Dissertations / Theses on the topic 'Human face recognition (Computer science) Image processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Human face recognition (Computer science) Image processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Feng, Guo Can. "Face recognition using virtual frontal-view image." HKBU Institutional Repository, 1999. http://repository.hkbu.edu.hk/etd_ra/267.
Full textDa, Silva Sandro Cahanda Marinho. "Remote surveillance and face tracking with mobile phones (smart eyes)." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Full text鄭健城 and Kin-shing Dominic Cheng. "Studies on facial surface reconstruction from image correspondence." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31224131.
Full textCheng, Kin-shing Dominic. "Studies on facial surface reconstruction from image correspondence." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22925958.
Full textMan, Chun Him. "Human face image searching system with relevance feedback using sketch." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/618.
Full textLi, Qi. "An integration framework of feature selection and extraction for appearance-based recognition." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 8.38 Mb., 141 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3220745.
Full textGökçay, Didem. "Self-organizing features for regularized image standardization." [Gainesville, Fla.] : University of Florida, 2001. http://purl.fcla.edu/fcla/etd/ank7112.
Full textTitle from first page of PDF file. Document formatted into pages; contains ix, 117 p.; also contains graphics. Vita. Includes bibliographical references (p. 109-116).
Zhang, Cuiping Cohen Fernand S. "3D face structure extraction from images at arbitrary poses and under arbitrary illumination conditions /." Philadelphia, Pa. : Drexel University, 2006. http://hdl.handle.net/1860/1294.
Full textZhan, Ce. "Facial expression recognition for multi-player on-line games." School of Computer Science and Software Engineering, 2008. http://ro.uow.edu.au/theses/100.
Full textChen, Xiaochen. "Tracking vertex flow on 3D dynamic facial models." Diss., Online access via UMI:, 2008.
Rosato, Matthew J. "Applying conformal mapping to the vertex correspondence problem for 3D face models." Diss., Online access via UMI:, 2007.
Wei, Xiaozhou. "3D facial expression modeling and analysis with topographic information." Diss., Online access via UMI:, 2008.
Wagener, Dirk Wolfram. "Feature tracking and pattern registration." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53424.
Full textENGLISH ABSTRACT: The video-based computer vision patient positioning system that is being developed at iThemba Laboratories, relies on the accurate, robust location, identification and tracking of a number of markers on the patient's mask. The precision requirements are demanding - a small error in the location of the markers leads to an inaccurate positioning of the patient, which could have fatal consequences. In this thesis we discuss the contsruction of suitable markers, their identification with subpixel accuracy, as well as a robust tracking algorithm. The algorithms were implemented and tested on real data. We also note and give examples of other applications, most notably 2D human face tracking and the 3D tracking of a moving person.
AFRIKAANSE OPSOMMING: Die video-gebaseerde rekenaarvisie pasiënt posisionerings stelsel wat by iThemba Laboratoriums ontwikkel word, maak staat op die akkurate opsporing, identifikasie en volging van 'n stel merkers op die pasiënt se masker. Die akkuraatheids voorwaardes is besonders streng - selfs 'n klein fout in die lokasie vandie merkers sal lei tot die onakkurate posisionering van die pasiënt, wat dodelike gevolge kan hê. In hierdie tesis bespreek ons die konstruksie van geskikte merkers, die identifikasie van die merkers tot op subbeeldingselement vlak en ook die akkurate volging van die merkers. Die algoritmes is op regte data getoets. Ander toepassings soos 2D en 3D menlike gesigs-volging word ook kortliks bespreek.
Ndlangisa, Mboneli. "DRUBIS : a distributed face-identification experimentation framework - design, implementation and performance issues." Thesis, Rhodes University, 2004. http://eprints.ru.ac.za/93/1/MNdlangisa-MSc.pdf.
Full textAkinbola, Akintunde A. "Estimation of image quality factors for face recognition." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4308.
Full textTitle from document title page. Document formatted into pages; contains vi, 56 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 52-56).
Chen, Shaokang. "Robust discriminative principal component analysis for face recognition /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18934.pdf.
Full textBartlett, Marian Stewart. "Face image analysis by unsupervised learning and redundancy reduction /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9907603.
Full textLe, Hung Son. "Face Recognition : A Single View Based HMM Approach." Doctoral thesis, Umeå : Department of Applied Physics and Electronics, Umeå University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1485.
Full textLee, Jinho. "Synthesis and analysis of human faces using multi-view, multi-illumination image ensembles." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1133366279.
Full textBrennan, Victor L. "Principal component analysis with multiresolution." [Gainesville, Fla.] : University of Florida, 2001. http://etd.fcla.edu/etd/uf/2001/ank7079/brennan%5Fdissertation.pdf.
Full textTitle from first page of PDF file. Document formatted into pages; contains xi, 124 p.; also contains graphics. Vita. Includes bibliographical references (p. 120-123).
Tepvorachai, Gorn. "An Evolutionary Platform for Retargetable Image and Signal Processing Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1209504058.
Full textSpasic, Nemanja. "Anomaly Detection and Prediction of Human Actions in a Video Surveillance Environment." Thesis, University of Cape Town, 2007. http://pubs.cs.uct.ac.za/archive/00000449/.
Full textPaleari, Marco. "Informatique Affective : Affichage, Reconnaissance, et Synthèse par Ordinateur des Émotions." Phd thesis, Télécom ParisTech, 2009. http://pastel.archives-ouvertes.fr/pastel-00005615.
Full textViswavarapu, Lokesh Kumar. "Real-Time Finger Spelling American Sign Language Recognition Using Deep Convolutional Neural Networks." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404616/.
