Academic literature on the topic 'Human Immunodeficiency Virus env Gene Products'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Human Immunodeficiency Virus env Gene Products.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Human Immunodeficiency Virus env Gene Products"

1

Akahata, Wataru, Zhi-yong Yang, and Gary J. Nabel. "Comparative Immunogenicity of Human Immunodeficiency Virus Particles and Corresponding Polypeptides in a DNA Vaccine." Journal of Virology 79, no. 1 (January 1, 2005): 626–31. http://dx.doi.org/10.1128/jvi.79.1.626-631.2005.

Full text
Abstract:
ABSTRACT The immunogenicity of a plasmid DNA expression vector encoding both Gag and envelope (Env), which produced human immunodeficiency virus (HIV) type 1 virus-like particles (VLP), was compared to vectors expressing Gag and Env individually, which presented the same gene products as polypeptides. Vaccination with plasmids that generated VLP showed cellular immunity comparable to that of Gag and cell-mediated or humoral responses similar to those of Env as immunization with separate vectors. These data suggest that DNA vaccines encoding separated HIV polypeptides generate immune responses similar to those generated by viral particles.
APA, Harvard, Vancouver, ISO, and other styles
2

Kong, Wing-Pui, Yue Huang, Zhi-Yong Yang, Bimal K. Chakrabarti, Zoe Moodie, and Gary J. Nabel. "Immunogenicity of Multiple Gene and Clade Human Immunodeficiency Virus Type 1 DNA Vaccines." Journal of Virology 77, no. 23 (December 1, 2003): 12764–72. http://dx.doi.org/10.1128/jvi.77.23.12764-12772.2003.

Full text
Abstract:
ABSTRACT The ability to elicit an immune response to a spectrum of human immunodeficiency virus type 1 (HIV-1) gene products from divergent strains is a desirable feature of an AIDS vaccine. In this study, we examined combinations of plasmids expressing multiple HIV-1 genes from different clades for their ability to elicit humoral and cellular immune responses in mice. Immunization with a modified Env, gp145ΔCFI, in combination with a Gag-Pol-Nef fusion protein plasmid elicited similar CD4+ and CD8+ cellular responses to immunization with either vector alone. Further, when mice were immunized with a mixture of Env from three clades, A, B, and C, together with Gag-Pol-Nef, the overall potency and balance of CD4+- and CD8+-T-cell responses to all viral antigens were similar, with only minor differences noted. In addition, plasmid mixtures elicited antibody responses comparable to those from individual inoculations. These findings suggest that a multigene and multiclade vaccine, including components from A, B, and C Env and Gag-Pol-Nef, can broaden antiviral immune responses without immune interference. Such combinations of immunogens may help to address concerns about viral genetic diversity for a prospective HIV-1 vaccine.
APA, Harvard, Vancouver, ISO, and other styles
3

Kong, Wei, Chunjuan Tian, Bindong Liu, and Xiao-Fang Yu. "Stable Expression of Primary Human Immunodeficiency Virus Type 1 Structural Gene Products by Use of a Noncytopathic Sindbis Virus Vector." Journal of Virology 76, no. 22 (November 15, 2002): 11434–39. http://dx.doi.org/10.1128/jvi.76.22.11434-11439.2002.

Full text
Abstract:
ABSTRACT Efficient expression of the human immunodeficiency virus type 1 (HIV-1) structural gene products Gag, Pol, and Env involves the regulation by viral Rev and Rev-responsive elements (RRE). Removal of multiple inhibitory sequences (INS) in the coding regions of these structural genes or modification of the codon usage patterns of HIV-1 genes to those used by highly expressed human genes has been found to significantly increase HIV-1 structural protein expression in the absence of Rev and RRE. In this study, we show that efficient and stable expression of the HIV-1 structural gene products Gag and Env could be achieved by transfection with a noncytopathic Sindbis virus expression vector by using HIV-1 sequences from primary isolates without any sequence modification. Stable expression of these Gag and Env proteins was observed for more than 12 months. The fact that the Sindbis virus expression vector replicates its RNA only in the cytoplasm of the transfected cells and the fact that the lack of expression of HIV-1 Gag by the DNA vector containing unmodified HIV-1 gag sequences was associated with a lack of detectable cytoplasmic gag RNA suggest that a major blockage in the expression of HIV-1 structural proteins in the absence of Rev/RRE is caused by inefficient accumulation of mRNA in the cytoplasm. Efficient long-term expression of structural proteins of diverse HIV-1 strains by the noncytopathic Sindbis virus expression system may be a useful tool for functional study of HIV-1 gene products and vaccine research.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Steve S. L., Sheau-Fen Lee, Huey-Jong Hao, and Chin-Kai Chuang. "Mutations in the Leucine Zipper-Like Heptad Repeat Sequence of Human Immunodeficiency Virus Type 1 gp41 Dominantly Interfere with Wild-Type Virus Infectivity." Journal of Virology 72, no. 6 (June 1, 1998): 4765–74. http://dx.doi.org/10.1128/jvi.72.6.4765-4774.1998.

