Academic literature on the topic 'HSV color model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HSV color model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "HSV color model"
Rasid Mamat, Abd, Fatma Susilawati Mohamed, Mohamad Afendee Mohamed, Norkhairani Mohd Rawi, and Mohd Isa Awang. "Silhouette index for determining optimal k-means clustering on images in different color models." International Journal of Engineering & Technology 7, no. 2.14 (April 6, 2018): 105. http://dx.doi.org/10.14419/ijet.v7i2.14.11464.
Full textCai, Zhao Quan, Wei Luo, Zhong Nan Ren, and Han Huang. "Color Recognition of Video Object Based on HSV Model." Applied Mechanics and Materials 143-144 (December 2011): 721–25. http://dx.doi.org/10.4028/www.scientific.net/amm.143-144.721.
Full textHema, D., and Dr S. Kannan. "Interactive Color Image Segmentation using HSV Color Space." Science & Technology Journal 7, no. 1 (January 1, 2019): 37–41. http://dx.doi.org/10.22232/stj.2019.07.01.05.
Full textAstrianda, Nica. "Klasifikasi Kematangan Buah Tomat Dengan Variasi Model Warna Menggunakan Support Vector Machine." VOCATECH: Vocational Education and Technology Journal 1, no. 2 (April 13, 2020): 45–52. http://dx.doi.org/10.38038/vocatech.v1i2.27.
Full textRahaman, G. M. Atiqur, and Md Zahidul Islam. "Color transform analysis for microscale image segmentation to study halftone model parameters." Open Computer Science 6, no. 1 (November 2, 2016): 148–67. http://dx.doi.org/10.1515/comp-2016-0013.
Full textChae, Soohwan, and Kyungkoo Jun. "HSV Color Model based Hand Contour Detector Robust to Noise." Journal of Korea Multimedia Society 18, no. 10 (October 30, 2015): 1149–56. http://dx.doi.org/10.9717/kmms.2015.18.10.1149.
Full textLv, Jingqin, and Jiangxiong Fang. "A Color Distance Model Based on Visual Recognition." Mathematical Problems in Engineering 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/4652526.
Full textLi, Zhiyong, Pengfei Li, Xiaoping Yu, and Mervat Hashem. "Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/793769.
Full textChen, Ching Yi, and Chi Chiang Ko. "Designing FIRA Medium-Sized Soccer Robot Vision System Using Particle Swarm Optimization." Applied Mechanics and Materials 764-765 (May 2015): 675–79. http://dx.doi.org/10.4028/www.scientific.net/amm.764-765.675.
Full textSu, Ching Hung, Huang Sen Chiu, Jui Hung Hung, and Tsai Ming Hsieh. "Color Space Comparison between RGB and HSV Based Images Retrieval." Advanced Materials Research 989-994 (July 2014): 4123–26. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.4123.
Full textDissertations / Theses on the topic "HSV color model"
Shayeghpour, Omid. "Improving information perception from digital images for users with dichromatic color vision." Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-101984.
Full textZámečník, Dušan. "Rozpoznání dopravních značek využitím neuronové sítě." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217876.
Full textOliveira, Helton Jader Souza de. "Desenvolvimento de um espectrofotômetro para medidas de absorção/emissão na região do visível utilizando mini lâmpada incandescente, mídia de DVD e smartphone." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/8187.