Full textDantcheva, Antitza. "Biométries faciales douces : méthodes, applications et défis." Phd thesis, Télécom ParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00673146.
Full textCostello, Anthony. "Facilitating Information Retrieval in Social Media User Interfaces." Doctoral diss., University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6257.
Full textPh.D.
Doctorate
Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering
Aghaei, Maedeh. "Social Signal Processing from Egocentric Photo-Streams." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/650918.
Full textLas cámaras portables ofrecen una forma de capturar imágenes de experiencias diarias vividas por el usuario, desde su propia perspectiva y sin la intervención de éste, sin la necesidad de interrumpir la grabación debido a la batería del dispositivo o las limitaciones de almacenamiento. Este conjunto de imágenes, conocidas como secuencias de fotos egocéntricas, contiene datos visuales importantes sobre la vida del usuario, donde entre ellos los eventos sociales son de especial interés. Las interacciones sociales han demostrado ser clave para la longevidad, el tener pocas interacciones equivale al mismo factor de riesgo que fumar regularmente. Teniendo en cuenta la importancia del asunto, no es de extrañar que el análisis automático de las interacciones sociales atraiga en gran medida el interés de la comunidad científica. Sin embargo, el análisis de secuencias de fotos impone nuevos desafíos al problema del procesamiento de las señales sociales con respecto a los videos convencionales. Debido al movimiento libre de la cámara y a su baja resolución temporal, los cambios abruptos en el campo de visión, en la iluminación y en la ubicación del objeto son frecuentes. Además, dado que las imágenes se adquieren en condiciones reales, las oclusiones ocurren con regularidad y la apariencia de las personas varía de un evento a otro. Dado que un individuo usa una cámara fotográfica durante un período determinado, esta tesis, impulsada por el paradigma del procesamiento de señales sociales, presenta un marco para la caracterización integral del patrón social de dicho individuo. En el procesamiento de señales sociales, el segundo paso después de grabar la escena es rastrear la apariencia de varias personas involucradas en los eventos sociales. Por lo tanto, nuestra propuesta comienza con la introducción de un seguimiento de multiples caras que posee ciertas características para hacer frente a los desafíos impuestos por las secuencias de fotos egocéntricas. El siguiente paso en el procesamiento de señales sociales es extraer las señales sociales de las personas bajo análisis. En este paso, adema´s de las señales sociales estudiadas convencionalmente, en esta tesis se propone la vestimenta como una nueva señal social para estudios posteriores dentro del procesamiento de señales sociales. Finalmente, el último paso es el análisis de señales sociales. En esta tesis, el análisis de señales sociales se define esencialmente como la comprensión de los patrones sociales de un usuario de cámara portable, mediante la revisión de fotos capturadas por la cámara llevada durante un período de tiempo. Nuestra propuesta para el análisis de señales sociales se compone de diferentes pasos. En primer lugar, detectar las interacciones sociales del usuario donde se explora el impacto de varias señales sociales en la tarea. Los eventos sociales detectados se inspeccionan en el segundo paso para la categorización en diferentes reuniones sociales. El último paso de la propuesta es caracterizar los patrones sociales del usuario. Nuestro objetivo es cuantificar la duración, la diversidad y la frecuencia de las relaciones sociales del usuario en diversas situaciones sociales. Este objetivo se logra mediante el descubrimiento de apariciones recurrentes de personas en todo el conjunto de eventos sociales relacionados con el usuario. Cada paso de nuestro método propuesto se valida sobre conjuntos de datos relevantes, y los resultados obtenidos se evalúan cuantitativa y cualitativamente. Cada etapa del modelo se compara con los trabajos relacionados más recientes. También, se presenta una sección de discusión sobre los resultados obtenidos, que se centra en resaltar las ventajas, limitaciones y diferencias de los modelos propuestos, y de estos con respecto al estado del arte.
Hernoux, Franck. "Conception et évaluation d'un système transparent de capture de mouvements des mains pour l'interaction 3D temps réel en environnements virtuels." Phd thesis, Ecole nationale supérieure d'arts et métiers - ENSAM, 2011. http://pastel.archives-ouvertes.fr/pastel-00651084.
Full textLagarde, Matthieu, Philippe Gaussier, and Pierre Andry. "Apprentissage de nouveaux comportements: vers le développement épigénétique d'un robot autonome." Phd thesis, Université de Cergy Pontoise, 2010. http://tel.archives-ouvertes.fr/tel-00749761.
Full textAganj, Ehsan. "Multi-view Reconstruction and Texturing=Reconstruction multi-vues et texturation." Phd thesis, Ecole des Ponts ParisTech, 2009. http://pastel.archives-ouvertes.fr/pastel-00517742.
Full textGuillaumin, Matthieu. "Données multimodales pour l'analyse d'image." Phd thesis, Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00522278/en/.
Full textWolf, Rémi. "Quantification de la qualité d'un geste chirurgical à partir de connaissances a priori." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00965163.
Full textBaccouche, Moez. "Apprentissage neuronal de caractéristiques spatio-temporelles pour la classification automatique de séquences vidéo." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00932662.
Full text"Learning-based descriptor for 2-D face recognition." 2010. http://library.cuhk.edu.hk/record=b5894302.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 30-34).
Abstracts in English and Chinese.