Full text
Abstract:
ABSTRACT It has been previously shown that a proline substitution for any of the conserved leucine or isoleucine residues located in the leucine zipper-like heptad repeat sequence of human immunodeficiency virus type 1 (HIV-1) gp41 renders viruses noninfectious and envelope (Env) protein unable to mediate membrane fusion (S. S.-L. Chen, C.-N. Lee, W.-R. Lee, K. McIntosh, and T.-M. Lee, J. Virol. 67:3615–3619, 1993; S. S.-L. Chen, J. Virol. 68:2002–2010, 1994). To understand whether these variants could act as trans-dominant inhibitory mutants, the ability of these mutants to inhibit wild-type (wt) virus infectivity was examined. Comparable amounts of cell- and virion-associated gag gene products as well as virion-associated gp41 were found in transfection with wt or mutant HIV-1 provirus. Viruses obtained from coexpression of wt provirus with mutant 566 or 580 provirus inhibited more potently the production of infectious virus than did viruses generated from cotransfection of wt provirus with other mutant proviruses. Nevertheless, all viruses produced from mixed transfection showed decreased infectivity compared with that of the wt virus when a multinuclear-activation β-galactosidase induction assay was performed. The ability of wt Env to induce cytopathic effects was inhibited by coexpression with mutant Env. Coexpression of mutants inhibited the ability of the wt protein to mediate virus-to-cell transmission, as demonstrated by an env trans-complementation assay with a defective HIV-1 proviral vector. These observations indicated that mutant Env, per se, interferes with wt Env function. Moreover, cotransfection of wt and mutant proviruses produced amounts of cell- and virion-associatedgag gene products comparable to those produced by transfection of wt provirus. Similar amounts of gp41 were also found in virions generated from wt-mutant cotransfection as well as from wt transfection alone. These results indicated that the inhibitory effect conferred by mutants on the wt virus infectivity does not involve the late steps of Gag protein assembly and budding, but they suggest that the wt and mutant Env proteins form a dysfunctional hetero-oligomer which is impaired in an early step of the virus replication cycle. Our study demonstrates that mutations in the HIV-1 gp41 leucine zipper-like heptad repeat sequence dominantly inhibit infectious virus production.
APA, Harvard, Vancouver, ISO, and other styles
5

Moore, Anne C., Wing-pui Kong, Bimal K. Chakrabarti, and Gary J. Nabel. "Effects of Antigen and Genetic Adjuvants on Immune Responses to Human Immunodeficiency Virus DNA Vaccines in Mice." Journal of Virology 76, no. 1 (January 1, 2002): 243–50. http://dx.doi.org/10.1128/jvi.76.1.243-250.2002.

Full text
Abstract:
ABSTRACT The effects of genetic adjuvants on humoral and cell-mediated immunity to two human immunodeficiency virus antigens, Env and Nef, have been examined in mice. Despite similar levels of gene expression and the same gene delivery vector, the immune responses to these two gene products differed following DNA immunization. Intramuscular immunization with a Nef expression vector plasmid generated a humoral response and antigen-specific gamma interferon (IFN-γ) production but little cytotoxic-T-lymphocyte (CTL) immunity. In contrast, immunization with an Env vector stimulated CTL activity but did not induce a high-titer antibody response. The ability to modify these antigen-specific immune responses was investigated by coinjection of DNA plasmids encoding cytokine and/or hematopoietic growth factors, interleukin-2 (IL-2), IL-12, IL-15, Flt3 ligand (FL), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Coadministration of these genes largely altered the immune responses quantitatively but not qualitatively. IL-12 induced the greatest increase in IFN-γ and immunoglobulin G responses to Nef, and GM-CSF induced the strongest IFN-γ and CTL responses to Env. A dual approach of expanding innate immunity by administering the FL gene, together with a cytokine that enhances adaptive immune responses, IL-2, IL-12, or IL-15, generated the most potent immune response at the lowest doses of Nef antigen. These findings suggest that intrinsic properties of the antigen determine the character of immune reactivity for this method of immunization and that specific combination of innate and adaptive immune cytokine genes can increase the magnitude of the response to DNA vaccines.
APA, Harvard, Vancouver, ISO, and other styles
6

zur Megede, Jan, Min-Chao Chen, Barbara Doe, Mary Schaefer, Catherine E. Greer, Mark Selby, Gillis R. Otten, and Susan W. Barnett. "Increased Expression and Immunogenicity of Sequence-Modified Human Immunodeficiency Virus Type 1 gag Gene." Journal of Virology 74, no. 6 (March 15, 2000): 2628–35. http://dx.doi.org/10.1128/jvi.74.6.2628-2635.2000.

