Academic literature on the topic 'Hotplate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hotplate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hotplate"
Zelasko, Nicholas, Adam Wettlaufer, Bujidmaa Borkhuu, Matthew Burkhart, Leah S. Campbell, W. James Steenburgh, and Jefferson R. Snider. "Hotplate precipitation gauge calibrations and field measurements." Atmospheric Measurement Techniques 11, no. 1 (January 22, 2018): 441–58. http://dx.doi.org/10.5194/amt-11-441-2018.
Full textSamaeifar, Fatemeh, Hassan Hajghassem, Ahmad Afifi, and Hassan Abdollahi. "Implementation of high-performance MEMS platinum micro-hotplate." Sensor Review 35, no. 1 (January 19, 2015): 116–24. http://dx.doi.org/10.1108/sr-05-2014-654.
Full textVincent, M., D. Briand, G. Schürmann, and N. F. de Rooij. "Direct integration of carbon nanotubes on micromachined hotplates." Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 221, no. 3 (September 1, 2007): 101–6. http://dx.doi.org/10.1243/17403499jnn104.
Full textChen, Li, and Mehran Mehregany. "An Examination of Material-Related Performance in SiC Heated Elements for IR Emitter and Sensor Applications." Materials Science Forum 600-603 (September 2008): 863–66. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.863.
Full textKharbanda, D. K., N. Suri, and P. K. Khanna. "Electro-thermal simulation and fabrication of LTCC hotplate with lead-free interconnects." Soldering & Surface Mount Technology 32, no. 1 (June 22, 2019): 33–41. http://dx.doi.org/10.1108/ssmt-02-2019-0007.
Full textLiu, Qi, Guifu Ding, Yipin Wang, and Jinyuan Yao. "Thermal Performance of Micro Hotplates with Novel Shapes Based on Single-Layer SiO2 Suspended Film." Micromachines 9, no. 10 (October 11, 2018): 514. http://dx.doi.org/10.3390/mi9100514.
Full textPresmanes, Lionel, Vignesh Gunasekaran, Yohann Thimont, Inthuga Sinnarasa, Antoine Barnabe, Philippe Tailhades, Frédéric Blanc, Chabane Talhi, and Philippe Menini. "Sub-ppm NO2 Sensing in Temperature Cycled Mode with Ga Doped ZnO Thin Films Deposited by RF Sputtering." Proceedings 14, no. 1 (June 19, 2019): 48. http://dx.doi.org/10.3390/proceedings2019014048.
Full textXue, Yan Bing, and Zhe Nan Tang. "Study of the Gas Sensor Array Based on Micro-Machined Ceramic Hotplate." Advanced Materials Research 631-632 (January 2013): 1117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.631-632.1117.
Full textZHU, YANWU, and CHORNG HAUR SOW. "HOTPLATE TECHNIQUE FOR NANOMATERIALS." COSMOS 04, no. 02 (November 2008): 235–55. http://dx.doi.org/10.1142/s0219607708000354.
Full textRasmussen, Roy M., John Hallett, Rick Purcell, Scott D. Landolt, and Jeff Cole. "The Hotplate Precipitation Gauge." Journal of Atmospheric and Oceanic Technology 28, no. 2 (February 1, 2011): 148–64. http://dx.doi.org/10.1175/2010jtecha1375.1.
Full textDissertations / Theses on the topic "Hotplate"
Guha, P. K. "Smart micro-hotplate platform for high temperature gas sensor." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599774.
Full textBaliga, Radhika. "Thermal and electrical characterization of a micro-hotplate for calorimetry." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/33101.
Full textIncludes bibliographical references (p. 104-105).
This thesis characterizes a micro-hotplate designed at Draper Laboratory. This hotplate will be integrated into a calorimetry system that measures the heat released or absorbed by a reaction. An analytical thermal model is developed to quantify the heat transfer mechanisms between the hotplate and the environment. The analytical model is verified through experimental measurements conducted with the device operating in both ambient conditions and vacuum. In ambient conditions, the heat transfer is dominated by air conduction as predicted by the model. Air conduction can be reduced by operating the device in a medium with a lower thermal conductivity. The relatively short timescale over which the hotplate comes to thermal equilibrium with the environment limits the types of reactions that can be measured with the device. The performance of the hotplate can be improved by operating it in vacuum, by constructing it from a material with a lower emissivity, or by decreasing its surface area. The noise spectral density of the hotplate's resistive temperature sensor is characterized. The hotplate's ability to resolve temperature is limited by the flicker noise in the sensor.
by Radhika Baliga.