Full textMade available in DSpace on 2016-05-10T13:37:38Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 3109388 bytes, checksum: 647810f9fb25d144a271d5f256240096 (MD5) Previous issue date: 2015-08-27
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
A spectrophotometer for absorption measurements / emission, simple, portable and as partially partial dual mode for quantitative experiments was constructed using cheap and available materials is proposed in this paper. The instrument, here called SpectroPhone consists of modules made of MDF, one DVD as a diffraction grating media, two mini white incandescent lamps as radiation source and a Smartphone to acquire images and perform data processing, such as detector. The pixels of a region produced in a spectral images provide qualitative and quantitative information after the application of the concepts and HSV color model RGB, respectively. A simple algorithm based on HSV was developed for the conversion of the hue values (H) in their corresponding λ. Its analytical performance was assessed by quantitative analysis based on analytical curves, specimens of which have been validated by analysis of variance (ANOVA). The SpectroPhone was applied to the determination of Fe2+ in the absorption mode in pharmaceutical samples, and Na+, in emission mode and in natural saline water. For comparison purposes, a commercial spectrophotometer for absorption mode and a photometer for commercial flame emission mode were used to construct the calibration curves of the reference instrument. Applying the paired t test at 95% confidence for the results of concentrations obtained with the instruments, it is observed that there was no statistically significant difference showing high precision and accuracy. SpectroPhone can be considered a good alternative to instrumental spectrometric measurements, not just limited to educational and academic purposes.
Um espectrofotômetro para medidas de absorção/emissão, simples, parciamente portátil e modo duplo parcial para experimentos quantitativos foi construído usando materiais baratos e disponíveis é proposto neste trabalho. O instrumento, aqui chamado de SpectroPhone é composto por módulos confeccionados em MDF, uma mídia de DVD como rede de difração, duas mini lâmpadas incadescentes branca como fonte de radiação e um Smartphone para adquirir imagens e realizar tratamento de dados, como detector. Os pixels de uma região produzida em uma imagens digital fornecem informações qualitativas e quantitativas após a aplicações do HSV e conceitos do modelo de cor RGB, respectivamente. Um simples algoritmo baseado em HSV foi desenvolvido para a conversão dos valores do matiz (H) em seu λ correspondentes. Seu desempenho analítico foi avaliado por meio de análises quantitativas baseados em curvas analíticas, cujos modelos foram validados por meio da análise de variância (ANOVA). O SpectroPhone foi aplicado na determinação de Fe2+ no modo de absorção em amostras farmacêuticas, e Na+, no modo de emissão em soro fisiológico e em água naturais. Para fins de comparação, um espectrofotômetro comercial para o modo de absorção e um fotômetro em chama comercial para o modo de emissão foram empregados para construir as curvas analíticas do instrumento de referência. Aplicando o teste t pareado ao nível de 95% de confiança para os resultados de concentrações obtidas com os instrumentos, observa-se que não houve diferença estatisticamente significativa apresentando alta precisão e exatidão. O SpectroPhone pode ser considerado uma boa alternativa instrumental para medições espectrométricas, não apenas limitada para fins didáticos e acadêmicos.
Feitosa, Rafael Divino Ferreira. "Modelos matemáticos para redução do espectro provável e detecção de tons de pele humana em imagens coloridas representadas nos espaços de cores RGB e HSV." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4756.
Full textApproved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-10-23T18:25:45Z (GMT) No. of bitstreams: 2 Dissertação - Rafael Divino Ferreira Feitosa - 2015.pdf: 7893703 bytes, checksum: 12af470c3ca2fb4a3d0bd3885bfde46d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-10-23T18:25:45Z (GMT). No. of bitstreams: 2 Dissertação - Rafael Divino Ferreira Feitosa - 2015.pdf: 7893703 bytes, checksum: 12af470c3ca2fb4a3d0bd3885bfde46d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-04-14
Skin detection techniques are widely applied to locate and to track parts of the human body with the objective of posterior recognition, having received great attention in recent years in the development of research in reason to the innumerable possible applications with the detection and tracking of faces, identification of naked people, identification of hand movements, among others. The present work proposed the construction of mathematical models for the detection of human skin tones such as, white, yellow, brown and black in digital color images in the RGB and HSV color spaces. Using a set of human skin tone samples, mathematical models were constructed describing how the variables of each color pixel in the RGB and HSV systems interrelate. To understand the answer of the proposed system, the mechanistic model was chosen, dividing it into components, observing the behavior of each part and the interactions that occurred between them. The proposed RGB filter reached a 98.3657% reduction index of the spectrum, classifying only 1.6343% (253,159 tones) as possible skin tones and the HSV model reduced the likely spectrum to 2.5352% (94,030 tones), discarding 97.4648% of the colors as candidates for human skin tones. When the proposed filters, were applied to the reduction of the probable range of human skin tones, well-defined bands in the geometric representation of the color spaces were selected. The experimental validation of the effectiveness of the RGB model showed that the proposed filter has conservative characteristics in the detection of skin, mistakenly classifying as skin only 6.7163% of the sample space. The proposed RGB filter has low sensitivity of 61.0831% and high specificity of 95.2769% in the detection of human skin in digital images. The HSV model had rates of (54,6333%) low sensitivity and (92,6390%) high specificity, considered low when compared to the performance of the other algorithms.