Chapter 1 --- Introduction and related work --- p.1
Chapter 2 --- Learning-based descriptor for face recognition --- p.7
Chapter 2.1 --- Overview of framework --- p.7
Chapter 2.2 --- Learning-based descriptor extraction --- p.9
Chapter 2.2.1 --- Sampling and normalization --- p.9
Chapter 2.2.2 --- Learning-based encoding and histogram rep-resentation --- p.11
Chapter 2.2.3 --- PCA dimension reduction --- p.12
Chapter 2.2.4 --- Multiple LE descriptors --- p.14
Chapter 2.3 --- Pose-adaptive matching --- p.16
Chapter 2.3.1 --- Component -level face alignment --- p.17
Chapter 2.3.2 --- Pose-adaptive matching --- p.17
Chapter 2.3.3 --- Evaluations of pose-adaptive matching --- p.19
Chapter 3 --- Experiment --- p.21
Chapter 3.1 --- Results on the LFW benchmark --- p.21
Chapter 3.2 --- Results on Multi-PIE --- p.24
Chapter 4 --- Conclusion and future work --- p.27
Chapter 4.1 --- Conclusion --- p.27
Chapter 4.2 --- Future work --- p.28
Bibliography --- p.30
"Symmetry for face analysis." 2005. http://library.cuhk.edu.hk/record=b5892640.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 51-55).
Abstracts in English and Chinese.
abstract --- p.i
acknowledgments --- p.iv
table of contents --- p.v
list of figures --- p.vii
list of tables --- p.ix
Chapter Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Reflectional Symmetry Detection --- p.1
Chapter 1.2 --- Research Progress on Face Analysis --- p.2
Chapter 1.2.1 --- Face Detection --- p.3
Chapter 1.2.2 --- Face Alignment --- p.4
Chapter 1.2.3 --- Face Recognition --- p.6
Chapter 1.3 --- Organization of this thesis --- p.8
Chapter Chapter 2 --- Local reflectional symmetry detection --- p.9
Chapter 2.1 --- Proposed Method --- p.9
Chapter 2.1.1 --- Symmetry measurement operator --- p.9
Chapter 2.1.2 --- Potential regions selection --- p.10
Chapter 2.1.3 --- Detection of symmetry axes --- p.11
Chapter 2.2 --- Experiments --- p.13
Chapter 2.2.1 --- Parameter setting and analysis --- p.13
Chapter 2.2.2 --- Experimental Results --- p.14
Chapter Chapter 3 --- Global perspective reflectional symmetry detection --- p.16
Chapter 3.1 --- Introduction of camera models --- p.16
Chapter 3.2 --- Property of Symmetric Point-Pair --- p.18
Chapter 3.3 --- analysis and Experiment --- p.20
Chapter 3.3.1 --- Confirmative Experiments --- p.20
Chapter 3.3.2 --- Face shape generation with PSI --- p.22
Chapter 3.3.3 --- Error Analysis --- p.24
Chapter 3.3.4 --- Experiments of Pose Estimation --- p.25
Chapter 3.4 --- Summary --- p.28
Chapter Chapter 4 --- Pre-processing of face analysis --- p.30
Chapter 4.1 --- Introduction of Hough Transform --- p.30
Chapter 4.2 --- Eye Detection --- p.31
Chapter 4.2.1 --- Coarse Detection --- p.32
Chapter 4.2.2 --- Refine the eyes positions --- p.34
Chapter 4.2.3 --- Experiments and Analysis --- p.35
Chapter 4.3 --- Face Components Detection with GHT --- p.37
Chapter 4.3.1 --- Parameter Analyses --- p.38
Chapter 4 3.2 --- R-table Construction --- p.38
Chapter 4.3.3 --- Detection Procedure and Voting Strategy --- p.39
Chapter 4.3.4 --- Experiments and Analysis --- p.41
Chapter Chapter 5 --- Pose estimation with face symmetry --- p.45
Chapter 5.1 --- Key points selection --- p.45
Chapter 5.2 --- Face Pose Estimation --- p.46
Chapter 5.2.1 --- Locating eye corners --- p.46
Chapter 5.2.2 --- Analysis and Summary --- p.47
Chapter Chapter 6 --- Conclusions and future work --- p.49
bibliography --- p.51
"Rotation-invariant face detection in grayscale images." 2005. http://library.cuhk.edu.hk/record=b5892397.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 73-78).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgement --- p.ii
List of Figures --- p.viii
List of Tables --- p.ix
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Previous work --- p.2
Chapter 1.1.1 --- Learning-based approaches --- p.3
Chapter 1.1.2 --- Feature-based approaches --- p.7
Chapter 1.2 --- Thesis objective --- p.12
Chapter 1.3 --- The proposed detector --- p.13
Chapter 1.4 --- Thesis outline --- p.14
Chapter 2 --- The Edge Merging Algorithm --- p.16
Chapter 2.1 --- Edge detection --- p.16
Chapter 2.2 --- Edge breaking --- p.18
Chapter 2.2.1 --- Cross detection --- p.20
Chapter 2.2.2 --- Corner detection --- p.20
Chapter 2.3 --- Curve merging --- p.23
Chapter 2.3.1 --- The search region --- p.25
Chapter 2.3.2 --- The merging cost function --- p.27
Chapter 2.4 --- Ellipse fitting --- p.30
Chapter 2.5 --- Discussion --- p.33
Chapter 3 --- The Face Verifier --- p.35
Chapter 3.1 --- The face box --- p.35
Chapter 3.1.1 --- Face box localization --- p.36
Chapter 3.1.2 --- Conditioning the face box --- p.42
Chapter 3.2 --- Eye-mouth triangle search --- p.45
Chapter 3.3 --- Face model matching --- p.48
Chapter 3.3.1 --- Face model construction --- p.48
Chapter 3.3.2 --- Confidence of detection --- p.51
Chapter 3.4 --- Dealing with overlapped detections --- p.51
Chapter 3.5 --- Discussion --- p.53
Chapter 4 --- Experiments --- p.55
Chapter 4.1 --- The test sets --- p.55
Chapter 4.2 --- Experimental results --- p.56
Chapter 4.2.1 --- The ROC curves --- p.56
Chapter 4.3 --- Discussions --- p.61
Chapter 5 --- Conclusions --- p.69
Chapter 5.1 --- Conclusions --- p.69
Chapter 5.2 --- Suggestions for future work --- p.70
List of Original Contributions --- p.72
Bibliography --- p.73
McLindin, Brett Alan. "Improving the performance of two dimensional facial recognition systems the development of a generic model for biometric technology variables in operational environments." 2005. http://arrow.unisa.edu.au:8081/1959.8/25036.
