 (2017): 629–33. http://dx.doi.org/10.2472/jsms.66.629.
Full textHirst, L. C., R. J. Walters, M. F. Führer, and N. J. Ekins-Daukes. "Experimental demonstration of hot-carrier photo-current in an InGaAs quantum well solar cell." Applied Physics Letters 104, no. 23 (2014): 231115. http://dx.doi.org/10.1063/1.4883648.
Full textYang, Zhimin, Wanli Peng, Shanhe Su, Guoxing Lin, and Jincan Chen. "Performance assessment and optimization of a hot carrier solar cell with double energy selective contacts." Physica Scripta 93, no. 9 (2018): 095002. http://dx.doi.org/10.1088/1402-4896/aad4d4.
Full textPatterson, R., M. Kirkengen, B. Puthen Veettil, D. Konig, M. A. Green, and G. Conibeer. "Phonon lifetimes in model quantum dot superlattice systems with applications to the hot carrier solar cell." Solar Energy Materials and Solar Cells 94, no. 11 (2010): 1931–35. http://dx.doi.org/10.1016/j.solmat.2010.06.030.
Full textHossain, Mohammad Kamal. "Hydrogenated Amorphous Silicon-Based Thin Film Solar Cell: Optical, Electrical and Structural Properties." Advanced Materials Research 1116 (July 2015): 59–64. http://dx.doi.org/10.4028/www.scientific.net/amr.1116.59.
Full textMeng, Xiangrui, Changchun Chai, Fuxing Li, Yi Sun, and Yintang Yang. "High-power microwaves response characteristics of silicon and GaAs solar cells." Journal of Semiconductors 43, no. 11 (2022): 112701. http://dx.doi.org/10.1088/1674-4926/43/11/112701.
Full textVerma, Aloke, and Swapnil Jain. "Advances in Methylammonium Lead Halide Perovskites Synthesis, Structural, Optical, and Photovoltaic Insights." Oriental Journal Of Chemistry 40, no. 4 (2024): 1056–60. http://dx.doi.org/10.13005/ojc/400416.
Full textShayan, Sahra, Samiye Matloub, and Ali Rostami. "Efficiency enhancement in a single bandgap silicon solar cell considering hot-carrier extraction using selective energy contacts." Optics Express 29, no. 4 (2021): 5068. http://dx.doi.org/10.1364/oe.416932.
Full textWatanabe, Daiki, Naoto Iwata, Shigeo Asahi, Yukihiro Harada, and Takashi Kita. "Hot-carrier generation in a solar cell containing InAs/GaAs quantum-dot superlattices as a light absorber." Applied Physics Express 11, no. 8 (2018): 082303. http://dx.doi.org/10.7567/apex.11.082303.
Full textXu, Min, Peng Wang, Shuwen Qi, Rongjun Zhao, Lin Xie, and Yong Hua. "Enhancing perovskite solar cell performance: The role of polymer-assisted hole transport layers in hot carrier dynamics." Chemical Engineering Journal 489 (June 2024): 151357. http://dx.doi.org/10.1016/j.cej.2024.151357.
Full textWu, Thakur, Chiang, et al. "The Way to Pursue Truly High-Performance Perovskite Solar Cells." Nanomaterials 9, no. 9 (2019): 1269. http://dx.doi.org/10.3390/nano9091269.
Full textKlimov, R., and A. Morozovskaya. "ENERGY EFFICIENCY OF COMBINED HEAT SUPPLY SYSTEMS." Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences) 2, no. 39 (2021): 92–97. http://dx.doi.org/10.31319/2519-2884.39.2021.11.
Full textO’Keeffe, P., D. Catone, A. Paladini, et al. "Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers." Nano Letters 19, no. 2 (2019): 684–91. http://dx.doi.org/10.1021/acs.nanolett.8b03685.
Full text