Academic literature on the topic 'Htr fuel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Htr fuel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Htr fuel"
Marmier, Alain, Michael A. Fütterer, Kamil Tuček, Jim C. Kuijper, Jaap Oppe, Biser Petrov, Jérôme Jonnet, Jan Leen Kloosterman, and Brian Boer. "Fuel Cycle Investigation for Wallpaper-Type HTR Fuel." Nuclear Technology 181, no. 2 (February 2013): 317–30. http://dx.doi.org/10.13182/nt13-a15786.
Full textNabielek, H., W. Kühnlein, W. Schenk, W. Heit, A. Christ, and H. Ragoss. "Development of advanced HTR fuel elements." Nuclear Engineering and Design 121, no. 2 (July 1990): 199–210. http://dx.doi.org/10.1016/0029-5493(90)90105-7.
Full textZhang, Hai Quan, Xin Wang, Hong Ke Li, Jun Feng Nie, and Ji Guo Liu. "Design and Engineering Verification of HTR-PM Fuel Handling." Advanced Materials Research 621 (December 2012): 317–25. http://dx.doi.org/10.4028/www.scientific.net/amr.621.317.
Full textWijaya, Rokhmadi, Bebeh Wahid Nuryadin, Khotib Maulani, and Topan Setiadipura. "CALCULATION OF PROBABILITY OF TRISO PARTICLE FAILURE USING TIMCOAT AND PEBBED CODE." SIGMA EPSILON - Buletin Ilmiah Teknologi Keselamatan Reaktor Nuklir 24, no. 1 (April 30, 2020): 17. http://dx.doi.org/10.17146/sigma.2020.24.1.5786.
Full textMarmier, A., M. A. Fütterer, K. Tuček, Han de Haas, Jim C. Kuijper, and Jan Leen Kloosterman. "Revisiting the concept of HTR wallpaper fuel." Nuclear Engineering and Design 240, no. 10 (October 2010): 2485–92. http://dx.doi.org/10.1016/j.nucengdes.2010.02.043.
Full textde Groot, Sander, Pierre Guillermier, Kazuhiro Sawa, Jean-Michel Escleine, Shohei Ueta, Virginie Basini, Klaas Bakker, Young-Woo Lee, Marc Perez, and Bong-Goo Kim. "HTR fuel coating separate effect test PYCASSO." Nuclear Engineering and Design 240, no. 10 (October 2010): 2392–400. http://dx.doi.org/10.1016/j.nucengdes.2010.05.052.
Full textHelary, D., O. Dugne, X. Bourrat, P. H. Jouneau, and F. Cellier. "EBSD investigation of SiC for HTR fuel particles." Journal of Nuclear Materials 350, no. 3 (May 2006): 332–35. http://dx.doi.org/10.1016/j.jnucmat.2006.01.010.
Full textBrähler, Georg, Markus Hartung, Johannes Fachinger, Karl-Heinz Grosse, and Richard Seemann. "Improvements in the fabrication of HTR fuel elements." Nuclear Engineering and Design 251 (October 2012): 239–43. http://dx.doi.org/10.1016/j.nucengdes.2011.10.036.
Full textFU, Xiaoming, Tongxiang LIANG, Yaping TANG, Zhichang XU, and Chunhe TANG. "Preparation of UO2Kernel for HTR-10 Fuel Element." Journal of Nuclear Science and Technology 41, no. 9 (September 2004): 943–48. http://dx.doi.org/10.1080/18811248.2004.9715568.
Full textSembiring, Tagor Malem, and Pungky Ayu Artiani. "SUBCRITICALITY ANALYSIS OF HTR-10 SPENT FUEL CASK MODEL FOR THE 10 MW HTR INDONESIAN EXPERIMENTAL POWER REACTOR." JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA 20, no. 3 (October 31, 2018): 151. http://dx.doi.org/10.17146/tdm.2018.20.3.4630.
Full textDissertations / Theses on the topic "Htr fuel"
Van, der Merwe Jacobus Johannes. "Modelling silver transport in spherical HTR fuel." Thesis, Pretoria : [s. n.], 2009. http://upetd.up.ac.za/thesis/available/etd-10172009-102536/.
Full textMurovhi, Phathutshedzo. "Low temperature thermal properties of HTR nuclear fuel composite graphite." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/33156.
Full textDissertation (MSc)--University of Pretoria, 2013.
gm2014
Physics
Unrestricted
Rohbeck, Nadia. "The high temperature mechanical properties of silicon carbide in TRISO particle fuel." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/the-high-temperature-mechanical-properties-of-silicon-carbide-in-triso-particle-fuel(275b2e07-8a5e-4b22-b575-3ded9c6b9008).html.
Full textZhang, Zhan. "Neutron energy spectrum reconstruction method based for htr reactor calculations." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41195.