Full textthesis (PhDElectronicSystemsEngineering)--University of South Australia, 2005.
Van, der Schyff Marco. "Bandwidth efficient virtual classroom." Thesis, 2009. http://hdl.handle.net/10210/2186.
Full textVirtual classrooms and online-learning are growing in popularity, but there are still some factors limiting the potential. Limited bandwidth for audio and video, the resultant transmission quality and limited feedback during virtual classroom sessions are some of the problems that need to be addressed. This thesis presents information on the design and implementation of various components of a virtual classroom system for researching methods of student feedback with a focus on bandwidth conservation. A facial feature technique is implemented and used within the system to determine the viability of using facial feature extraction to provide and prioritise feedback from students to teacher while conserving bandwidth. This allows a teacher to estimate the comprehension level of the class and individual students based on student images. A server determines which student terminal transmits its images to the teacher using data obtained from the facial feature extraction process. Feedback is improved as teachers adapt to class circumstances using experience gained in traditional classrooms. Feedback is also less reliant on intentional student participation. New page-turner, page suggestion and class activity components are presented as possible methods for improving student feedback. In particular, the effect of virtual classroom system parameters on feedback delays and bandwidth usage is investigated. In general, delays are increased as bandwidth requirements decrease. The system shows promise for future use in research on facial feature extraction, student feedback and bandwidth conservation in virtual classrooms.
"3D object retrieval and recognition." 2010. http://library.cuhk.edu.hk/record=b5894304.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (p. 53-59).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- 3D Object Representation --- p.1
Chapter 1.1.1 --- Polygon Mesh --- p.2
Chapter 1.1.2 --- Voxel --- p.2
Chapter 1.1.3 --- Range Image --- p.3
Chapter 1.2 --- Content-Based 3D Object Retrieval --- p.3
Chapter 1.3 --- 3D Facial Expression Recognition --- p.4
Chapter 1.4 --- Contributions --- p.5
Chapter 2 --- 3D Object Retrieval --- p.6
Chapter 2.1 --- A Conceptual Framework for 3D Object Retrieval --- p.6
Chapter 2.1.1 --- Query Formulation and User Interface --- p.7
Chapter 2.1.2 --- Canonical Coordinate Normalization --- p.8
Chapter 2.1.3 --- Representations of 3D Objects --- p.10
Chapter 2.1.4 --- Performance Evaluation --- p.11
Chapter 2.2 --- Public Databases --- p.13
Chapter 2.2.1 --- Databases of Generic 3D Objects --- p.14
Chapter 2.2.2 --- A Database of Articulated Objects --- p.15
Chapter 2.2.3 --- Domain-Specific Databases --- p.15
Chapter 2.2.4 --- Data Sets for the Shrec Contest --- p.16
Chapter 2.3 --- Experimental Systems --- p.16
Chapter 2.4 --- Challenges in 3D Object Retrieval --- p.17
Chapter 3 --- Boosting 3D Object Retrieval by Object Flexibility --- p.19
Chapter 3.1 --- Related Work --- p.19
Chapter 3.2 --- Object Flexibility --- p.21
Chapter 3.2.1 --- Definition --- p.21
Chapter 3.2.2 --- Computation of the Flexibility --- p.22
Chapter 3.3 --- A Flexibility Descriptor for 3D Object Retrieval --- p.24
Chapter 3.4 --- Enhancing Existing Methods --- p.25
Chapter 3.5 --- Experiments --- p.26
Chapter 3.5.1 --- Retrieving Articulated Objects --- p.26
Chapter 3.5.2 --- Retrieving Generic Objects --- p.27
Chapter 3.5.3 --- Experiments on Larger Databases --- p.28
Chapter 3.5.4 --- Comparison of Times for Feature Extraction --- p.31
Chapter 3.6 --- Conclusions & Analysis --- p.31
Chapter 4 --- 3D Object Retrieval with Referent Objects --- p.32
Chapter 4.1 --- 3D Object Retrieval with Prior --- p.32
Chapter 4.2 --- 3D Object Retrieval with Referent Objects --- p.34
Chapter 4.2.1 --- Natural and Man-made 3D Object Classification --- p.35
Chapter 4.2.2 --- Inferring Priors Using 3D Object Classifier --- p.36
Chapter 4.2.3 --- Reducing False Positives --- p.37
Chapter 4.3 --- Conclusions and Future Work --- p.38
Chapter 5 --- 3D Facial Expression Recognition --- p.39
Chapter 5.1 --- Introduction --- p.39
Chapter 5.2 --- Separation of BFSC and ESC --- p.43
Chapter 5.2.1 --- 3D Face Alignment --- p.43
Chapter 5.2.2 --- Estimation of BFSC --- p.44
Chapter 5.3 --- Expressional Regions and an Expression Descriptor --- p.45
Chapter 5.4 --- Experiments --- p.47
Chapter 5.4.1 --- Testing the Ratio of Preserved Energy in the BFSC Estimation --- p.47
Chapter 5.4.2 --- Comparison with Related Work --- p.48
Chapter 5.5 --- Conclusions --- p.50
Chapter 6 --- Conclusions --- p.51
Bibliography --- p.53
Denys, Nele. "Multimodal verification of identity for a realistic access control application." Thesis, 2008. http://hdl.handle.net/10210/1734.