M.Eng.
Benn, Gregory (Gregory Scott) 1977. "Design of a silicon carbide micro-hotplate geometry for high temperature chemical sensing." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/17535.
Full textIncludes bibliographical references (p. 127-129).
Silicon carbide, high temperature, chemical sensors are the next step in chemical detection technology; allowing for the development of low cost, robust, lower power, and widely applicable chemical sensors. SiC offers the thermal conductivity, electrical properties, and operating temperatures not currently available in silicon sensors. Boston Micro Systems, a Wobum, Massachusetts based company, has developed technologies for bulk manufacturing of single crystal SiC material. Using this technology, geometries optimizing thermal and electrical performance have been developed to create a SiC micro-hotplate for chemical sensors. Under etching allows for the manufacturing of micro-hotplates. Micro hotplates allow sensors to discriminate between chemical species by controlling absorption and desorption of chemicals. Optimization of the performance of such a device is achieved by developing hotplates that are suspended by necked tethers. Tether designs minimize heat lose from the hotplate and necking creates heat generation regions. The excellent thermal properties of SiC allow heat to be transferred from the necked tethers to the hotplate; producing a hotplate with a uniform temperature distribution, important to the sensitivity and accuracy of the sensing film. Testing of tethered and necked hotplates identified several areas of improvement in hotplate design. These include under etching, improvement in the plates response to thermal stresses, and p-n junction performance improvements. Using such design improvements as tethers and necking the thermal performance of SiC micro-hotplates has improved by two orders of magnitude. This thesis discusses the design, modeling, and testing of single crystal SiC micro-hotplates.
Gregory Benn.
S.M.
Iwaki, Takao. "Ultra-low power single crystal silicon SOI-CMOS micro-hotplate with novel temperature-modulation principle for chemical sensing." Thesis, University of Warwick, 2007. http://wrap.warwick.ac.uk/89582/.
Full textNábělková, Irena. "Optimalizace zkušebního pracoviště pro konečnou kontrolu sporáku na výrobní lince." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-231025.
Full textBeach, Elvin R. III. "Picoliter Drop Deposition of Oxide Nanoparticles: A Route to High Performance Microsensor Arrays." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1249675063.
Full textVergara, Tinoco Alexander. "Improving the performance of micro-machined metal oxide gas sensors: Optimization of the temperatura modulation mode via pseudorandom sequences." Doctoral thesis, Universitat Rovira i Virgili, 2006. http://hdl.handle.net/10803/8456.
Full textUno de los mayores problemas experimentados en los sistemas de detección de gases basados en dispositivos de óxidos metálicos es su falta de reproducibilidad, estabilidad y selectividad. Con el fin de intentar resolver estos problemas, diferentes estrategias han sido desarrolladas en paralelo. Algunas de ellas se relacionan con la mejora de los materiales y otras implican acondicionamiento o pre-tratamiento de las muestras. Otras estrategias ampliamente empleadas consisten en aprovechar que los sensores presentan sensibilidades solapadas para construir matrices de sensores y emplear técnicas de procesamiento de señal o bien utilizar características de la respuesta dinámica de los sensores.En los últimos años, modular la temperatura de trabajo de los sensores de óxidos metálicos se ha convertido en uno de los métodos más utilizados para incrementar su selectividad. Esto se debe a, dado que la respuesta del sensor varía con su propia temperatura de trabajo, entonces, en determinados casos, midiendo la respuesta de un sensor a n temperaturas de trabajo diferentes, es equivalente a tener una matriz de n sensores diferentes. Esto permite obtener información multivariante de cada sensor individualmente y ayuda a mantener baja la dimensionalidad del sistema de medida para resolver una determinada aplicación. A pesar de los buenos resultados que han sido publicados dentro de este ámbito, la selección de las frecuencias empleadas en la modulación de la temperatura