Full text
Abstract:
ABSTRACT A major challenge for the next generation of human immunodeficiency virus (HIV) vaccines is the induction of potent, broad, and durable cellular immune responses. The structural protein Gag is highly conserved among the HIV type 1 (HIV-1) gene products and is believed to be an important target for the host cell-mediated immune control of the virus during natural infection. Expression of Gag proteins for vaccines has been hampered by the fact that its expression is dependent on the HIV Rev protein and the Rev-responsive element, the latter located on the env transcript. Moreover, the HIV genome employs suboptimal codon usage, which further contributes to the low expression efficiency of viral proteins. In order to achieve high-level Rev-independent expression of the Gag protein, the sequences encoding HIV-1SF2 p55Gag were modified extensively. First, the viral codons were changed to conform to the codon usage of highly expressed human genes, and second, the residual inhibitory sequences were removed. The resulting modified gag gene showed increases in p55Gag protein expression to levels that ranged from 322- to 966-fold greater than that for the native gene after transient expression of 293 cells. Additional constructs that contained the modified gag in combination with modifiedprotease coding sequences were made, and these showed high-level Rev-independent expression of p55Gag and its cleavage products. Density gradient analysis and electron microscopy further demonstrated that the modified gag andgagprotease genes efficiently expressed particles with the density and morphology expected for HIV virus-like particles. Mice immunized with DNA plasmids containing the modified gagshowed Gag-specific antibody and CD8+ cytotoxic T-lymphocyte (CTL) responses that were inducible at doses of input DNA 100-fold lower than those associated with plasmids containing the native gag gene. Most importantly, four of four rhesus monkeys that received two or three immunizations with modifiedgag plasmid DNA demonstrated substantial Gag-specific CTL responses. These results highlight the useful application of modifiedgag expression cassettes for increasing the potency of DNA and other gene delivery vaccine approaches against HIV.
APA, Harvard, Vancouver, ISO, and other styles
7

Kong, Wing-Pui, Lan Wu, Timothy C. Wallstrom, Will Fischer, Zhi-Yong Yang, Sung-Youl Ko, Norman L. Letvin, et al. "Expanded Breadth of the T-Cell Response to Mosaic Human Immunodeficiency Virus Type 1 Envelope DNA Vaccination." Journal of Virology 83, no. 5 (December 24, 2008): 2201–15. http://dx.doi.org/10.1128/jvi.02256-08.

Full text
Abstract:
ABSTRACT An effective AIDS vaccine must control highly diverse circulating strains of human immunodeficiency virus type 1 (HIV-1). Among HIV-1 gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV-1 Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential T-cell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. One-, two-, and three-mosaic sets that increased theoretical epitope coverage were developed. The breadth and magnitude of T-cell immunity stimulated by these vaccines were compared to those for natural strain Envs; additional comparisons were performed on mutant Envs, including gp160 or gp145 with or without V regions and gp41 deletions. Among them, the two- or three-mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the three-mosaic set elicited responses to an average of eight peptide pools, compared to two pools for a set of three natural Envs. Synthetic mosaic HIV-1 antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T-cell-based HIV-1 vaccines.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Chun-Nan, Wei-Kung Wang, Wen-Sheng Fan, Shing-Jer Twu, Shou-Chien Chen, Ming-Ching Sheng, and Mao-Yuan Chen. "Determination of Human Immunodeficiency Virus Type 1 Subtypes in Taiwan by vpu Gene Analysis." Journal of Clinical Microbiology 38, no. 7 (2000): 2468–74. http://dx.doi.org/10.1128/jcm.38.7.2468-2474.2000.

Full text
Abstract:
The genetic diversity of human immunodeficiency virus (HIV) type 1 (HIV-1) has been characterized mainly by analysis of theenv and gag genes. Information on thevpu genes in the HIV sequence database is very limited. In the present study, the nucleotide sequences of the vpugenes were analyzed, and the genetic subtypes determined by analysis of the vpu gene were compared with those previously determined by analysis of the gag and env genes. Thevpu genes were amplified by nested PCR of proviral DNA extracted from 363 HIV-1-infected individuals and were sequenced directly by use of the PCR products. HIV-1 subtypes were determined by sequence alignment and phylogenetic analysis with reference strains. The strains in all except one of the samples analyzed could be classified as subtype A, B, C, E, or G. The vpu subtype of one strain could not be determined. Of the strains analyzed, genetic subtypes of 247 (68.0%) were also determined by analysis of theenv or gag gene. The genetic subtypes determined by vpu gene analysis were, in general, consistent with those determined by gag and/orenv gene analysis except for those for two AG recombinant strains. All the strains that clustered with a Thailand subtype E strain in the vpu phylogenetic analyses were subtype E byenv gene analysis and subtype A by gag gene analysis. In summary, our genetic typing revealed that subtype B strains, which constituted 73.8% of all strains analyzed, were most prevalent in Taiwan. While subtype E strains constituted about one-quarter of the viruses, they were prevalent at a higher proportion in the group infected by heterosexual transmission. Genetic analysis ofvpu may provide an alternate method for determination of HIV-1 subtypes for most of the strains, excluding those in which intersubtype recombination has occurred.
APA, Harvard, Vancouver, ISO, and other styles
9

Thomas, JA, F. Cotter, AM Hanby, LQ Long, PR Morgan, B. Bramble, and BM Bailey. "Epstein-Barr virus-related oral T-cell lymphoma associated with human immunodeficiency virus immunosuppression." Blood 81, no. 12 (June 15, 1993): 3350–56. http://dx.doi.org/10.1182/blood.v81.12.3350.3350.