Full textThis thesis describes a real world application in the field of pattern recognition. License plate recognition and face recognition algorithms are combined to implement automated access control at the gates of RAU campus. One image of the license plate and three images of the driver’s face are enough to check if the person driving a particular car into campus is the same as the person driving this car out. The license plate recognition module is based on learning vector quantization and performs well enough to be used in a realistic environment. The face recognition module is based on the Bayes rule and while performing satisfactory, extensive research is still necessary before this system can be implemented in real life. The main reasons for failure of the system were identified as the variable lighting and insufficient landmarks for effective warping.
Barczak, Andre Luis Chautard. "Feature-based rapid object detection : from feature extraction to parallelisation : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Sciences at Massey University, Auckland, New Zealand." 2007. http://hdl.handle.net/10179/742.
Full text"Audio-guided video based face recognition." Thesis, 2006. http://library.cuhk.edu.hk/record=b6074161.
Full textIn this thesis, we develop a new video-to-video face recognition algorithm [86]. The major advantage of the video based method is that more information is available in a video sequence than in a single image. In order to take advantage of the large amount of information in the video sequence and at the same time overcome the processing speed and data size problems we develop several new techniques including temporal and spatial frame synchronization, multi-level subspace analysis, and multi-classifier integration for video sequence processing. An aligned video sequence for each person is first obtained by applying temporal and spatial synchronization, which effectively establishes the face correspondence using the information of both audio and video, then multi-level subspace analysis or multi-classifier integration is employed for further analysis based on the synchronized sequence. The method preserves all the temporal-spatial information contained in a video sequence. Near perfect classification results are obtained on the largest available XM2VTS face video database. In addition, using a similar framework, two kinds of much improved still image based face recognition algorithms [93][94] are developed by incorporating the Gabor representation, nonparametric feature extraction method, and multiple classifier integration techniques. Extensive experiments on two famous face databases (XM2VTS database and Purdue database) clearly show the superiority of our new algorithms.
by Li Zhifeng.
"March 2006."
Adviser: Xiaoou Tang.
Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6621.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2006.
Includes bibliographical references (p. 105-114).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
"A generic face processing framework: technologies, analyses and applications." 2003. http://library.cuhk.edu.hk/record=b5891585.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2003.
Includes bibliographical references (leaves 108-124).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgement --- p.iii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Background --- p.1
Chapter 1.2 --- Introduction about Face Processing Framework --- p.4
Chapter 1.2.1 --- Basic architecture --- p.4
Chapter 1.2.2 --- Face detection --- p.5
Chapter 1.2.3 --- Face tracking --- p.6
Chapter 1.2.4 --- Face recognition --- p.6
Chapter 1.3 --- The scope and contributions of the thesis --- p.7
Chapter 1.4 --- The outline of the thesis --- p.8
Chapter 2 --- Facial Feature Representation --- p.10
Chapter 2.1 --- Facial feature analysis --- p.10
Chapter 2.1.1 --- Pixel information --- p.11
Chapter 2.1.2 --- Geometry information --- p.13
Chapter 2.2 --- Extracting and coding of facial feature --- p.14
Chapter 2.2.1 --- Face recognition --- p.15
Chapter 2.2.2 --- Facial expression classification --- p.38
Chapter 2.2.3 --- Other related work --- p.44
Chapter 2.3 --- Discussion about facial feature --- p.48
Chapter 2.3.1 --- Performance evaluation for face recognition --- p.49
Chapter 2.3.2 --- Evolution of the face recognition --- p.52
Chapter 2.3.3 --- Evaluation of two state-of-the-art face recog- nition methods --- p.53
Chapter 2.4 --- Problem for current situation --- p.58
Chapter 3 --- Face Detection Algorithms and Committee Ma- chine --- p.61
Chapter 3.1 --- Introduction about face detection --- p.62
Chapter 3.2 --- Face Detection Committee Machine --- p.64
Chapter 3.2.1 --- Review of three approaches for committee machine --- p.65
Chapter 3.2.2 --- The approach of FDCM --- p.68
Chapter 3.3 --- Evaluation --- p.70
Chapter 4 --- Facial Feature Localization --- p.73
Chapter 4.1 --- Algorithm for gray-scale image: template match- ing and separability filter --- p.73
Chapter 4.1.1 --- Position of face and eye region --- p.74
Chapter 4.1.2 --- Position of irises --- p.75
Chapter 4.1.3 --- Position of lip --- p.79
Chapter 4.2 --- Algorithm for color image: eyemap and separa- bility filter --- p.81
Chapter 4.2.1 --- Position of eye candidates --- p.81
Chapter 4.2.2 --- Position of mouth candidates --- p.83
Chapter 4.2.3 --- Selection of face candidates by cost function --- p.84
Chapter 4.3 --- Evaluation --- p.85
Chapter 4.3.1 --- Algorithm for gray-scale image --- p.86
Chapter 4.3.2 --- Algorithm for color image --- p.88
Chapter 5 --- Face Processing System --- p.92
Chapter 5.1 --- System architecture and limitations --- p.92
Chapter 5.2 --- Pre-processing module --- p.93
Chapter 5.2.1 --- Ellipse color model --- p.94
Chapter 5.3 --- Face detection module --- p.96
Chapter 5.3.1 --- Choosing the classifier --- p.96
Chapter 5.3.2 --- Verifying the candidate region --- p.97
Chapter 5.4 --- Face tracking module --- p.99
Chapter 5.4.1 --- Condensation algorithm --- p.99
Chapter 5.4.2 --- Tracking the region using Hue color model --- p.101
Chapter 5.5 --- Face recognition module --- p.102
Chapter 5.5.1 --- Normalization --- p.102
Chapter 5.5.2 --- Recognition --- p.103
Chapter 5.6 --- Applications --- p.104
Chapter 6 --- Conclusion --- p.106
Bibliography --- p.107
"Automatic segmentation and registration techniques for 3D face recognition." Thesis, 2008. http://library.cuhk.edu.hk/record=b6074674.
