Journal articles on the topic 'Hot workability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hot workability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Higashi, Masaya, and Naoya Kanno. "Evaluation of Hot Workability of Powder Metallurgy Ni-Based Superalloy with Different Initial Microstructures." Metallurgical and Materials Transactions A 52, no. 1 (November 17, 2020): 181–93. http://dx.doi.org/10.1007/s11661-020-06085-5.
Full textGudimettla, Jagan M., L. Allen Cooley, and E. Ray Brown. "Workability of Hot-Mix Asphalt." Transportation Research Record: Journal of the Transportation Research Board 1891, no. 1 (January 2004): 229–37. http://dx.doi.org/10.3141/1891-27.
Full textNhat, Tran Thanh, and Osamu Takahashi. "INVESTIGATION ON INDICES OF WORKABILITY AND RUTTING RESISTANCE FOR WEARING COURSE MIXTURES." Baltic Journal of Road and Bridge Engineering 12, no. 1 (March 24, 2017): 30–37. http://dx.doi.org/10.3846/bjrbe.2017.04.
Full textGavgali,, M., and Y. Totik,. "Hot Workability of 5052 Aluminum Alloy." Journal of the Mechanical Behavior of Materials 12, no. 3 (June 2001): 187–95. http://dx.doi.org/10.1515/jmbm.2001.12.3.187.
Full textFinkler, Helmut, and Günter Rennollet. "Hot workability of steels for forgings." Steel Research 57, no. 6 (June 1986): 262–69. http://dx.doi.org/10.1002/srin.198600764.
Full textMcQueen, H. J., and D. L. Bourell. "Hot Workability of Metals and Alloys." JOM 39, no. 9 (September 1987): 28–35. http://dx.doi.org/10.1007/bf03257647.
Full textVenugopal, S., S. L. Mannan, and Y. V. R. K. Prasad. "Optimization of hot workability in stainless." Metallurgical Transactions A 23, no. 11 (November 1992): 3093–103. http://dx.doi.org/10.1007/bf02646128.
Full textAsgharzadeh, Hamed, and Abdolreza Simchi. "Hot Deformation Behavior of P/M Al6061-20% SiC Composite." Materials Science Forum 534-536 (January 2007): 897–900. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.897.
Full textSUZUKI, Hirowo G., Takeo ASHIURA, Koshiro AOYAGI, Hideki FUJII, and Kohji TANABE. "Hot Workability of Ti-6Al-4V Alloys." Tetsu-to-Hagane 72, no. 6 (1986): 587–94. http://dx.doi.org/10.2355/tetsutohagane1955.72.6_587.
Full textGonçalves, Marcelo C., M. G. Martins, Wojciech Z. Misiolek, and William H. Van Geertruyden. "Homogenization and Hot Workability of Alloy AA2014." Materials Science Forum 396-402 (July 2002): 393–98. http://dx.doi.org/10.4028/www.scientific.net/msf.396-402.393.
Full textMcQueen, H. J., and Man Jong Lee. "Hot Workability of High Strength 6060 Alloy." Materials Science Forum 331-337 (May 2000): 437–42. http://dx.doi.org/10.4028/www.scientific.net/msf.331-337.437.
Full textSpigarelli, S., F. Bardi, and E. Evangelista. "Hot Workability of the 2618 Aluminium Alloy." Materials Science Forum 331-337 (May 2000): 449–54. http://dx.doi.org/10.4028/www.scientific.net/msf.331-337.449.
Full textZou, Dening, Ying Han, Dongna Yan, Duo Wang, Wei Zhang, and Guangwei Fan. "Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel." Materials & Design 32, no. 8-9 (September 2011): 4443–48. http://dx.doi.org/10.1016/j.matdes.2011.03.067.
Full textJabbari-Taleghani, M. A., and J. M. Torralba. "Hot workability of nanocrystalline AZ91 magnesium alloy." Journal of Alloys and Compounds 595 (May 2014): 1–7. http://dx.doi.org/10.1016/j.jallcom.2014.01.091.