Full text
Abstract:
Abstract Epstein-Barr virus (EBV) is generally held to infect B cells and epithelial cells, although there are now reports of EBV infection in normal T cells and neoplastic T-cell diseases. In patients with human immunodeficiency virus (HIV) infection, EBV is associated with the benign epithelial lesion, hairy leukoplakia, and has been reported in up to 80% of acquired immunodeficiency syndrome (AIDS)-related B-cell lymphoma. This study shows the presence of EBV in malignant oral T-cell lymphoma in three AIDS patients, two of whom had concurrent manifestation of hairy leukoplakia. The T-cell lineage of the tumor cells was determined by positive immunophenotyping for T-cell markers and lack of B-cell or nonhematopoietic (cytokeratin) determinants. All tumors contained monoclonal T-cell populations shown by polymerase chain reaction, which showed amplification of T-cell receptor gamma chain DNA without evidence of Ig heavy chain gene rearrangement. Furthermore, these lesions showed the presence of EBV DNA and expression of EBV latent gene products in the tumor cells. EBV involvement in AIDS-related T-cell lymphoma has not been widely reported and may represent a further manifestation of opportunistic EBV infection arising in the HIV-immunocompromised host.
APA, Harvard, Vancouver, ISO, and other styles
10

Thomas, JA, F. Cotter, AM Hanby, LQ Long, PR Morgan, B. Bramble, and BM Bailey. "Epstein-Barr virus-related oral T-cell lymphoma associated with human immunodeficiency virus immunosuppression." Blood 81, no. 12 (June 15, 1993): 3350–56. http://dx.doi.org/10.1182/blood.v81.12.3350.bloodjournal81123350.

Full text
Abstract:
Epstein-Barr virus (EBV) is generally held to infect B cells and epithelial cells, although there are now reports of EBV infection in normal T cells and neoplastic T-cell diseases. In patients with human immunodeficiency virus (HIV) infection, EBV is associated with the benign epithelial lesion, hairy leukoplakia, and has been reported in up to 80% of acquired immunodeficiency syndrome (AIDS)-related B-cell lymphoma. This study shows the presence of EBV in malignant oral T-cell lymphoma in three AIDS patients, two of whom had concurrent manifestation of hairy leukoplakia. The T-cell lineage of the tumor cells was determined by positive immunophenotyping for T-cell markers and lack of B-cell or nonhematopoietic (cytokeratin) determinants. All tumors contained monoclonal T-cell populations shown by polymerase chain reaction, which showed amplification of T-cell receptor gamma chain DNA without evidence of Ig heavy chain gene rearrangement. Furthermore, these lesions showed the presence of EBV DNA and expression of EBV latent gene products in the tumor cells. EBV involvement in AIDS-related T-cell lymphoma has not been widely reported and may represent a further manifestation of opportunistic EBV infection arising in the HIV-immunocompromised host.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Human Immunodeficiency Virus env Gene Products"

1

Blay, Wendy Marie. "Human immunodeficiency virus type I (HIV-1) envelope evolution and the relationship to neutralizing antibodies /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chohan, Bhavna H. "Characteristics of human immunodeficiency virus type-1 envelope at infection and reinfection in a cohort of Kenyan women /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brese, Robin L. "Tissue Compartmentalization and Tropism of HIV-1: A Dissertation." eScholarship@UMMS, 2008. http://escholarship.umassmed.edu/gsbs_diss/859.

Full text
Abstract:
Despite the development of effective antiretroviral treatments, there is still no cure for HIV-1. Major barriers to HIV-1 eradication include the diversity of intrapatient viral quasispecies and the establishment of reservoirs in tissue sanctuary sites. A better understanding of these populations is required for targeted treatments. While previous studies have examined the relationship between brain and blood or immune tissues, few have looked at and compared the properties of viruses from other tissue compartments. In this study, 75 full length HIV-1 envelopes were isolated from the frontal lobe, occipital lobe, parietal lobe, colon, lung, and lymph node of an HIV-1 infected subject. No envelopes could be amplified from the plasma or serum. Envelopes were subjected to genotypic and phenotypic characterization. Of the 75 envelopes, 53 were able to infect HeLa TZM-bl cells. The greatest proportion of non-functional envelopes was from the lung, a result of APOBEC-induced hypermutation. Lower frequencies of hypermutation were also observed in the occipital lobe and colon. Envelopes from regions of the brain were almost all macrophage tropic, while those from the body were predominantly non-macrophage tropic. All envelopes used CCR5 as a coreceptor. Phylogenetic analyses showed that sequences were compartmentalized inside the brain. These findings were also observed using PacBio next generation sequencing to examine 32,152 full length sequences. Envelopes from tissues of the body displayed greater variation in sequence length, charge, and number of potential N-linked glycosylation sites in comparison to envelopes from tissues of the brain. Increased variation was also observed in IC50s for inhibition and neutralization assays using sCD4, maraviroc, b12, PG16, 17b, and 447-52D. The increased variation observed in envelopes from tissues outside the brain suggests that different pressures may be influencing the evolution of these viruses and emphasizes the importance of further studies in these tissue sites.
APA, Harvard, Vancouver, ISO, and other styles
4

Brese, Robin L. "Tissue Compartmentalization and Tropism of HIV-1: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/859.