Técnicas de detecção de pele são amplamente aplicadas para localizar e rastrear partes do corpo humano com o objetivo de posterior reconhecimento, tendo recebido nos últimos anos grande atenção no desenvolvimento de pesquisas em razão das inúmeras aplicações possíveis como detecção e rastreamento de faces, identificação de pessoas nuas, identificação de movimentos das mãos, entre outras. O presente trabalho propôs construir 2 modelos matemáticos para detecção de tons de pele humana branca, amarela, parda e preta em imagens digitais coloridas nos espaços de cores RGB e HSV. Utilizandose de um conjunto de amostras de tons de pele humana foram construídos modelos matemáticos que descrevem como as variáveis de cada pixel de cor nos sistemas RGB e HSV se relacionam. Para compreender a resposta do sistema proposto, foi escolhido o modelo mecanístico, dividindo-o em componentes e observando o comportamento de cada parte e das interações que ocorreram entre elas. O filtro RGB proposto alcançou o índice de redução de 98,3657% do espectro, classificando apenas 1,6343% (253.159 tons) como possíveis tons de pele e o modelo HSV reduziu para 2,5352% (94.030 tons) o espectro provável, descartando 97,4648% das cores como candidatas a tons de pele humana. Os filtros propostos, quando aplicados à redução do espectro provável de tons de pele humana, selecionaram faixas bem definidas na representação geométrica dos espaços de cores. A validação experimental da eficácia do modelo RGB mostrou que o filtro proposto apresenta características conservadoras na detecção de pele classificando como pele, erroneamente, apenas 4,5075% do espaço amostral. O filtro RGB proposto possui baixa sensibilidade de 56,9698% e elevada especificidade de 95,4925% na detecção de pele humana em imagens digitais. O modelo HSV apresentou taxas de baixa sensibilidade (54,6333%) e alta especificidade (92,6390%), quando comparadas ao desempenho dos demais algoritmos propostos na literatura.
Šimunský, Martin. "Vliv barevných modelů na chování konvolučních neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416630.
Full textAlsafi, Radi Taha M. "Generation of complex recombinant fowlpox virus 9 (FP9) encoding simian immunodeficiency virus (SIVmac239) sequences as a model HIV vaccine candidate." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/generation-of-complex-recombinant-fowlpox-virus-9-fp9-encoding-simian-immunodeficiency-virus-sivmac239-sequences-as-a-model-hiv-vaccine-candidate(1a015762-8dc2-4153-a586-d7fab88b9658).html.
Full textMemarzadeh, Milad. "Automated 2D Detection and Localization of Construction Resources in Support of Automated Performance Assessment of Construction Operations." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/76908.
Full textMaster of Science
Tokatli, Aykut. "3d Hand Tracking In Video Sequences." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606461/index.pdf.
Full textLin, Kai-Sin, and 林楷欣. "HSV color model applied to the development of steel rustimage recognition system for handheld devices." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/q3wuu5.