Full textChiuta, Steven. "The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta." Thesis, North-West University, 2010. http://hdl.handle.net/10394/4840.
Full textThesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
Izenson, Michael G. (Michael Gary). "Effects of fuel particle and reactor core design on modular HTGR source terms." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/14787.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.
Bibliography: v.3, leaves 516-522.
by Michael G. Izenson.
Ph.D.
Gopalan, Babu. "INVESTIGATION OF HYDROGEN STORAGE IN IDEAL HPR INNER MATRIX MICROSTRUCTURE USING FINITE ELEMENT ANALYSIS." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1159476259.
Full textTshamala, Mubenga Carl. "Simulation and control implications of a high-temperature modular reactor (HTMR) cogeneration plant." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86264.
Full textENGLISH ABSTRACT: Traditionally nuclear reactor power plants have been optimised for electrical power generation only. In the light of the ever-rising cost of dwindling fossil fuel resources as well the global polluting effects and consequences of their usage, the use of nuclear energy for process heating is becoming increasingly attractive. In this study the use of a so-called cogeneration plant in which a nuclear reactor energy source is optimised for the simultaneous production of superheated steam for electrical power generation and process heat is considered and analysed. The process heat superheated steam is generated in a once-through steam generator of heat pipe heat exchanger with intermediate fluid while steam for power generation is generated separately in a once-through helical coil steam generator. A 750 °C, 7 MPa helium cooled HTMR has been conceptually designed to simultaneously provide steam at 540 °C, 13.5 MPa for the power unit and steam at 430 °C, 4 MPa for a coal-to-liquid fuel process. The simulation and dynamic control of such a typical cogeneration plant is considered. In particular, a theoretical model of a typical plant will be simulated with the aim of predicting the transient and dynamic behaviour of the HTMR in order to provide guideline for the control of the plant under various operating conditions. It was found that the simulation model captured the behaviour of the plant reasonably well and it is recommended that it could be used in the detailed design of plant control strategies. It was also found that using a 1500 MW-thermal HTMR the South African contribution to global pollution can be reduced by 1.58%.
AFRIKAANSE OPSOMMING: Tradisioneel is kernkragaanlegte vir slegs elektriese kragopwekking geoptimeer. In die lig van die immer stygende koste van uitputbare fossielbrandstohulpbronne asook die besoedelingsimpak daarvan wêreldwyd, word die gebruik van kernkrag vir prosesverhitting al hoe meer aanlokliker. In hierdie studie word die gebruik van ‘n sogenaamde mede-opwekkingsaanleg waarin ‘n kernkragreaktor-energiebron vir die gelyktydige produksie van oorverhitte stoom vir elektriese kragopwekking en proseshitte oorweeg ontleed word. Die oorvehitte stoom word in ‘n enkeldeurvloei-stoomopwekking van die hittepyp-hitteruiler met tussenvloeistof opgewek en stoom vir kragopwekking word apart in ‘n enkeldeurvloei-spiraalspoel-stoomopwekker opgewek. ‘n 750 °C, 7 MPa heliumverkoelde HTMR is konseptueel ontwerp vir die gelytydige veskaffing van stoom by 540 °C, 13.5 MPa, vir die kragopwekkings eenheid, en stoom by 430 °C, 4 MPa, vir ‘n steenkool-tot-vloeibare (CTL) brandstoff proses. Die simulasie en dinamiese beheer van ‘n tipiese HTMR mede-opwekkingsaanleg word beskou. ‘n die besonder word ‘n teoretiese model van die transiënte en dinamiese gedrag van die aanleg gesimuleer om sodoene riglyne te identifiseer vir die ontwikkeling van dinamiese beheer strategië vir verskillende werkstoestande van die aanleg. Daar was ook gevind dat die simulasie model van die aanleg se gedrag goed nageboots word en dat dit dus gebruik kan word vir beheer strategie doeleindes. Indien so ‘n 1500 MW-termies HTMR gebruik word sal dit die Suid Afrikaanse besoedling met 1.58% sal kan verminder.
Magnusson, Ann-Sofie. "Sveriges universitets- och högskoleförbunds-modellen : Har införandet av SUHF-modellen ökat förtroendet för lärosätenas redovisning av indirekta kostnader hos forskningsfinansiärerna?" Thesis, Högskolan i Gävle, Avdelningen för ekonomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-14899.