Full text
Abstract:
Despite the development of effective antiretroviral treatments, there is still no cure for HIV-1. Major barriers to HIV-1 eradication include the diversity of intrapatient viral quasispecies and the establishment of reservoirs in tissue sanctuary sites. A better understanding of these populations is required for targeted treatments. While previous studies have examined the relationship between brain and blood or immune tissues, few have looked at and compared the properties of viruses from other tissue compartments. In this study, 75 full length HIV-1 envelopes were isolated from the frontal lobe, occipital lobe, parietal lobe, colon, lung, and lymph node of an HIV-1 infected subject. No envelopes could be amplified from the plasma or serum. Envelopes were subjected to genotypic and phenotypic characterization. Of the 75 envelopes, 53 were able to infect HeLa TZM-bl cells. The greatest proportion of non-functional envelopes was from the lung, a result of APOBEC-induced hypermutation. Lower frequencies of hypermutation were also observed in the occipital lobe and colon. Envelopes from regions of the brain were almost all macrophage tropic, while those from the body were predominantly non-macrophage tropic. All envelopes used CCR5 as a coreceptor. Phylogenetic analyses showed that sequences were compartmentalized inside the brain. These findings were also observed using PacBio next generation sequencing to examine 32,152 full length sequences. Envelopes from tissues of the body displayed greater variation in sequence length, charge, and number of potential N-linked glycosylation sites in comparison to envelopes from tissues of the brain. Increased variation was also observed in IC50s for inhibition and neutralization assays using sCD4, maraviroc, b12, PG16, 17b, and 447-52D. The increased variation observed in envelopes from tissues outside the brain suggests that different pressures may be influencing the evolution of these viruses and emphasizes the importance of further studies in these tissue sites.
APA, Harvard, Vancouver, ISO, and other styles
5

Costa, Matthew R. "FC Receptor-Mediated Activities of Env-Specific Monoclonal Antibodies Generated from Human Volunteers Receiving a DNA Prime-Protein Boost HIV Vaccine: A Dissertation." eScholarship@UMMS, 2010. http://escholarship.umassmed.edu/gsbs_diss/866.

Full text
Abstract:
Human immunodeficiency type 1 (HIV-1) is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years’ infection and as a result, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that a moderate protection is possible, which may correlate with antibody dependent cellular cytotoxicity (ADCC) activity. Previous studies in the Lu lab demonstrated that in an HIV-1 vaccine phase I trial, DP6-001, a polyvalent Env DNA prime-protein boost formulation, could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities along with multiple Fc mediated effector functions. I developed a protocol for the production and analysis of HIV-1 Env-specific human monoclonal antibodies (mAbs) isolated from these DP6-001 vaccinees. By utilizing a labeled gp120 bait to isolate Env specific B cells, paired heavy and light chain immunoglobulin (Ig) genes were cloned and allowed for the production of monoclonal antibodies with specificity for gp120. By using this protocol, 13 isolated mAbs from four DP6-001 vaccinees showed broad binding activities to gp120 proteins of diverse subtypes, both autologous and heterologous to vaccine immunogens, with mostly conformational epitopes and a few V3 and C5 specific mAbs. Equally cross-reactive Fc-mediated functional activities, including ADCC and antibody dependent cellular phagocytosis (ADCP), were present with both immune sera and isolated mAbs, confirming the induction of non-neutralizing functional antibodies by the DNA prime- protein boost vaccination. Elicitation of broadly reactive mAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV-1 vaccine design.
APA, Harvard, Vancouver, ISO, and other styles
6

Costa, Matthew R. "FC Receptor-Mediated Activities of Env-Specific Monoclonal Antibodies Generated from Human Volunteers Receiving a DNA Prime-Protein Boost HIV Vaccine: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/866.

Full text
Abstract:
Human immunodeficiency type 1 (HIV-1) is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years’ infection and as a result, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that a moderate protection is possible, which may correlate with antibody dependent cellular cytotoxicity (ADCC) activity. Previous studies in the Lu lab demonstrated that in an HIV-1 vaccine phase I trial, DP6-001, a polyvalent Env DNA prime-protein boost formulation, could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities along with multiple Fc mediated effector functions. I developed a protocol for the production and analysis of HIV-1 Env-specific human monoclonal antibodies (mAbs) isolated from these DP6-001 vaccinees. By utilizing a labeled gp120 bait to isolate Env specific B cells, paired heavy and light chain immunoglobulin (Ig) genes were cloned and allowed for the production of monoclonal antibodies with specificity for gp120. By using this protocol, 13 isolated mAbs from four DP6-001 vaccinees showed broad binding activities to gp120 proteins of diverse subtypes, both autologous and heterologous to vaccine immunogens, with mostly conformational epitopes and a few V3 and C5 specific mAbs. Equally cross-reactive Fc-mediated functional activities, including ADCC and antibody dependent cellular phagocytosis (ADCP), were present with both immune sera and isolated mAbs, confirming the induction of non-neutralizing functional antibodies by the DNA prime- protein boost vaccination. Elicitation of broadly reactive mAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV-1 vaccine design.
APA, Harvard, Vancouver, ISO, and other styles
7

Musich, Thomas A. "HIV-1 R5 Tropism: Determinants, Macrophages, and Dendritic Cells: A Dissertation." eScholarship@UMMS, 2012. https://escholarship.umassmed.edu/gsbs_diss/599.