Full text國立臺灣大學
土木工程學研究所
107
The research related to bridge engineering plays an important role in Taiwan''s construction industry. In Taiwan, the percentage of the degree of rust is considered as the standard of repainting steel bridge. Howerer, percentage is quantitative data, which needs to be measured by professional methods instead of subjective judgment. Therefore, this study combines the concept of image recognition with the goal of designing a system, which can read photos and automatically determine the rust and calculate the proportion. After that, this research combines it with a smart portable device to produce a mobile application system. The system principle is to define the range of "corrosion" through the HSV color model and to judge and identify. At the end of this research, the output system will be compared to the system which uses edge detection algorithm, and find that good results are obtained in terms of identification efficiency and computation speed.
Peng, Yan-Jyun, and 彭彥鈞. "Using the S Imformation of HSV Model and the Gray Level Values to Segment and Recognize the Guide-tile Areas in a Color Digital Image." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/52061211177777418606.
Full text中華大學
電機工程學系碩士班
102
The “barrier free environment” issue should be cared and considered by all of us. This thesis focuses on the detection of guide-tile paths which are especially important for blind people. In the thesis, an image processing based system is proposed for segmenting and recognizing the guide-tile area(s) in a color digital image. First, the input image, which is a RGB model color image, is transformed to its HSV space representation, and only the S information is saved for further processing. Second, discrete wavelet transform are also used for reducing noise and smoothing edges, respectively. Third, the standard deviation, straight line detection, and rectangle detection results are the features for determination. Finally, a speech subsystem presents the guide-tile path detection result to the user. Some guide-tile areas, which are usually with low contrast to the environments or with large standard deviation values, can not be segmented successfully (i.e. no region of interest is found in the second step). For those images, the proposed method calculates their gray-level images and enhances the contrast. Then, morphological operations, Laplacian operation, and watershed segmentation are used for segmenting the regions of interest. For the images containing typical yellow guide-tile areas, the proposed system has a recognition rate up to 98%, and for those with low-contrast metal color guide-tile areas, the proposed method still has a recognition rate up to 95%. We wish to continuously evolve the system to be a robust and dependable system that could improve the life quality of blind people.
Books on the topic "HSV color model"
Gordon, Phillip. The Color Purple and the Wine-Dark Kiss of Death. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252039805.003.0011.
Full textBook chapters on the topic "HSV color model"
Tian, Gang, Ruimin Hu, Zhongyuan Wang, and Youming Fu. "Improved Object Tracking Algorithm Based on New HSV Color Probability Model." In Advances in Neural Networks – ISNN 2009, 1145–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01510-6_130.
Full textKang, Bing, Fu Liu, and Shoukun Jiang. "The Identification to the Palm Color Spots Based on Improved HSV Model." In Geo-Informatics in Resource Management and Sustainable Ecosystem, 620–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49155-3_65.
Full textMusiał, Adam. "Adaptive Heuristic Colorful Text Image Segmentation Using Soft Computing, Enhanced Density-Based Scan Algorithm and HSV Color Model." In Advances in Intelligent Systems and Computing, 157–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10383-9_15.
Full textYao, Lei, Deng Xiaolu, and Wang Yufeng. "Soccer Robots’ Color Logos Recognition Based on HSI Model and Eigenvalues." In Electrical, Information Engineering and Mechatronics 2011, 689–96. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2467-2_81.
Full textTran, Trung-Thien, Chan-Su Bae, Young-Nam Kim, Hyo-Moon Cho, and Sang-Bock Cho. "An Adaptive Method for Lane Marking Detection Based on HSI Color Model." In Communications in Computer and Information Science, 304–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14831-6_41.
Full textLawrence, Amith, N. V. Manoj Ashwin, and K. Manikantan. "Face Recognition Using Background Removal Based on Eccentricity and Area Using YCbCr and HSV Color Models." In Lecture Notes in Electrical Engineering, 33–43. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3592-7_4.