Full textThen we propose a fully automatic registration method that can handle facial expressions with high accuracy and robustness for 3D face image alignment. In our method, the nose region, which is relatively more rigid than other facial regions in the anatomical sense, is automatically located and analyzed for computing the precise location of a symmetry plane. Extensive experiments have been conducted using the FRGC (V1.0 and V2.0) benchmark 3D face dataset to evaluate the accuracy and robustness of our registration method. Firstly, we compare its results with two other registration methods. One of these methods employs manually marked points on visualized face data and the other is based on the use of a symmetry plane analysis obtained from the whole face region. Secondly, we combine the registration method with other face recognition modules and apply them in both face identification and verification scenarios. Experimental results show that our approach performs better than the other two methods. For example, 97.55% Rank-1 identification rate and 2.25% EER score are obtained by using our method for registration and the PCA method for matching on the FRGC V1.0 dataset. All these results are the highest scores ever reported using the PCA method applied to similar datasets.
We firstly propose an automatic 3D face segmentation method. This method is based on deep understanding of 3D face image. Concepts of proportions of the facial and nose regions are acquired from anthropometrics for locating such regions. We evaluate this segmentation method on the FRGC dataset, and obtain a success rate as high as 98.87% on nose tip detection. Compared with results reported by other researchers in the literature, our method yields the highest score.
Tang, Xinmin.
Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3616.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 109-117).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
"Partial EBGM and face synthesis methods for non-frontal recognition." 2009. http://library.cuhk.edu.hk/record=b5894015.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaves 76-82).
Abstract also in Chinese.
Chapter 1. --- INTRODUCTION --- p.1
Chapter 1.1. --- Background --- p.1
Chapter 1.1.1. --- Introduction to Biometrics --- p.1
Chapter 1.1.2. --- Face Recognition in General --- p.2
Chapter 1.1.3. --- A Typical Face Recognition System Architecture --- p.4
Chapter 1.1.4. --- Face Recognition in Surveillance Cameras --- p.6
Chapter 1.1.5. --- Face recognition under Pose Variation --- p.9
Chapter 1.2. --- Motivation and Objectives --- p.11
Chapter 1.3. --- Related Works --- p.13
Chapter 1.3.1. --- Overview of Pose-invariant Face Recognition --- p.13
Chapter 1.3.2. --- Standard Face Recognition Setting --- p.14
Chapter 1.3.3. --- Multi-Probe Setting --- p.19
Chapter 1.3.4. --- Multi-Gallery Setting --- p.21
Chapter 1.3.5. --- Non-frontal Face Databases --- p.23
Chapter 1.3.6. --- Evaluation Metrics --- p.26
Chapter 1.3.7. --- Summary of Non-frontal Face Recognition Settings --- p.27
Chapter 1.4. --- Proposed Methods for Non-frontal Face Recognition --- p.28
Chapter 1.5. --- Thesis Organization --- p.30
Chapter 2. --- PARTIAL ELASTIC BUNCH GRAPH MATCHING --- p.31
Chapter 2.1. --- Introduction --- p.31
Chapter 2.2. --- EBGM for Non-frontal Face Recognition --- p.31
Chapter 2.2.1. --- Overview of Baseline EBGM Algorithm --- p.31
Chapter 2.2.2. --- Modified EBGM for Non-frontal Face Matching --- p.33
Chapter 2.3. --- Experiments --- p.35
Chapter 2.3.1. --- Experimental Setup --- p.35
Chapter 2.3.2. --- Experimental Results --- p.37
Chapter 2.4. --- Discussions --- p.40
Chapter 3. --- FACE RECOGNITION BY FRONTAL VIEW SYNTHESIS WITH CALIBRATED STEREO CAMERAS --- p.43
Chapter 3.1. --- Introduction --- p.43
Chapter 3.2. --- Proposed Method --- p.44
Chapter 3.2.1. --- Image Rectification --- p.45
Chapter 3.2.2. --- Face Detection --- p.49
Chapter 3.2.3. --- Head Pose Estimation --- p.51
Chapter 3.2.4. --- Virtual View Generation --- p.52
Chapter 3.2.5. --- Feature Localization --- p.54
Chapter 3.2.6. --- Face Morphing --- p.56
Chapter 3.3. --- Experiments --- p.58
Chapter 3.3.1. --- Data Collection --- p.58
Chapter 3.3.2. --- Synthesized Results --- p.59
Chapter 3.3.3. --- Experiment Setup --- p.60
Chapter 3.3.4. --- Experiment Results on FERET database --- p.61
Chapter 3.3.5. --- Experiment Results on CAS-PEAL-R1 database --- p.62
Chapter 3.4. --- Discussions --- p.64
Chapter 3.5. --- Summary --- p.66
Chapter 4. --- "EXPERIMENTS, RESULTS AND OBSERVATIONS" --- p.67
Chapter 4.1. --- Experiment Setup --- p.67
Chapter 4.2. --- Experiment Results --- p.69
Chapter 4.3. --- Discussions --- p.70
Chapter 5. --- CONCLUSIONS --- p.74
Chapter 6. --- BIBLIOGRAPHY --- p.76
Song, Qing. "Features and statistical classifiers for face image analysis /." 2001.