Full text
Abstract:
Around thirty years ago HIV-1 was identified, and from that point the known epidemic has grown to over 30 million infected individuals. Early on in the course of HIV-1 research, viruses were classified as either syncytia inducing, CXCR4-using, T-cell tropic or non-syncytia inducing, CCR5-using, macrophage tropic. Since that time, several groups have shown that this is an oversimplification. There is a great deal of diversity amongst CCR5-using HIV-1 variants. There remains a great deal to be discovered regarding HIV-1 CCR5-tropism and how this affects other aspects of HIV-1 infection. The CD4 binding site (CD4bs) on the HIV-1 envelope plays a major role in determining the capacity of R5 viruses to infect primary macrophages. Thus, envelope determinants within or proximal to the CD4bs have been shown to control the use of low CD4 levels on macrophages for infection. These residues affect the affinity for CD4 either directly or indirectly by altering the exposure of CD4 contact residues. In this thesis, a single amino acid determinant is described in the V1 loop that also modulates macrophage tropism. I identified an E153G substitution that conferred high levels of macrophage infectivity for several heterologous R5 envelopes, while the reciprocal G153E substitution abrogated infection. Shifts in macrophage tropism were associated with dramatic shifts in sensitivity to the V3 loop monoclonal antibody (MAb), 447-52D and soluble CD4, as well as more modest changes in sensitivity to the CD4bs MAb, b12. These observations are consistent with an altered conformation or exposure of the V3 loop that enables the envelope to use low CD4 levels for infection. The modest shifts in b12 sensitivity suggest that residue 153 impacts on the exposure of the CD4bs. However, the more intense shifts in sCD4 sensitivity suggest additional mechanisms that likely include an increased ability of the envelope to undergo conformational changes following binding to suboptimal levels of cell surface CD4. In summary, a conserved determinant in the V1 loop modulates the V3 loop to prime low CD4 use and macrophage infection. In addition to determinants, this thesis seeks to evaluate the roles of macrophage tropic and non-macrophage tropic envelopes during the course of infection. Non-macrophage tropic virus predominates in immune tissue throughout infection, even in individuals suffering from HIV-associated dementia (HAD) who are known to carry many macrophage tropic viruses. There must be some advantage for these non-macrophage tropic viruses allowing them to persist in immune tissue throughout the disease. This thesis demonstrates that there is no advantage for these viruses to directly infect CD4+ T-cells, nor is there an advantage for them to be preferentially transmitted by dendritic cells to CD4+ T-cells. Given that transmitted/founder (T/F) viruses may preferentially interact with α4β7, and T/F viruses are non-macrophage tropic, I tested whether non-mac viruses could utilize α4β7 to their advantage. These experiments show that macrophage tropism does not play a role in gp120 interactions with α4β7. I evaluated whether there was a distinct disadvantage to macrophage tropic Envs, given their ability to infect dendritic cells and possibly stimulate the innate immune response. Using infected monocyte-derived dendritic cells (MDDCs), it was shown that mac-tropic Envs do not generate a significant immune response. These experiments demonstrate that there does not appear to be any advantage to non-macrophage tropic Envs, and that macrophage tropic Envs are able to infect CD4+ T-cells more efficiently, as well as DCs.
APA, Harvard, Vancouver, ISO, and other styles
8

Vaine, Michael. "Antibody Responses Elicited by DNA Prime-Protein Boost HIV Vaccines: A Dissertation." eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/462.