de trabajo de los sensores ha consistido, hasta el momento, en un proceso empírico lo que no garantiza la obtención de los mejores resultados para una determinada aplicación.En este contexto, el principal objetivo de esta tesis doctoral ha consistido en desarrollar un método sistemático que permita determinar cuales son las frecuencias de modulación óptimas que podrían emplearse para resolver un determinado problema de análisis de gases. Este método, extraído del campo de identificación de sistemas, ha sido desarrollado e implementado por primera vez dentro del ámbito de los sensores de gases. Éste consiste en estudiar la respuesta de los sensores en presencia de gases mientras la temperatura de trabajo de los sensores es modulada mediante una señal pseudo-aleatoria de longitud máxima. Estas señales comparten algunas propiedades con el ruido blanco, y por tanto pueden ayudar a estimar la respuesta lineal de un sistema con no-linealidades (por ejemplo, la respuesta impulsional de un sistema sensor-gas).El proceso de optimización es llevado a cabo mediante la selección entre las componentes espectrales de las estimaciones de la respuesta impulsional, de aquellas que más ayudan ya sea a discriminar o a cuantificar los gases objetivo dentro de una aplicación de análisis de gases dada. Teniendo en cuenta que las componentes espectrales están directamente relacionadas con las frecuencias de modulación, la selección de unas pocas componentes espectrales resulta en la determinación de las frecuencias optimas de modulación.En los primeres experimentos, señales binarias pseudo-aleatorias fueron utilizadas para modular la temperatura de trabajo de los sensores de gases basados en óxidos metálicos micro-mecanizados en un rango comprendido entre 0 a 112.5 Hz. La frecuencia superior es ligeramente mayor a la frecuencia de corte de las membranas de los sensores. El resultado principal derivado de estos estudios fue que las frecuencias de modulación interesantes se encuentran en un rango comprendido entre 0 y 1 Hz. Esto es comprensible dado que la cinética de las reacciones y de los procesos de adsorción que se producen en la superficie del sensor son lentos y si estos se han de alterar mediante la modulación térmica, se habrá de elaborar señales de modulación a bajas frecuencias. Esto explica por que se han venido empleado señales moduladoras de temperatura en el rango de los mHz, a pesar que las membranas de un dispositivo micro-mecanizado presentan respuestas mucho más rápidas (típicamente en el orden de los 100 Hz).En los experimentos posteriores a los primeros, un método evolucionado para determinar las frecuencias de modulación óptimas de los sensores micro-mecanizados fue implementado, el cual se basa en el uso de secuencias pseudo-aleatorias multi-nivel de longitud máxima (MLPRS). Las señales de tipo multi-nivel fueron consideradas en lugar de las binarias ya que las primeras permiten obtener una mejor estimación que las segundas de la dinámica lineal de un sistema con no linealidades. Y es bien conocido que los sensores de gases basados en óxidos metálicos presentan no-linealidades en su respuesta.Estos estudios sistemáticos fueron completamente validados mediante la síntesis de señales multi-senoidales con las frecuencias previamente identificadas utilizando secuencias pseudo-aleatorias. Cuando la temperatura de trabajo de los sensores fue modulada por una señal, el contenido frecuencial de la cual es el óptimo, los gases y mezclas de gases considerados pudieron ser discriminados perfectamente y se verificó la posibilidad de obtener modelos de calibración precisos para predecir la concentración de los gases. En algunos casos, estos procesos de validación se llevaron a cabo con sensores que no habían sido utilizados durante el proceso de optimización (por ejemplo, una agrupación de sensores diferentes pero del mismo lote de fabricación).En resumen, El nuevo método desarrollado in esta tesis para seleccionar las frecuencias de modulación optimas se a mostrado consistente y efectivo. El método es de aplicación general y podría ser utilizado en cualquier problema de análisis de gases o bien extendido a otro tipo de sensores (por ejemplo sensores poliméricos).Las contribuciones científicas de esta tesis se han recogido en 4 artículos en revistas internacionales y trece actas de conferencias.