Full textTaha, M. A., N. A. El-Mahallawy, and T. A. El-Benawy. "Workability of unidirectionally solidified Al-8 wt% Cu alloy: Part II. Hot workability." Journal of Materials Processing Technology 35, no. 1 (September 1992): 71–81. http://dx.doi.org/10.1016/0924-0136(92)90302-9.
Full textKang, Jun-Yun, Hoyoung Kim, Dongmin Son, Cheolpyo Kim, Soon Keun Park, and Tae-Ho Lee. "Hot-worked microstructure and hot workability of cold-work tool steels." Materials Characterization 135 (January 2018): 8–17. http://dx.doi.org/10.1016/j.matchar.2017.11.001.
Full textKirchner, A., D. Hinz, V. Panchanathan, O. Gutfleisch, K. H. Muller, and L. Schultz. "Improved hot workability and magnetic properties in NdFeCoGaB hot deformed magnets." IEEE Transactions on Magnetics 36, no. 5 (2000): 3288–90. http://dx.doi.org/10.1109/20.908772.
Full textImayev, V. M., Renat M. Imayev, Timur G. Khismatullin, T. Oleneva, Volker Gühter, and Hans Jörg Fecht. "Microstructure and Processing Ability of β-Solidifying TNM-Based γ-TiAl Alloys." Materials Science Forum 638-642 (January 2010): 235–40. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.235.
Full textMatsuzaki, Kunio, Yoichi Murakoshi, Toru Shimizu, and Kaoru Kikuchi. "Formability of AZ31 Alloys Prepared by Hot-Extrusion of their Machined Chips." Materials Science Forum 638-642 (January 2010): 1569–73. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1569.
Full textMcQueen, H. J., and M. Sauerborn. "Hot workability and extrusion modelling of magnesium alloys." Zeitschrift für Metallkunde 96, no. 6 (June 2005): 638–44. http://dx.doi.org/10.3139/146.101082.
Full textEl-Meligy, Maha, and Taher El-Bitar. "Hot workability of 420 J1 martensitic stainless steel." Procedia Manufacturing 50 (2020): 771–76. http://dx.doi.org/10.1016/j.promfg.2020.08.139.
Full textMA, Minglong, Lanqiang HE, Xinggang LI, Yongjun LI, and Kui ZHANG. "Hot workability of Mg-9Y-1MM-0.6Zr alloy." Journal of Rare Earths 29, no. 5 (May 2011): 460–65. http://dx.doi.org/10.1016/s1002-0721(10)60479-6.
Full textMilović, Ranko, Dragoslav Manojlović, Milojica Andjelić, and Djordje Drobnjak. "Hot workability of M2 type high-speed steel." Steel Research 63, no. 2 (February 1992): 78–84. http://dx.doi.org/10.1002/srin.199200474.
Full textLu, Xu Dong, Jin Hui Du, Qun Deng, and Zeng Yong Zhong. "Slow Cooling Treatment of High-Alloyed Superalloy." Advanced Materials Research 476-478 (February 2012): 98–104. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.98.
Full textTakagi, F., O. Kobayashi, A. Arai, K. Akioka, and T. Shimoda. "Workability of Hot Bending in Pr-Fe-B-Cu Hot Rolled Magnets." Journal of the Magnetics Society of Japan 18, no. 2 (1994): 217–20. http://dx.doi.org/10.3379/jmsjmag.18.217.
Full textYU, Hui, Youngmin KIM, Huashun YU, Bongsun YOU, and Guanghui MIN. "HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY." Acta Metallurgica Sinica 48, no. 9 (2012): 1123. http://dx.doi.org/10.3724/sp.j.1037.2012.00107.
Full textLu, Zheng Guan, Jie Wu, Rui Peng Guo, Jia Feng Lei, Lei Xu, and Rui Yang. "Prediction of Ring Rolling Process of PM Ti2AlNb Alloy by Hot Isostatic Pressing Based on Gleeble-3800 and FE Simulation." Materials Science Forum 849 (March 2016): 753–59. http://dx.doi.org/10.4028/www.scientific.net/msf.849.753.