Full text
Abstract:
The best known correlate of protection provided by vaccines is the presence of pathogen specific antibodies after immunization. However, against the Human Immunodeficiency Virus-1 (HIV-1) the mere presence of antibodies specific for the viral Envelope (Env) protein is not sufficient to provide protection. This necessitates in depth study of the humoral responses elicited during infection and by vaccination. While a significant amount of effort has been invested in studying the evolution of antibody responses to viral infection, only limited progress in understanding antibody responses elicited through vaccination has been made. In the studies described here, I attempt to rectify this deficiency by investigating how the quality of a humoral response is altered with the use of different immunization regimens, in particular a DNA prime-protein boost regimen, or with the use of different model HIV-1 Env gp120 immunogens. In a New Zealand White (NZW) rabbit model, we demonstrate that the broader neutralizing activity elicited with the DNA prime-protein boost regimen may be the result of the elicitation of a higher avidity antibody response and a unique profile of antibody specificities. Specifically, use of a DNA prime-protein boost regimen elicits antibodies targeted to the CD4 binding domain of the HIV-1 Env, a specificity that was not frequently observed when only protein based immunizations were administered. We extended this analysis to sera from healthy human volunteers who participated in early phase HIV vaccine trials utilizing either a protein alone immunization regimen, a canarypox prime-protein boost immunization regimen, or a DNA prime-protein boost immunization regimen. Evaluation of sera from these trials demonstrated that the use of a DNA prime-protein boost regimen results in an antibody response with greater neutralization breadth characterized by an increased frequency and titer of antibodies targeted toward the CD4 binding site (CD4bs). In addition to this, the antibody response elicited by the DNA prime-protein boost regimen also exhibited the capability to mediate antibody dependent cell-mediated cytotoxicity (ADCC) activity as well as activation of the complement system. Additionally, in an attempt to better understand the capabilities of antibodies elicited by a DNA prime-protein boost regimen, we generated gp120 specific monoclonal antibodies (mAbs) from a single DNA primed-protein boosted NZW rabbit. Analysis of mAbs produced from this animal revealed that use of this immunization regimen elicits an antibody repertoire with diverse epitope specificity and cross reactivity. Furthermore, these select mAbs are capable of neutralizing heterologous HIV isolates. Further application of mAb generation in rabbits may provide a valuable tool to study immunogenicity of different vaccines and immunization regimens. Concurrently, while demonstrating that a DNA prime-protein boost regimen elicits a higher quality antibody response than that observed with other leading techniques, we also demonstrated that immunogen selection can play a vital role in the quality of the resulting antibody response. By immunizing with two closely related but phenotypically distinct model gp120 immunogens, known as B33 and LN40, we demonstrated that disparate gp120s have different intrinsic abilities to raise a heterologous neutralizing antibody response. Additionally, we showed that residues found within and flanking the b12 and CD4 binding sites play critical roles in modulating neutralizing activity of sera from animals immunized with LN40 gp120, indicating that the broader neutralizing activity seen with this immunogen may be due to differential elicitation of antibodies to this domain.
APA, Harvard, Vancouver, ISO, and other styles
9

Baldwin, David Norris. "The mechanisms of Pol expression and assembly for human foamy virus /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/11509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sercovich, Mark J. "Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr)-mediated cell cycle arrest : an analysis of current mechanistic models /." Download the thesis in PDF, 2006. http://www.lrc.usuhs.mil/dissertations/pdf/sercovich2006.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Human Immunodeficiency Virus env Gene Products"

1

Grant, Warren, and Martin Scott-Brown. Principles of oncogenesis. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0322.

Full text
Abstract:
It is obvious that the process of developing cancer—oncogenesis—is a multistep process. We know that smoking, obesity, and a family history are strong independent predictors of developing malignancy; yet, in clinics, we often see that some heavy smokers live into their nineties and that some people with close relatives affected by cancer spend many years worrying about a disease that, in the end, they never contract. For many centuries scientists have struggled to understand the process that make cancer cells different from normal cells. There were those in ancient times who believed that tumours were attributable to acts of the gods. Hippocrates suggested that cancer resulted from an imbalance between the black humour that came from the spleen, and the other three humours: blood, phlegm, and bile. It is only in the last 100 years that biologists have been able to characterize some of the pathways that lead to the uncontrolled replication seen in cancer, and subsequently examine exactly how these pathways evolve. The rampant nature by which cancer invades local and distant tissues, as well its apparent ability to spread between related individuals led some, such as Peyton Rous in 1910, to suggest that cancer was an infectious condition. He was awarded a Nobel Prize in 1966 for the 50 years of work into investigating a link between sarcoma in chickens and a retrovirus that became known as Rous sarcoma virus. He had shown how retroviruses are able to integrate sequences of DNA coding for errors in cellular replication control (oncogenes) by introducing into the human cell viral RNA together with a reverse transcriptase. Viruses are now implicated in many cancers, and in countries where viruses such as HIV and EBV are endemic, the high incidence of malignancies such as Kaposi’s sarcoma and Burkitt’s lymphoma is likely to be directly related. There are several families of viruses associated with cancer, broadly classed into DNA viruses, which mutate human genes using their own DNA, and retroviruses, like Rous sarcoma virus, which insert viral RNA into the cell, where it is then transcribed into genes. This link with viruses has not only led to an understanding that cancer originates from genetic mutations, but has also become a key focus in the design of new anticancer therapies. Traditional chemotherapies either alter DNA structure (as with cisplatin) or inhibit production of its component parts (as with 5-fluorouracil.) These broad-spectrum agents have many and varied side effects, largely due to their non-specific activity on replicating DNA throughout the body, not just in tumour cells. New vaccine therapies utilizing gene-coding viruses aim to restore deficient biological pathways or inhibit mutated ones specific to tumour cells. The hope is that these gene therapies will be effective and easily tolerated by patients, but development is currently progressing with caution. In a trial in France of ten children suffering from X-linked severe combined immunodeficiency and who were injected with a vector that coded for the gene product they lacked, two of the children subsequently died from leukaemia. Further analysis confirmed that the DNA from the viral vector had become integrated into an existing, but normally inactive, proto-oncogene, LM02, triggering its conversion into an active oncogene, and the development of life-threatening malignancy. To understand how a tiny change in genetic structure could lead to such tragic consequences, we need to understand the molecular biology of the cell and, in particular, to pay attention to the pathways of growth regulation that are necessary in all mammalian cell populations. Errors in six key regulatory pathways are known as the ‘hallmarks of cancer’ and will be discussed in the rest of this chapter.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Human Immunodeficiency Virus env Gene Products"

1

Mohammed Ali Jassim, Marwa, Majid Mohammed Mahmood, and Murtada Hafedh Hussein. "Human Herpetic Viruses and Immune Profiles." In Innate Immunity in Health and Disease. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96340.