One of the major problems in gas sensing systems that use metal oxide devices is the lack of reproducibility, stability and selectivity. In order to tackle these troubles experienced with metal oxide gas sensors, different strategies have been developed in parallel. Some of these are related to the improvement of materials, or the use of sample conditioning and pre-treating methods. Other widely used techniques include taking benefit of the unavoidable partially overlapping sensitivities by using sensor arrays and pattern recognition techniques or the use of dynamic features from the gas sensor response.In the last years, modulating the working temperature of metal oxide gas sensors has been one of the most used methods to enhance sensor selectivity. This occurs because, since, the sensor response is different at different working temperatures, and therefore, measuring the sensor response at n different temperatures is, in some cases, similar to the use of an array comprising n different sensors. This allows for measuring multivariate information from every single sensor and helps in keeping low the dimensionality of the measurement system needed to solve a specific application. Although the good results reported, until now, the selection of the frequencies used to modulate the working temperature remained an empirical process and that is not an accurate method to ensure that the best results are reached for a given application.In view of this context, the principal objective of this doctoral thesis was to develop a systematic method to determine which are the optimal temperature modulation frequencies to solve a given gas analysis problem. This method, which is borrowed from the field of system identification, has been developed and introduced for the first time in the area of gas sensors. It consists of studying the sensor response to gases when the operating temperature is modulated via maximum-length pseudo-random sequences. Such signals share some properties with white noise and, therefore, can be of help to estimate the linear response of a system with non-linearity (e.g., the impulse response of a sensor-gas system).The optimization process is conducted by selecting among the spectral components of the impulse response estimates, the few that better help either discriminating or quantifying the target gases of a given gas analysis application. Since spectral components are directly related to modulating frequencies, the selection of spectral components results in the determination of the optimal temperature modulating frequencies.In the first experiments, pseudo-random binary signals (PRBS) were employed to modulate the working temperature of micro-machined metal oxide gas sensors in a frequency range from 0 up to 112.5 Hz. The upper frequency is slightly higher than the cutoff frequency of the sensor membranes. The outcome of this initial study was that the important modulating frequencies were in the range between 0 and 1 Hz. This is understandable, since the kinetics of reaction and adsorption processes taking place at the sensor surface (i.e., physisorption/chemisorption/ionosorption) are slow and if these are to be altered by the thermal modulation, low frequency modulating signals need to be devised. This explains why low-frequency temperature-modulating signals (i.e. in the mHz range) have been used with micro-hotplate gas sensors, even though the thermal response of their membranes is much faster (typically, near 100 Hz).In the experiments that followed the first ones, an evolved method to determine the optimal temperature modulating frequencies for micro-hotplate gas sensors was introduced, which was based on the use of maximum length multilevel pseudo-random sequences (MLPRS). Multilevel signals were considered instead of the binary ones because the former can provide a better estimate than the latter of the linear dynamics of a process with non-linearity. And it is well known that temperature-modulated metal oxide gas sensors present non-linearity in their response.These systematic studies were fully validated by synthesizing multi-sinusoidal signals at the optimal frequencies previously identified using pseudo-random sequences. When the sensors had their operating temperatures modulated by a signal with a frequency content that corresponded to the optimal, the gases and gas mixtures considered could be perfectly discriminated and the building of accurate calibration models to predict gas concentration was found to be possible. In some cases, the validation process was conducted on sensors that had not been used for optimization purposes (e.g. a different sensor array from the same fabrication batch).Summarizing, the new method developed in this thesis for selecting the optimal modulating frequencies is shown to be consistent and effective. The method applies generally and could be used in any gas analysis problem or extended to other type of sensors (e.g. conducting polymer sensors).The scientific contributions of this thesis are collected in four journal papers and thirteen conference proceedings.
Edpuganti, Koutilya. "Thermal Transient Study of Silica Aerogel Insulated Micro-hotplates." Thesis, University of Louisiana at Lafayette, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10002455.
Full textWe studied the temperature transient behavior of an airpit-insulated micro hotplate (µHP) and aerogel-insulated µHP with different airpit heights and aerogel thicknesses. The µHP insulated by 1.3µm-thick aerogel consumes 26.7mW of power at 82°C with a time constant of 114.5 µsec, while the µHP insulated by 4?µm-thick aerogel consumes 35.6mW of power to provide 220°C with a time constant of 211.6 µsec. At the same time, a 100 µm-deep airpit-insulated ?HP consumes 18mW of power to reach approximately 400°C. The time constant of aerogel does not depend just on material properties but also on the structural design of the micro-heater. The temperature transient response time of µHPs is continued to improve from using air-pited, recessed silica aerogel, to thick-film silica aerogel.
Solzbacher, Florian. "A new SiC/HfB2 based micro hotplane for metal oxide gassensors." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=974856886.
Full textSkorupa, Wolfgang, and Gerhard Brauer. "HeT-SiC-05International Topical Workshop on Heteroepitaxy of 3C-SiC on Silicon and its Application to Sensor DevicesApril 26 to May 1, 2005,Hotel Erbgericht Krippen / Germany- Selected Contributions -." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28591.
Full textBooks on the topic "Hotplate"
Mampel, Ed. Hotplate Hotel. Minneapolis, Minn. (4232 47th Ave. S., Minneapolis 55406): Pietist Press, 1998.
Find full textDekura, Hideo. Teppanyaki Barbecue: [Japanese cooking on a hotplate]. Sydney, N.S.W: New Holland Pub., 2007.
Find full textCMOS Hotplate Chemical Microsensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-69562-2.
Full textHierlemann, Andreas, Markus Graf, Diego Barrettino, and Henry P. Baltes. CMOS Hotplate Chemical Microsensors. Springer, 2010.
Find full textHierlemann, Andreas, Markus Graf, Diego Barrettino, and Henry P. Baltes. CMOS Hotplate Chemical Microsensors (Microtechnology and MEMS). Springer, 2007.
Find full textA, Binstock D., Atmospheric Research and Exposure Assessment Laboratory (U.S.), and Research Triangle Institute, eds. Standard operating procedure for solubilization of lead on dust wipes by hotplate acid digestion. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, 1995.
Find full textTechnical Committee ISO/TC 38, Textiles. and International Organization for Standardization, eds. Textiles: Physiological effects : measurement of thermal and water-vapour resistance under steady-state conditions : sweating guarded-hotplate test = Textiles : effets physiologique : mesurage de la résistance thermique et de la résistance à la vapour d'eau en régime stationnaire : essai de la plaque chaude gardée transpirante. Genève, Switzerland: International Organization for Standardization, 1993.
Find full textBook chapters on the topic "Hotplate"
Choi, Yeong Soo, Kazuki Tajima, Woosuck Shin, Naoya Sawaguchi, Noriya Izu, Ichiro Matsubara, and Norimitsu Murayama. "Integration of Ceramic Catalyst on Micro-Hotplate of Thermoelectric Hydrogen Sensor." In Electroceramics in Japan VIII, 277–80. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-982-2.277.
Full textGardner, J. W., J. A. Covington, F. Udrea, T. Dogaru, C. C. Lu, and W. Milne. "SOI-based Micro-hotplate Microcalorimeter Gas Sensor With Integrated BiCMOS Transducer." In Transducers ’01 Eurosensors XV, 1660–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_392.
Full textPuigcorbé, J., A. Vilà, I. Gràcia, C. Cané, and J. R. Morante. "Dielectric micro-hotplate for integrated sensors: An electro-thermo-mechanical analysis." In Transducers ’01 Eurosensors XV, 312–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_74.
Full textKoo, Hyunjin, Jungsang Lee, Guira Park, and Gyeongmin Yi. "Determination of Electrical Resistance for Conductive Textiles Under Simulated Wearing Environment Using Modified Sweating Guarded Hotplate." In Advances in Intelligent Systems and Computing, 616–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20216-3_57.
Full textLlobet, E., J. Brezmes, R. Ionescu, X. Vilanova, S. AI-Khalifa, J. W. Gardner, N. Bârsan, and X. Correig. "Wavelet Transform and Fuzzy ARTMAP Based Pattern Recognition for Fast Gas Identification Using a Micro-Hotplate Gas Sensor." In Transducers ’01 Eurosensors XV, 1644–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_388.
Full textLee, Dae-Sik, Chang-Hyun Shim, Jun-Woo Lim, Jeung-Soo Huh, and Duk-Dong Lee. "A New Micro Sensor Array With Porous Tin Oxide Thin Films and Micro-hotplate Dangled by Wires in Air." In Transducers ’01 Eurosensors XV, 1676–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_396.
Full textTalbi, S., I. Atmane, N. El Moussaoui, K. Kassmi, O. Deblecker, and N. Bachiri. "Thermal Modeling of Photovoltaic Ovens and Hotplates." In Sustainable Entrepreneurship, Renewable Energy-Based Projects, and Digitalization, 245–59. Boca Raton, FL : CRC Press/ Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003097921-13.
Full textCoppeta, Raffaele, Ayoub Lahlalia, Darjan Kozic, René Hammer, Johann Riedler, Gregor Toschkoff, Anderson Singulani, et al. "Electro-Thermal-Mechanical Modeling of Gas Sensor Hotplates." In Sensor Systems Simulations, 17–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16577-2_2.
Full textZHU, YANWU, and CHORNG HAUR SOW. "HOTPLATE TECHNIQUE FOR NANOMATERIALS." In Selected Topics in Nanoscience and Nanotechnology, 149–69. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812839565_0007.
Full text"Porous Silicon in Micromachining Hotplates Aimed for Sensor Applications." In Porous Silicon: From Formation to Application: Biomedical and Sensor Applications, Volume Two, 223–38. CRC Press, 2016. http://dx.doi.org/10.1201/b19205-19.
Full textConference papers on the topic "Hotplate"
Cavicchi, R. E., J. S. Suehle, P. Chaparala, K. G. Kreider, M. Gaitan, and S. Semancik. "MICRO-HOTPLATE GAS SENSOR." In 1994 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1994. http://dx.doi.org/10.31438/trf.hh1994.12.
Full textCavicchi, R. E., J. S. Suehle, P. Chaparala, K. G. Kreider, M. Gaitan, and S. Semancik. "MICRO-HOTPLATE GAS SENSOR." In 1994 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1994. http://dx.doi.org/10.31438/trf.hh1994.12.
Full textAvramescu, Viorel, Andrea De Luca, Mihai Brezeanu, Syed Zeeshan Ali, Florin Udrea, Octavian Buiu, Cornel Cobianu, et al. "CMOS-compatible SOI micro-hotplate-based oxygen sensor." In ESSDERC 2016 - 46th European Solid-State Device Research Conference. IEEE, 2016. http://dx.doi.org/10.1109/essderc.2016.7599640.
Full textNiu, Gaoqiang, Lingxiang He, Zhitao Yang, Changhui Zhao, Hiuming Gong, Wei He, and Fei Wang. "A Micro-Hotplate for MEMS Based Gas Sensor." In 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018. http://dx.doi.org/10.1109/icept.2018.8480572.
Full textAli, S. Z., S. Santra, I. Haneef, C. Schwandt, R. V. Kumar, W. I. Milne, F. Udrea, et al. "Nanowire hydrogen gas sensor employing CMOS micro-hotplate." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398224.
Full textNiu, Gaoqiang, Changhui Zhao, Huimin Gong, Yushen Hu, Yulong Zhang, Zhitao Zhou, Tiger H. Tao, and Fei Wang. "A Micro-Hotplate for Mems-Based H2s Sensor." In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808648.
Full textPredanocy, M., I. Hotovy, R. Andok, and V. Rehacek. "Concept of a Platinum Hotplate on Thermoisolated Polyimide Membrane." In 2020 13th International Conference on Advanced Semiconductor Devices And Microsystems (ASDAM). IEEE, 2020. http://dx.doi.org/10.1109/asdam50306.2020.9393857.
Full textMiwa, Daiki, Junpei Sakurai, Seiichi Hata, and Chiemi Oka. "Fabrication of Novel Microvalves Driven by Heat From Magnetic Nanoparticles." In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8529.
Full textUdrea, F., S. Z. Ali, and J. W. Gardner. "CMOS micro-hotplate array design for nanomaterial-based gas sensors." In 2008 International Semiconductor Conference. IEEE, 2008. http://dx.doi.org/10.1109/smicnd.2008.4703352.
Full textBenxian Peng, Ting Yu, and Fengqi Yu. "Design of temperature controlled micro-hotplate for CMOS CO sensor." In 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008. http://dx.doi.org/10.1109/nems.2008.4484467.
Full textReports on the topic "Hotplate"
PIEPHO, M. G. Butene and carbon monoxide flammable clouds in a glovebox with two hotplates. Office of Scientific and Technical Information (OSTI), February 2002. http://dx.doi.org/10.2172/807663.
Full text