Full textDai, Yikang, Chengqi Xue, and Qi Guo. "A Study for Correlation Identification in Human-Computer Interface Based on HSB Color Model." In Human Interface and the Management of Information. Interaction, Visualization, and Analytics, 477–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92043-6_40.
Full textDeb, Kaushik, Heechul Lim, Suk-Ju Kang, and Kang-Hyun Jo. "An Efficient Method of Vehicle License Plate Detection Based on HSI Color Model and Histogram." In Next-Generation Applied Intelligence, 66–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02568-6_7.
Full textThanh, Le Thi, and Dang N. H. Thanh. "An Adaptive Local Thresholding Roads Segmentation Method for Satellite Aerial Images with Normalized HSV and Lab Color Models." In Intelligent Computing in Engineering, 865–72. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2780-7_92.
Full textLi, Dongchen, Shengyong Xu, Yuezhi Zheng, Changgui Qi, and Pengjiao Yao. "Navigation Path Detection for Cotton Field Operator Robot Based on Horizontal Spline Segmentation." In Robotic Systems, 1326–40. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1754-3.ch063.
Full textConference papers on the topic "HSV color model"
Dhanesha, R., and Naika C. L. Shrinivasa. "Segmentation of Arecanut Bunches using HSV Color Model." In 2018 Third International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT). IEEE, 2018. http://dx.doi.org/10.1109/iceeccot43722.2018.9001632.
Full textZhang, Yunzuo, Wenxuan Li, and Panliang Yang. "Shot Boundary Detection Based on HSV Color Model." In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). IEEE, 2019. http://dx.doi.org/10.1109/icsidp47821.2019.9173070.
Full textDanxia Luo, Shuqing Li, and Chao Li. "An improved CLG Algorithm based on HSV color model." In 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icacte.2010.5579414.
Full textTrambadia, Smit, and Hemant Mayatra. "Food detection on plate based on the HSV color model." In 2016 Online International Conference on Green Engineering and Technologies (IC-GET). IEEE, 2016. http://dx.doi.org/10.1109/get.2016.7916848.
Full textAl-Hetar, Abdulaziz M., Murad A. Rassam, Osama Shormani, Abdullah S. A. Salem, and Huthifa Al-Yousofi. "Color-based Object Categorization Model Using Fuzzy HSV Inference System." In 2019 First International Conference of Intelligent Computing and Engineering (ICOICE). IEEE, 2019. http://dx.doi.org/10.1109/icoice48418.2019.9035173.
Full textZuraiyah, Tjut Awaliyah, Sarifuddin Madenda, Rina Noviana, and Ravi A. Salim. "Quran Tajweed Extraction and Segmentation Based on HSV Color Space Model." In 2018 Third International Conference on Informatics and Computing (ICIC). IEEE, 2018. http://dx.doi.org/10.1109/iac.2018.8780422.
Full textShuhua, Li, and Guo Gaizhi. "The application of improved HSV color space model in image processing." In 2010 2nd International Conference on Future Computer and Communication. IEEE, 2010. http://dx.doi.org/10.1109/icfcc.2010.5497299.
Full textJoshi, Ketki, Ketaki Deshpande, Pranjali Aslekar, Sonam Bakliwal, and Parminder Kaur. "Sign Lang age Recogni ion sing Openc and HSV color Model." In 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC). IEEE, 2020. http://dx.doi.org/10.1109/icsidempc49020.2020.9299600.
Full textLih-Jen Kau and Tien-Lin Lee. "An HSV Model-Based Approach for the Sharpening of Color Images." In 2013 IEEE International Conference on Systems, Man and Cybernetics (SMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/smc.2013.33.
Full textZhao, Rujin, Jin Wang, Guobing Yu, Jie Zhong, Wulin Zhou, and Yihao Li. "A method of color correction of camera based on HSV model." In 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2014), edited by Yadong Jiang, Junsheng Yu, and Bernard Kippelen. SPIE, 2014. http://dx.doi.org/10.1117/12.2070593.
Full text