Full textFedoriková, Alica, Tibor Kvačkaj, Róbert Kočiško, Róbert Bidulský, Patrik Petroušek, Jana Bidulská, and Lucia Domovcová. "HOT COMPRESSION TEST OF 9 Cr-1 Mo STEEL – NUMERICAL SIMULATION." Acta Metallurgica Slovaca 22, no. 2 (June 27, 2016): 102. http://dx.doi.org/10.12776/ams.v22i2.616.
Full textBambach, Markus, Irina Sizova, and Aliakbar Emdadi. "Towards Damage Controlled Hot Forming." Applied Mechanics and Materials 885 (November 2018): 56–63. http://dx.doi.org/10.4028/www.scientific.net/amm.885.56.
Full textSun, Chaoyang, Yu Xiang, Qingjun Zhou, Denis Politis, Zhihui Sun, and Mengqi Wang. "Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel." Metals 6, no. 7 (July 5, 2016): 152. http://dx.doi.org/10.3390/met6070152.
Full textEl Mehtedi, Mohamad, Luigi Balloni, S. Spigarelli, E. Evangelista, and G. I. Rosen. "Hot Workability and Constitutive Equations of ZM21 Magnesium Alloy." Key Engineering Materials 367 (February 2008): 79–86. http://dx.doi.org/10.4028/www.scientific.net/kem.367.79.
Full textSudhakar, N., N. Jagadeesh, N. RaviKumar, and V. S. N. Venkata Ramana. "Hot workability and corrosion behavior of EN31 grade steel." Materials Today: Proceedings 5, no. 2 (2018): 6855–61. http://dx.doi.org/10.1016/j.matpr.2017.11.346.
Full textPu, En-xiang, Wen-jie Zheng, Zhi-gang Song, Jin-zhong Xiang, and Xian-ping Wei. "Optimization of Hot Workability in Superaustenitic Stainless Steel 654SMO." Journal of Iron and Steel Research International 21, no. 10 (October 2014): 975–82. http://dx.doi.org/10.1016/s1006-706x(14)60171-0.
Full textEVANGELISTA, E., H. J. McQUEEN, M. NIEWCZAS, and M. CABIBBO. "HOT WORKABILITY OF 2304 AND 2205 DUPLEX STAINLESS STEELS." Canadian Metallurgical Quarterly 43, no. 3 (January 2004): 339–53. http://dx.doi.org/10.1179/cmq.2004.43.3.339.
Full textNarayan, Sumesh, and Ananthanarayanan Rajeshkannan. "Workability studies of sintered aluminium composites during hot deformation." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230, no. 3 (November 27, 2014): 494–504. http://dx.doi.org/10.1177/0954405414556497.
Full textZhou, Ningbo, Fan Zhao, Meng Wu, Bo Jiang, Chaolei Zhang, and Yazheng Liu. "Hot workability of V-Ti microalloyed steel for forging." Metallurgical Research & Technology 116, no. 2 (2019): 216. http://dx.doi.org/10.1051/metal/2018066.
Full textRajagopalachary, T., and V. V. Kutumbarao. "Intrinsic hot workability map for a titanium alloy IMI685." Scripta Materialia 35, no. 3 (August 1996): 311–16. http://dx.doi.org/10.1016/1359-6462(96)00135-2.
Full textAbbassi, F., M. Srinivasan, C. Loganathan, R. Narayanasamy, and M. Gupta. "Experimental and numerical analyses of magnesium alloy hot workability." Journal of Magnesium and Alloys 4, no. 4 (December 2016): 295–301. http://dx.doi.org/10.1016/j.jma.2016.10.004.
Full textSu, Zexing, Li Wan, Chaoyang Sun, Yun Cai, and Daijun Yang. "Hot deformation behavior of AZ80 magnesium alloy towards optimization of its hot workability." Materials Characterization 122 (December 2016): 90–97. http://dx.doi.org/10.1016/j.matchar.2016.10.026.
Full textKim, Myoung-Hun, Ji-Woon Lee, Sang-Wook Kim, Hyeon-Woo Son, Ho-Joon Choi, Young-Chul Shin, Seong-Sik Lim, Jae-Bum Kim, Taek-Keun Jung, and Soong-Keun Hyun. "Evaluation of the Hot Workability of Commercially Pure Ti Using Hot Torsion Tests." Journal of Nanoscience and Nanotechnology 19, no. 3 (March 1, 2019): 1772–76. http://dx.doi.org/10.1166/jnn.2019.16181.
Full textCai, Zhiwei, Fuxiao Chen, Fengjie Ma, and Junqing Guo. "Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation." Journal of Alloys and Compounds 670 (June 2016): 55–63. http://dx.doi.org/10.1016/j.jallcom.2016.02.033.
Full textSONG, HONGWU, SHIHONG ZHANG, MING CHENG, FEI MEN, and CHUNLING BAO. "HOT WORKABILITY DURING SUBTRANSUS DEFORMATION AT HIGHER STRAIN RATES OF TC11 ALLOY WITH WIDMANSTĂTTEN MICROSTRUCTURE." International Journal of Modern Physics B 23, no. 06n07 (March 20, 2009): 875–80. http://dx.doi.org/10.1142/s0217979209060178.
Full textHuang, Meng Yun, Jing Hui Liu, Xi Zhang, and Dan Ni Li. "Laboratory Assessment of Workability of Asphalt Rubber Hot Mixes Using Warm Mix Technology." Applied Mechanics and Materials 193-194 (August 2012): 452–57. http://dx.doi.org/10.4028/www.scientific.net/amm.193-194.452.
Full textLu, Wei Jie, Jun Qiang Lu, Di Zhang, and Hong Liang Hou. "Improvement in Hot Workability of Titanium Matrix Composite by Thermohydrogen Treatment." Materials Science Forum 654-656 (June 2010): 835–38. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.835.
Full textZhang, Hongming, Mingqian Yang, Yuan Xu, Cheng Sun, Gang Chen, and Fei Han. "Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-25Nb Alloy during Hot Compression." Journal of Materials Engineering and Performance 28, no. 11 (November 2019): 6816–26. http://dx.doi.org/10.1007/s11665-019-04453-w.
Full textQin, Fang Cheng, Yong Tang Li, Hui Ping Qi, and Shi Wen Du. "Hot Processing Maps and Workability Characteristics of As-Cast 42CrMo Steel during Hot Compression." Applied Mechanics and Materials 395-396 (September 2013): 930–35. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.930.
Full textSasaki, Shunsuke, Tatsuro Katsumura, and Hiroki Ota. "Influence of thermal history before hot working on hot workability of multi-phase steel." Procedia Engineering 207 (2017): 1827–32. http://dx.doi.org/10.1016/j.proeng.2017.10.946.
Full textGonzalez, N., M. C. Revilla, B. López, and J. M. Rodriguez-Ibabe. "Microstructural Features Intervening in Hot Workability of Free Cutting Steels." Materials Science Forum 783-786 (May 2014): 777–82. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.777.
Full textWang, Ming Liang, Zhe Chen, Dong Chen, Yi Wu, Xian Feng Li, Nai Heng Ma, and Hao Wei Wang. "The Constitutive Model and Processing Map for In Situ 5wt% TiB2 Reinforced 7050 Al Alloy Matrix Composite." Key Engineering Materials 575-576 (September 2013): 11–19. http://dx.doi.org/10.4028/www.scientific.net/kem.575-576.11.
Full textShin, Je Sik, Bo Hyun Kim, Sang Mok Lee, and B. M. Moon. "Cold Workability and Magnetic Properties of 6% Si Steel." Materials Science Forum 539-543 (March 2007): 4643–48. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4643.
Full text