Full textAbstract Title: SUHF model Level: Final assignment for Bachelor Degree in Business Administration Author: Ann-Sofie Magnusson Supervisor: Jan Svanberg Date: 2013 - June Aim: The purpose of this study is to explore how the SUHF model is built and if the transition to the SUHF model has led to improvement of research funder’s confidence in the institutions´ accounting of indirect costs. Method: The study has been carried out with a qualitative hermeneutic approach with understanding epistemology. The method included an inductive empirical test of the problem formulation. The inductive empirical study consisted of semi-structured interviews with four universities and four research funders. Result and Conclusions: The study shows that the SUHF model is not sufficiently clear about the distinction between the costs that are direct and indirect. Communication and cooperation between the parties has increased. The universities feel that their confidence has improved among financiers while the research funders' experience is different, ranging from loss of confidence to increased confidence. Suggestions for future research: Investigate additional research funders and universities in order to ensure that the results from this study are reliable and investigate the reasons why the confidence is unchanged and also has reduced with research funders after the introduction of the SUHF model. Key words: SUHF model, full costs recovery, indirect costs, trust, commitment, communication, cooperation
Tiwari, Housila. "INVESTIGATION OF THE FEASIBILTY OF METALS, POLYMERIC FOAMS, AND COMPOSITE FOAM FOR ON-BOARD VEHICULAR HYDROGEN STORAGE VIA HYDROSTATIC PRESSURE RETAINMENT (HPR) USING IDEAL BCC MICROSTRUCTURE." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1186967436.
Full textBooks on the topic "Htr fuel"
United States. Congress. House. Committee on Energy and Commerce. Subcommittee on Energy and Power. Alternative automotive fuels: Hearings before the Subcommittee on Energy and Power of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, first session, on H.R. 168, H.R. 1595, H.R. 2031, and H.R. 2052 ... June 17, 24, and July 9, 1987. Washington: U.S. G.P.O., 1988.
Find full textTo establish a grant program whereby moneys collected from violations of the Corporate Average Fuel Economy Program are used to expand infrastructure necessary to increase the availability of alternative fuels: Report (to accompany H.R. 5534) (including cost estimate of the Congressional Budget Office). [Washington, D.C: U.S. G.P.O., 2006.
Find full textUnited States. Congress. House. Committee on Energy and Commerce. To establish a grant program whereby moneys collected from violations of the Corporate Average Fuel Economy Program are used to expand infrastructure necessary to increase the availability of alternative fuels: Report (to accompany H.R. 5534) (including cost estimate of the Congressional Budget Office). [Washington, D.C: U.S. G.P.O., 2006.
Find full textWilliams, Aleta L. Why her?: A full novel. [North Charleston, SC]: [CreateSpace Independent Publishing Platform], 2013.
Find full textUnited States. Congress. Senate. Committee on Armed Services. Full committee consideration of H.R. 3283 ... H.R. 3140 ... H.R. 2873 ... Washington: U.S. G.P.O., 1988.
Find full textEconomy, United States Congress House Committee on Energy and Commerce Subcommittee on Environment and the. H.R. 4345, the Domestic Fuels Protection Act of 2012: Hearing before the Subcommittee on Environment and Economy of the Committee on Energy and Commerce, House of Representatives, One Hundred Twelfth Congress, second session, April 19, 2012. Washington: U.S. Government Printing Office, 2013.
Find full textMarkgraf, J. F. W. HFR irradiation testing of light water reactor (LWR) fuel. Luxembourg: Commission of the European Communities, 1985.
Find full textUnited States. Congress. Senate. Committee on Armed Services. Full committee consideration of H.R. 2948 ... and H.R. 2974 ... Washington: U.S. G.P.O., 1987.
Find full textUnited States. Congress. Senate. Committee on Armed Services. Full committee consideration of H.R. 2948 ... and H.R. 2974 ... Washington: U.S. G.P.O., 1987.
Find full textBook chapters on the topic "Htr fuel"
Kania, Michael J., Heinz Nabielek, and Karl Verfondern. "SiC-Coated HTR Fuel Particle Performance." In Ceramic Engineering and Science Proceedings, 33–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118217535.ch4.
Full textLi, Ning, Hongjun Zhang, and Xiaogang Xu. "Structural Design and Verification of the CNFC-HTR New Fuel Transport Container." In Proceedings of The 20th Pacific Basin Nuclear Conference, 873–81. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2317-0_82.
Full textKarriem, Z., C. Stoker, and F. Reitsma. "MCNP Modelling of HTGR Pebble-Type Fuel." In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, 841–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-18211-2_134.
Full textChoi, Hangbok, Robert Schleicher, and Myunghee Choi. "Physics Analysis of Alternative Fuel Options for HTGR." In Proceedings of The 20th Pacific Basin Nuclear Conference, 801–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2317-0_76.
Full textBornhöft, Gudrun, Klaus v. Ammon, Marco Righetti, André Thuneysen, and Peter F. Matthiessen. "Full discussion of the HTA results." In Homeopathy in Healthcare – Effectiveness, Appropriateness, Safety, Costs, 193–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20638-2_13.
Full textKarplus, Rivka. "People Facing the Question of Euthanasia: Patients, Family and Friends, Healthcare Workers." In Euthanasia: Searching for the Full Story, 49–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56795-8_5.
Full textKim, Jun Hwan, Jong Hyuk Baek, Sung Ho Kim, and Chan Bock Lee. "Effect of Heat Treatment on the Mechanical Properties of HT9 Fuel Cladding Tube for Sodium-Cooled Fast Reactor (SFR)." In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 2431–34. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48764-9_300.
Full textKim, Jun Hwan, Jong Hyuk Baek, Sung Ho Kim, and Chan Bock Lee. "Effect of Heat Treatment on the Mechanical Properties of HT9 Fuel Cladding Tube For Sodium-Cooled Fast Reactor (SFR)." In PRICM, 2431–34. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch300.
Full text"Full Status." In Her Oxford, 274–84. Vanderbilt University Press, 2008. http://dx.doi.org/10.2307/j.ctv16h2nb9.26.
Full text"THE MOVE TOWARD FULL PARTICIPATION." In Her Story, 273–303. 2nd ed. Fortress Press, 2006. http://dx.doi.org/10.2307/j.ctv1hqdj65.11.
Full textConference papers on the topic "Htr fuel"
Marmier, Alain, Michael A. Fu¨tterer, Mathias Laurie, and Chunhe Tang. "Preliminary Results of the HFR-EU1 Fuel Irradiation of INET and AVR Pebbles in the HFR Petten." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58049.
Full textvan Heek, Aliki, Florence Charpin, Steven van der Marck, Jorrit Wolters, Christos Trakas, Luis Aguiar, Eleonora Bomboni, et al. "HTR Pebble Fuel Burnup Experimental Benchmark." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58134.
Full textGuittonneau, Fabrice, Abdesselam Abdelouas, Bernd Grambow, Manoe¨l Dialinas, and Franc¸ois Cellier. "New Methods for HTR Fuel Waste Management." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58112.
Full textMarmier, Alain, Michael A. Fu¨tterer, Kamil Tucˇek, Han de Haas, Jim C. Kuijper, and Jan Leen Kloosterman. "Revisiting the Concept of HTR Wallpaper Fuel." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58114.
Full textFreis, D., P. D. Bottomley, J. P. Hiernaut, J. Y. Colle, J. Ejton, and W. de Weerd. "Post Irradiation Examination of HTR Fuel at ITU Karlruhe." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58329.
Full textHittner, Dominique. "The Renewal of HTR Development in Europe." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22423.
Full textGrambow, B., A. Abdelouas, F. Guittonneau, J. Vandenborre, J. Fachinger, W. von Lensa, P. Bros, et al. "The Backend of the Fuel Cycle of HTR/VHTR Reactors." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58177.
Full textWang, Meng-Jen, Jinn-Jer Peir, Chen-Wei Chi, and Jenq-Horng Liang. "A Parametric Study of Fuel Lattice Design for HTR-10." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29253.
Full textWang, Jinhua, Bing Wang, Bin Wu, and Yue Li. "Design of the Spent Fuel Storage Well of HTR-PM." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60051.
Full textRenze, Wang, Zhang Jiangang, Li Guoqiang, Zhuang Dajie, Meng Dongyuan, Wang Xuexin, Sun Hongchao, and Sun Shutang. "PSA Research of Transport of New Fuel of HTR-PM." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66012.
Full textReports on the topic "Htr fuel"
Gerhard Strydom. Reactor Physics Characterization of the HTR Module with UCO Fuel. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1009138.
Full textFrancesco Venneri, Chang-Keun Jo, Jae-Man Noh, Yonghee Kim, Claudio Filippone, Jonghwa Chang, Chris Hamilton, et al. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/991901.
Full textBrian Boer and Abderrafi M. Ougouag. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1013722.
Full textBess, John D., Leland M. Montierth, James W. Sterbentz, J. Blair Briggs, Hans D. Gougar, Luka Snoj, Igor Lengar, and Oliver Koberl. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1117731.
Full textJohn D. Bess and Leland M. Montierth. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1073776.
Full textVincent Descotes. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part II: Prismatic Reactor Cross Section Generation. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1013715.
Full textMartin, William R., John C. Lee, Alan baxter, and Chuck Wemple. Creation of a Full-Core HTR Benchmark with the Fort St. Vrain Initial Core and Assessment of Uncertainties in the FSV Fuel Composition and Geometry. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1047488.
Full textMichael A. Pope. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1042392.
Full textJohn D. Bess, Barbara H. Dolphin, James W. Sterbentz, Luka Snoj, Igor Lengar, and Oliver Köberl. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1064064.
Full textJohn D. Bess, Barbara H. Dolphin, James W. Sterbentz, Luka Snoj, Igor Lengar, and Oliver Köberl. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1042385.
Full text