Full text
Abstract:
Herpesviruses are large, spherical, enveloped viral particles with linear double-stranded DNA genome. Herpesvirus virion consists of an icosahedral capsid containing viral DNA, surrounded by a protein layer called tegument, and enclosed by an envelope consisting of a lipid bilayer with various glycoproteins. Herpesviruses persist lifelong in their hosts after primary infection by establishing a latent infection interrupted recurrently by reactivations. The Herpesviridae family is divided into three subfamilies; α-herpesviruses, β-herpesviruses, and γ-herpesviruses based on the genome organization, sequence homology, and biological properties. There are eight human herpes viruses: Herpes simplex virus type 1 and 2 (HSV-1, −2) andVaricella-zoster virus (VZV), which belong to the α-herpesvirus subfamily; Human cytomegalovirus (HCMV), and Human herpesvirus type 6 and 7 (HHV-6,HHV-7), which belong to the β-herpesvirus subfamily; and Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) or Human herpesvirus 8 (HHV-8), which belong to the γ-herpesvirus subfamily. Within this chapter, we summarize the current knowledge about EBV and CMV, regarding their genome organization, structural characteristics, mehanisms of latency, types of infections, mechanisms of immune escape and prevention. Epstein–Barr Virus (EBV) genome encodes over 100 proteins, of which only (30) proteins are well characterized, including the proteins expressed during latent infection and lytic cycle proteins. Based on major variation in the EBNA-2 gene sequence, two types of EBV are recognized, EBV type 1 and 2. Epstein–Barr virus types occur worldwide and differ in their geographic distribution depending on the type of virus. EBV spreads most commonly through bodily fluids, especially saliva. However, EBV can also spread through blood, blood transfusions, and organ transplantations. The EBV is associated with many malignant diseases such as lymphomas, carcinomas, and also more benign such as infectious mononucleosis, chronic active infection. The EBV has also been suggested as a trigger/cofactor for some autoimmune diseases. Overall, 1–1.5% of the cancer burden worldwide is estimated to be attributable to EBV The latently infected human cancer cells express the most powerful monogenic proteins, LMP-1 and LMP-2(Latent Membrane Protein-1,-2), as well as Epstein–Barr Nuclear Antigens (EBNA) and two small RNAs called Epstein–Barr Encoded Small RNAs (EBERs). The EBV can evade the immune system by its gene products that interfering with both innate and adaptive immunity, these include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. Currently no vaccine is available, although there are few candidates under evaluation. Human cytomegalovirus (HCMV) is a ubiquitous beta herpesvirus type 5 with seroprevalence ranges between 60 to 100% in developing countries. CMV is spread from one person to another, usually by direct and prolonged contact with bodily fluids, mainly saliva, but it can be transmitted by genital secretions, blood transfusion and organ transplantation. In addition, CMV can be transmitted vertically from mother to child. CMV infection can result in severe disease for babies, people who receive solid organ transplants or bone marrow/stem cell transplants and people with severe immune suppression such as advanced human immunodeficiency virus (HIV) infection. The HCMV has several mechanisms of immune system evasion. It interferes with the initiation of adaptive immune responses, as well as prevent CD8+ and CD4+ T cell recognition interfering with the normal cellular MHC Class I and MHC Class II processing and presentation pathways. Challenges in developing a vaccine include adeptness of CMV in evading the immune system. Though several vaccine candidates are under investigation.
APA, Harvard, Vancouver, ISO, and other styles
2

Unissa, Ameeruddin Nusrath, and Luke Elizabeth Hanna. "Dissection of HIV-1 Protease Subtype B Inhibitors Resistance Through Molecular Modeling Approaches." In Big Data Analytics in HIV/AIDS Research, 149–70. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3203-3.ch007.

Full text
Abstract:
Protease (PR) is an important enzyme required for the posttranslational processing of the viral gene products of type-1 human immunodeficiency virus (HIV-1). Protease inhibitors (PI) act as competitive inhibitors that bind to the active site of PR. The I84V mutation contributes resistance to multiple PIs, and structurally, this mutation affects both sides of the enzyme active site. In order to get insights about this major resistance site to PR inhibitors using in silico approaches, in this chapter, the wild-type (WT) and mutant (MT) I84V of PR were modeled and docked with all PR inhibitors: Atazanavir, Darunavir, Indinavir, Lopinavir, Nelfinavir, Saquinavir, and Tipranavir. Docking results revealed that in comparison to the WT, the binding score was higher for the MT-I84V. Thus, it can be suggested that the high affinity towards inhibitors in the MT could be due to the presence of energetically favorable interactions, which may lead to tight binding of inhibitors with the MT protein, leading to the development of PR resistance against PIs in HIV-1 eventually.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography