Journal articles on the topic 'HTS sequencing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'HTS sequencing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Vuorio, Kristiina, Anita Mäki, Pauliina Salmi, Sanni Aalto, Marja Tiirola, and Marko Järvinen. "Consistency between high throughput sequencing and microscopy-based morphological characterization of phytoplankton communities." ARPHA Conference Abstracts 4 (March 4, 2021): e64972. https://doi.org/10.3897/aca.4.e64972.
Full textKomarova, Natalia, Daria Barkova, and Alexander Kuznetsov. "Implementation of High-Throughput Sequencing (HTS) in Aptamer Selection Technology." International Journal of Molecular Sciences 21, no. 22 (2020): 8774. http://dx.doi.org/10.3390/ijms21228774.
Full textPérez-Losada, Marcos, Miguel Arenas, Juan Carlos Galán, et al. "High-throughput sequencing (HTS) for the analysis of viral populations." Infection, Genetics and Evolution 80 (June 2020): 104208. http://dx.doi.org/10.1016/j.meegid.2020.104208.
Full textHe, Xuejun, Ningzhi Zhang, Wenye Cao, Yiqiao Xing, and Ning Yang. "Application Progress of High-Throughput Sequencing in Ocular Diseases." Journal of Clinical Medicine 11, no. 12 (2022): 3485. http://dx.doi.org/10.3390/jcm11123485.
Full textGIZA, ALEKSANDRA, EWELINA IWAN, ARKADIUSZ BOMBA, and DARIUSZ WASYL. "Basics of high throughput sequencing Summary." Medycyna Weterynaryjna 77, no. 11 (2025): 6589–2025. http://dx.doi.org/10.21521/mw.6594.
Full textAronesty, Erik. "Comparison of Sequencing Utility Programs." Open Bioinformatics Journal 7, no. 1 (2013): 1–8. http://dx.doi.org/10.2174/1875036201307010001.
Full textPu, Dan, and Pengfeng Xiao. "A real-time decoding sequencing technology—new possibility for high throughput sequencing." RSC Advances 7, no. 64 (2017): 40141–51. http://dx.doi.org/10.1039/c7ra06202h.
Full textMalapi-Wight, Martha, Bishwo Adhikari, Jing Zhou, et al. "HTS-Based Diagnostics of Sugarcane Viruses: Seasonal Variation and Its Implications for Accurate Detection." Viruses 13, no. 8 (2021): 1627. http://dx.doi.org/10.3390/v13081627.
Full textMa, Hailun, Trent J. Bosma, and Arifa S. Khan. "Long-Read High-Throughput Sequencing (HTS) Revealed That the Sf-Rhabdovirus X+ Genome Contains a 3.7 kb Internal Duplication." Viruses 15, no. 10 (2023): 1998. http://dx.doi.org/10.3390/v15101998.
Full textBester, Rachelle, Chanel Steyn, Johannes H. J. Breytenbach, Rochelle de Bruyn, Glynnis Cook, and Hans J. Maree. "Reproducibility and Sensitivity of High-Throughput Sequencing (HTS)-Based Detection of Citrus Tristeza Virus and Three Citrus Viroids." Plants 11, no. 15 (2022): 1939. http://dx.doi.org/10.3390/plants11151939.
Full textDroege, Gabriele, Jonas Zimmermann, Tim Fulcher, der Linde Sietse Van, and Walter Berendsohn. "Environmental samples, eDNA and HTS libraries – data standard proposals from the Global Genome Biodiversity Network (GGBN)." Biodiversity Information Science and Standards 1 (August 21, 2017): e20483. https://doi.org/10.3897/tdwgproceedings.1.20483.
Full textBester, Rachelle, Glynnis Cook, and Hans J. Maree. "Citrus Tristeza Virus Genotype Detection Using High-Throughput Sequencing." Viruses 13, no. 2 (2021): 168. http://dx.doi.org/10.3390/v13020168.
Full textKunej, Urban, Aida Dervishi, Valérie Laucou, Jernej Jakše, and Nataša Štajner. "The Potential of HTS Approaches for Accurate Genotyping in Grapevine (Vitis vinifera L.)." Genes 11, no. 8 (2020): 917. http://dx.doi.org/10.3390/genes11080917.
Full textWANG, MINGBANG, XIAOMEI FAN, TAO WANG, and JINYU WU. "High-throughput sequencing of autism spectrum disorders comes of age." Genetics Research 95, no. 4 (2013): 121–29. http://dx.doi.org/10.1017/s0016672313000153.
Full textFuentes, Azahara, Alicia Serrano, Blanca Ferrer Lores, et al. "Ighv Mutational Status By Deep Next Generation Sequencing Refines Ighv Sanger Sequencing Classification in Patients with Chronic Lymphocytic Leukaemia." Blood 134, Supplement_1 (2019): 3028. http://dx.doi.org/10.1182/blood-2019-129145.
Full textGIZA, ALEKSANDRA, EWELINA IWAN, and DARIUSZ WASYL. "Application of high throughput sequencing in veterinary science." Medycyna Weterynaryjna 78, no. 02 (2022): 6622–2022. http://dx.doi.org/10.21521/mw.6622.
Full textNess, Tara E., Andrew DiNardo, and Maha R. Farhat. "High Throughput Sequencing for Clinical Tuberculosis: An Overview." Pathogens 11, no. 11 (2022): 1343. http://dx.doi.org/10.3390/pathogens11111343.
Full textXu, Chonghe, Dangui Zhou, and Mei Zhu. "High throughput sequencing technology and its clinical application in circulating tumor DNA detection in patients with tumors." Investigación Clínica 65, no. 4 (2024): 476–94. https://doi.org/10.54817/ic.v65n4a09.
Full textBoegel, Sebastian, John C. Castle, and Andreas Schwarting. "Current status of use of high throughput nucleotide sequencing in rheumatology." RMD Open 7, no. 1 (2021): e001324. http://dx.doi.org/10.1136/rmdopen-2020-001324.
Full textVillamor, D. E. V., T. Ho, M. Al Rwahnih, R. R. Martin, and I. E. Tzanetakis. "High Throughput Sequencing For Plant Virus Detection and Discovery." Phytopathology® 109, no. 5 (2019): 716–25. http://dx.doi.org/10.1094/phyto-07-18-0257-rvw.
Full textKurtz, David M., Michael R. Green, Scott V. Bratman, et al. "Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing." Blood 125, no. 24 (2015): 3679–87. http://dx.doi.org/10.1182/blood-2015-03-635169.
Full textGlasa, Miroslav, Katarína Šoltys, Lukáš Predajňa, et al. "High-throughput sequencing of Potato virus M from tomato in Slovakia reveals a divergent variant of the virus." Plant Protection Science 55, No. 3 (2019): 159–66. http://dx.doi.org/10.17221/144/2018-pps.
Full textWu, David, Ryan O. Emerson, Anna Sherwood, et al. "Robust Detection Of Minimal Residual Disease In Unselected Patients With B-Cell Precursor Acute Lymphoblastic Leukemia By High-Throughput Sequencing Of IGH." Blood 122, no. 21 (2013): 2550. http://dx.doi.org/10.1182/blood.v122.21.2550.2550.
Full textJavaran, Vahid Jalali, Peter Moffett, Pierre Lemoyne, Dong Xu, Charith Raj Adkar-Purushothama, and Mamadou Lamine Fall. "Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics." Plants 10, no. 11 (2021): 2355. http://dx.doi.org/10.3390/plants10112355.
Full textEspindola, Andres S., and Kitty F. Cardwell. "Microbe Finder (MiFi®): Implementation of an Interactive Pathogen Detection Tool in Metagenomic Sequence Data." Plants 10, no. 2 (2021): 250. http://dx.doi.org/10.3390/plants10020250.
Full textNellimarla, Srinivas, and Prasad Kesanakurti. "Next-Generation Sequencing: A Promising Tool for Vaccines and Other Biological Products." Vaccines 11, no. 3 (2023): 527. http://dx.doi.org/10.3390/vaccines11030527.
Full textSoltani, Nourolah, Kristian A. Stevens, Vicki Klaassen, Min-Sook Hwang, Deborah A. Golino, and Maher Al Rwahnih. "Quality Assessment and Validation of High-Throughput Sequencing for Grapevine Virus Diagnostics." Viruses 13, no. 6 (2021): 1130. http://dx.doi.org/10.3390/v13061130.
Full textBai, Ling, Liu He, Penghao Yu, et al. "Molecular Characterization of Mycobiota and Aspergillus Species from Eupolyphaga sinensis Walker Based on High-Throughput Sequencing of ITS1 and CaM." Journal of Food Quality 2020 (May 7, 2020): 1–7. http://dx.doi.org/10.1155/2020/1752415.
Full textFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (June 12, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Full textFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (June 7, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Full textFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (July 3, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Full textFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (July 10, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Full textFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (July 17, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Full textRajter, Ľubomír, and Micah Dunthorn. "Ciliate SSU-rDNA reference alignments and trees for phylogenetic placements of metabarcoding data." Metabarcoding and Metagenomics 5 (August 30, 2021): e69602. https://doi.org/10.3897/mbmg.5.69602.
Full textEspindola, Andres S. "Simulated High Throughput Sequencing Datasets: A Crucial Tool for Validating Bioinformatic Pathogen Detection Pipelines." Biology 13, no. 9 (2024): 700. http://dx.doi.org/10.3390/biology13090700.
Full textRuiz-García, Ana Belén, Celia Canales, Félix Morán, Manuel Ruiz-Torres, Magdalena Herrera-Mármol, and Antonio Olmos. "Characterization of Spanish Olive Virome by High Throughput Sequencing Opens New Insights and Uncertainties." Viruses 13, no. 11 (2021): 2233. http://dx.doi.org/10.3390/v13112233.
Full textKrehenwinkel, Pomerantz, and Prost. "Genetic Biomonitoring and Biodiversity Assessment Using Portable Sequencing Technologies: Current Uses and Future Directions." Genes 10, no. 11 (2019): 858. http://dx.doi.org/10.3390/genes10110858.
Full textBastida, José María, Rocío Benito, María Luisa Lozano, et al. "Molecular Diagnosis of Inherited Coagulation and Bleeding Disorders." Seminars in Thrombosis and Hemostasis 45, no. 07 (2019): 695–707. http://dx.doi.org/10.1055/s-0039-1687889.
Full textScherer, Florian, David M. Kurtz, Maximilian Diehn, and Ash A. Alizadeh. "High-throughput sequencing for noninvasive disease detection in hematologic malignancies." Blood 130, no. 4 (2017): 440–52. http://dx.doi.org/10.1182/blood-2017-03-735639.
Full textYin, Mengxue, and Wenxing Xu. "Special Issue: “Evolution, Ecology and Diversity of Plant Virus”." Viruses 15, no. 2 (2023): 487. http://dx.doi.org/10.3390/v15020487.
Full textSiddique, Abu Bakar, Anis Mahmud Khokon, and Martin Unterseher. "What do we learn from cultures in the omics age? High-throughput sequencing and cultivation of leaf-inhabiting endophytes from beech (Fagus sylvatica L.) revealed complementary community composition but similar correlations with local habitat conditions." MycoKeys 20 (February 21, 2017): 1–16. https://doi.org/10.3897/mycokeys.20.11265.
Full textKenzhebekova, Roza, Pozharskiy A.S.,, Kostyukova V.S, and Gritsenko D.A.,. "HIGH-THROUGHPUT SEQUENCING FOR DETECTION OF POTATO VIRUSES IN NORTHERN KAZAKHSTAN." Ġylym ža̋ne bìlìm 2, no. 3(76) (2024): 3–14. https://doi.org/10.52578/2305-9397-2024-3-2-3-14.
Full textChoi, Jiyeong, Anya Clara Osatuke, Griffin Erich, et al. "High-Throughput Sequencing Reveals Tobacco and Tomato Ringspot Viruses in Pawpaw." Plants 11, no. 24 (2022): 3565. http://dx.doi.org/10.3390/plants11243565.
Full textLightbody, Gaye, Valeriia Haberland, Fiona Browne, et al. "Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application." Briefings in Bioinformatics 20, no. 5 (2019): 1795–811. http://dx.doi.org/10.1093/bib/bby051.
Full textBérubé, Jean A., Patrick N. Gagné, Julien P. Ponchart, J. Phelan, A. Varga, and D. James. "Heterobasidion species detected using High Throughput Sequencing (HTS) methods on British Columbia nursery plants." Canadian Journal of Plant Pathology 41, no. 4 (2019): 560–65. http://dx.doi.org/10.1080/07060661.2019.1611665.
Full textGiner, Caterina R., Irene Forn, Sarah Romac, Ramiro Logares, Colomban de Vargas, and Ramon Massana. "Environmental Sequencing Provides Reasonable Estimates of the Relative Abundance of Specific Picoeukaryotes." Applied and Environmental Microbiology 82, no. 15 (2016): 4757–66. http://dx.doi.org/10.1128/aem.00560-16.
Full textLynch, Tarah, Aaron Petkau, Natalie Knox, Morag Graham, and Gary Van Domselaar. "A Primer on Infectious Disease Bacterial Genomics." Clinical Microbiology Reviews 29, no. 4 (2016): 881–913. http://dx.doi.org/10.1128/cmr.00001-16.
Full textKutnjak, Denis, Lucie Tamisier, Ian Adams, et al. "A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses." Microorganisms 9, no. 4 (2021): 841. http://dx.doi.org/10.3390/microorganisms9040841.
Full textAnslan, Sten, R. Henrik Nilsson, Christian Wurzbacher, Petr Baldrian, Leho Tedersoo, and Mohammad Bahram. "Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding." MycoKeys 39 (September 10, 2018): 29–40. https://doi.org/10.3897/mycokeys.39.28109.
Full textFabiańska, Izabela, Stefan Borutzki, Benjamin Richter, Hon Q. Tran, Andreas Neubert, and Dietmar Mayer. "LABRADOR—A Computational Workflow for Virus Detection in High-Throughput Sequencing Data." Viruses 13, no. 12 (2021): 2541. http://dx.doi.org/10.3390/v13122541.
Full text