"Intensity based methodologies for facial expression recognition." 2001. http://library.cuhk.edu.hk/record=b5890656.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2001.
Includes bibliographical references (leaves 136-143).
Abstracts in English and Chinese.
LIST OF FIGURES --- p.viii
LIST OF TABLES --- p.x
Chapter 1. --- INTRODUCTION --- p.1
Chapter 2. --- PREVIOUS WORK ON FACIAL EXPRESSION RECOGNITION --- p.9
Chapter 2.1. --- Active Deformable Contour --- p.9
Chapter 2.2. --- Facial Feature Points and B-spline Curve --- p.10
Chapter 2.3. --- Optical Flow Approach --- p.11
Chapter 2.4. --- Facial Action Coding System --- p.12
Chapter 2.5. --- Neural Network --- p.13
Chapter 3. --- EIGEN-ANALYSIS BASED METHOD FOR FACIAL EXPRESSION RECOGNITION --- p.15
Chapter 3.1. --- Related Topics on Eigen-Analysis Based Method --- p.15
Chapter 3.1.1. --- Terminologies --- p.15
Chapter 3.1.2. --- Principal Component Analysis --- p.17
Chapter 3.1.3. --- Significance of Principal Component Analysis --- p.18
Chapter 3.1.4. --- Graphical Presentation of the Idea of Principal Component Analysis --- p.20
Chapter 3.2. --- EigenFace Method for Face Recognition --- p.21
Chapter 3.3. --- Eigen-Analysis Based Method for Facial Expression Recognition --- p.23
Chapter 3.3.1. --- Person-Dependent Database --- p.23
Chapter 3.3.2. --- Direct Adoption of EigenFace Method --- p.24
Chapter 3.3.3. --- Multiple Subspaces Method --- p.27
Chapter 3.4. --- Detail Description on Our Approaches --- p.29
Chapter 3.4.1. --- Database Formation --- p.29
Chapter a. --- Conversion of Image to Column Vector --- p.29
Chapter b. --- "Preprocess: Scale Regulation, Orientation Regulation and Cropping." --- p.30
Chapter c. --- Scale Regulation --- p.31
Chapter d. --- Orientation Regulation --- p.32
Chapter e. --- Cropping of images --- p.33
Chapter f. --- Calculation of Expression Subspace for Direct Adoption Method --- p.35
Chapter g. --- Calculation of Expression Subspace for Multiple Subspaces Method. --- p.38
Chapter 3.4.2. --- Recognition Process for Direct Adoption Method --- p.38
Chapter 3.4.3. --- Recognition Process for Multiple Subspaces Method --- p.39
Chapter a. --- Intensity Normalization Algorithm --- p.39
Chapter b. --- Matching --- p.44
Chapter 3.5. --- Experimental Result and Analysis --- p.45
Chapter 4. --- DEFORMABLE TEMPLATE MATCHING SCHEME FOR FACIAL EXPRESSION RECOGNITION --- p.53
Chapter 4.1. --- Background Knowledge --- p.53
Chapter 4.1.1. --- Camera Model --- p.53
Chapter a. --- Pinhole Camera Model and Perspective Projection --- p.54
Chapter b. --- Orthographic Camera Model --- p.56
Chapter c. --- Affine Camera Model --- p.57
Chapter 4.1.2. --- View Synthesis --- p.58
Chapter a. --- Technique Issue of View Synthesis --- p.59
Chapter 4.2. --- View Synthesis Technique for Facial Expression Recognition --- p.68
Chapter 4.2.1. --- From View Synthesis Technique to Template Deformation --- p.69
Chapter 4.3. --- Database Formation --- p.71
Chapter 4.3.1. --- Person-Dependent Database --- p.72
Chapter 4.3.2. --- Model Images Acquisition --- p.72
Chapter 4.3.3. --- Templates' Structure and Formation Process --- p.73
Chapter 4.3.4. --- Selection of Warping Points and Template Anchor Points --- p.77
Chapter a. --- Selection of Warping Points --- p.78
Chapter b. --- Selection of Template Anchor Points --- p.80
Chapter 4.4. --- Recognition Process --- p.81
Chapter 4.4.1. --- Solving Warping Equation --- p.83
Chapter 4.4.2. --- Template Deformation --- p.83
Chapter 4.4.3. --- Template from Input Images --- p.86
Chapter 4.4.4. --- Matching --- p.87
Chapter 4.5. --- Implementation of Automation System --- p.88
Chapter 4.5.1. --- Kalman Filter --- p.89
Chapter 4.5.2. --- Using Kalman Filter for Trakcing in Our System --- p.89
Chapter 4.5.3. --- Limitation --- p.92
Chapter 4.6. --- Experimental Result and Analysis --- p.93
Chapter 5. --- CONCLUSION AND FUTURE WORK --- p.97
APPENDIX --- p.100
Chapter I. --- Image Sample 1 --- p.100
Chapter II. --- Image Sample 2 --- p.109
Chapter III. --- Image Sample 3 --- p.119
Chapter IV. --- Image Sample 4 --- p.135
BIBLIOGRAPHY --- p.136
Lee, Chan-Su. "Modeling human motion using manifold learning and factorized generative models." 2007. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.13479.
Full text"Face authentication on mobile devices: optimization techniques and applications." 2005. http://library.cuhk.edu.hk/record=b5892581.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 106-111).
Abstracts in English and Chinese.
Chapter 1. --- Introduction --- p.1
Chapter 1.1 --- Background --- p.1
Chapter 1.1.1 --- Introduction to Biometrics --- p.1
Chapter 1.1.2 --- Face Recognition in General --- p.2
Chapter 1.1.3 --- Typical Face Recognition Systems --- p.4
Chapter 1.1.4 --- Face Database and Evaluation Protocol --- p.5
Chapter 1.1.5 --- Evaluation Metrics --- p.7
Chapter 1.1.6 --- Characteristics of Mobile Devices --- p.10
Chapter 1.2 --- Motivation and Objectives --- p.12
Chapter 1.3 --- Major Contributions --- p.13
Chapter 1.3.1 --- Optimization Framework --- p.13
Chapter 1.3.2 --- Real Time Principal Component Analysis --- p.14
Chapter 1.3.3 --- Real Time Elastic Bunch Graph Matching --- p.14
Chapter 1.4 --- Thesis Organization --- p.15
Chapter 2. --- Related Work --- p.16
Chapter 2.1 --- Face Recognition for Desktop Computers --- p.16
Chapter 2.1.1 --- Global Feature Based Systems --- p.16
Chapter 2.1.2 --- Local Feature Based Systems --- p.18
Chapter 2.1.3 --- Commercial Systems --- p.20
Chapter 2.2 --- Biometrics on Mobile Devices --- p.22
Chapter 3. --- Optimization Framework --- p.24
Chapter 3.1 --- Introduction --- p.24
Chapter 3.2 --- Levels of Optimization --- p.25
Chapter 3.2.1 --- Algorithm Level --- p.25
Chapter 3.2.2 --- Code Level --- p.26
Chapter 3.2.3 --- Instruction Level --- p.27
Chapter 3.2.4 --- Architecture Level --- p.28
Chapter 3.3 --- General Optimization Workflow --- p.29
Chapter 3.4 --- Summary --- p.31
Chapter 4. --- Real Time Principal Component Analysis --- p.32
Chapter 4.1 --- Introduction --- p.32
Chapter 4.2 --- System Overview --- p.33
Chapter 4.2.1 --- Image Preprocessing --- p.33
Chapter 4.2.2 --- PCA Subspace Training --- p.34
Chapter 4.2.3 --- PCA Subspace Projection --- p.36
Chapter 4.2.4 --- Template Matching --- p.36
Chapter 4.3 --- Optimization using Fixed-point Arithmetic --- p.37
Chapter 4.3.1 --- Profiling Analysis --- p.37
Chapter 4.3.2 --- Fixed-point Representation --- p.38
Chapter 4.3.3 --- Range Estimation --- p.39
Chapter 4.3.4 --- Code Conversion --- p.42
Chapter 4.4 --- Experiments and Discussions --- p.43
Chapter 4.4.1 --- Experiment Setup --- p.43
Chapter 4.4.2 --- Execution Time --- p.44
Chapter 4.4.3 --- Space Requirement --- p.45
Chapter 4.4.4 --- Verification Accuracy --- p.45
Chapter 5. --- Real Time Elastic Bunch Graph Matching --- p.49
Chapter 5.1 --- Introduction --- p.49
Chapter 5.2 --- System Overview --- p.50
Chapter 5.2.1 --- Image Preprocessing --- p.50
Chapter 5.2.2 --- Landmark Localization --- p.51
Chapter 5.2.3 --- Feature Extraction --- p.52
Chapter 5.2.4 --- Template Matching --- p.53
Chapter 5.3 --- Optimization Overview --- p.54
Chapter 5.3.1 --- Computation Optimization --- p.55
Chapter 5.3.2 --- Memory Optimization --- p.56
Chapter 5.4 --- Optimization Strategies --- p.58
Chapter 5.4.1 --- Fixed-point Arithmetic --- p.60
Chapter 5.4.2 --- Gabor Masks and Bunch Graphs Precomputation --- p.66
Chapter 5.4.3 --- Improving Array Access Efficiency using ID array --- p.68
Chapter 5.4.4 --- Efficient Gabor Filter Selection --- p.75
Chapter 5.4.5 --- Fine Tuning System Cache Policy --- p.79
Chapter 5.4.6 --- Reducing Redundant Memory Access by Loop Merging --- p.80
Chapter 5.4.7 --- Maximizing Cache Reuse by Array Merging --- p.90
Chapter 5.4.8 --- Optimization of Trigonometric Functions using Table Lookup. --- p.97
Chapter 5.5 --- Summary --- p.99
Chapter 6. --- Conclusions --- p.103
Chapter 7. --- Bibliography --- p.106
"An investigation into the parameters influencing neural network based facial recognition." Thesis, 2012. http://hdl.handle.net/10210/7007.
Full textThis thesis deals with an investigation into facial recognition and some variables that influence the performance of such a system. Firstly there is an investigation into the influence of image variability on the overall recognition performance of a system and secondly the performance and subsequent suitability of a neural network based system is tested. Both tests are carried out on two distinctly different databases, one more variable than the other. The results indicate that the greater the amount of variability the more negatively affected is the performance rating of a specific facial recognition system. The results further indicate the success with the implementation of a neural network system over a more conventional statistical system.