To see the other types of publications on this topic, follow the link: Human-inspired robotics.

Dissertations / Theses on the topic 'Human-inspired robotics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Human-inspired robotics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Olson, Stephanie T. "Human-Inspired Robotic Hand-Eye Coordination." Thesis, Florida Atlantic University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928904.

Full text
Abstract:
<p> My thesis covers the design and fabrication of novel humanoid robotic eyes and the process of interfacing them with the industry robot, Baxter. The mechanism can reach a maximum saccade velocity comparable to that of human eyes. Unlike current robotic eye designs, these eyes have independent left-right and up-down gaze movements achieved using a servo and DC motor, respectively. A potentiometer and rotary encoder enable closed-loop control. An Arduino board and motor driver control the assembly. The motor requires a 12V power source, and all other components are powered through the Arduino from a PC. </p><p> Hand-eye coordination research influenced how the eyes were programmed to move relative to Baxter&rsquo;s grippers. Different modes were coded to adjust eye movement based on the durability of what Baxter is handling. Tests were performed on a component level as well as on the full assembly to prove functionality.</p><p>
APA, Harvard, Vancouver, ISO, and other styles
2

Beaussé, Nils. "Apprentissage visuo-moteur, implication pour le développement sensorimoteur et l’émergence d'interactions sociales." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1051.

Full text
Abstract:
Cette thèse tente d'apporter des éléments de réponse à la question de l’apprentissage et du développement sensorimoteur lors d’une interaction entre humain et robot dans un environnement réel non contraint. Pour ce faire nous défendons dans cette thèse le fait que les êtres humains interagissent non seulement de façon intentionnelle ou consciente, mais également que les propriétés de leur système moteur à bas niveau, de leur corps, et des boucles d’apprentissage sensorimoteur, leur permettent de faciliter implicitement et naturellement cette interaction. Ainsi, nous abordons cette question par l’étude des propriétés du système sensorimoteur chez l’humain et notamment des mécanismes de développement de certaines de ces propriétés chez l’enfant. Dans un premier temps, nous étudions les propriétés du robot Tino qui est un prototype de robot humanoïde hydraulique unique en France et qui représente la plateforme expérimentale principale utilisée durant cette thèse. Nous avons ainsi analysé finement certaines des propriétés intéressantes du prototype qui peuvent avoir une analogie avec les propriétés du système moteur humain présentant un intérêt implicite dans un cadre d’interaction avec l’environnement ou avec un partenaire. En accord avec le paradigme de « l’intelligence du corps », nous montrons comment certaines de ces propriétés peuvent être exploitées pour simplifier la tâche au système de contrôle. Nous étudions également les limites de cette analogie et de son exploitation. Nous étudions ensuite dans cette thèse la modélisation des boucles motrices bas niveaux et des propriétés du système musculaire humain afin d’en isoler les propriétés utiles à l’interaction. Nous en proposons une implémentation sur robot et analysons les propriétés du système de contrôle proposé en simulation et sur la plateforme robotique Tino en lien avec les caractéristiques spécifiques de cette dernière. Par la suite nous développons une architecture neuronale bio-inspirée et développementale capable d’apprendre des associations visuo-motrices lors de phases de babillage moteur (« babbling »). Nous montrons à l’aide de ce modèle implémenté sur le robot Tino l’émergence implicite d’interactions sociales grâce aux propriétés des boucles sensorimotrices. Plus précisément, l’ambiguïté perceptive appliquée à cet algorithme permet l’émergence d’une imitation immédiate et d’un geste de pointage. Ce modèle utilise un système d’apprentissage associatif simple qui ne fournit qu’un « répertoire d’action ». Il est incapable de réagir finement aux contraintes de l’environnement ou d’un partenaire et il est notamment incapable de prendre en compte l’environnement pour planifier des trajectoires cohérentes dans celui-ci. Nous avons alors développé, à travers deux simulations de complexité croissante, un modèle d’apprentissage par renforcement bio-inspiré pour permettre à notre architecture d’apprendre à planifier la trajectoire permettant par exemple d’atteindre un objet présent dans l’environnement posé sur une table. Nous montrons ensuite les analogies entre ce modèle et les expériences sur la prise en compte de l’intention dans les actions motrices chez l’humain. Enfin, nous nous sommes intéressés aux dynamiques d’interactions entre humains et à l’apport que pourrait amener l’intégration de contrôleurs neuronaux oscillatoires dans les architectures de contrôle sensorimoteur, pour ce faire nous avons proposé plusieurs types de modèles oscillant capable d’apprendre et de s’adapter en fonction de la dynamique des informations entrantes, afin de pouvoir s’adapter à des architectures bio-inspirés se développant en interaction avec un environnement non contraint<br>This thesis try to bring answers to the question of the sensorimotor learning and development in the context of human-robot interactions in a real non-constrained environment. To achieve this goal we defend in this thesis the fact that human being interacts through intentional and conscious strategy but also depends of the property of their low level motor system, their body, and of their sensorimotor learning loops, allowing these to facilitate implicitly this interaction. We try to answer these questions through the study of the sensorimotor loops in humans, and through the study of the development of these properties in infants. First, we study here the properties of our robot « Tino », which is a prototype of an humanoid hydraulic robot, unique in France and which is the main experimental platform used in this thesis. We analyses in this thesis the property of this robot and made analogies with the human motor system properties that are implied in the interaction between human, the environment and other humans. We show how certain of these properties could be used to simplify tasks for the control system. We study finally the limit of this analogy and of the exploitation of these properties. After this part we study in this thesis the modeling of low level motor loop and of the properties of the human muscular system in order to capture the main interesting properties for interactions. We propose an implementation on robot and analyses the properties of this control system in simulation and on the robotic platform Tino. Then, we propose a bio-inspired and developmental neural architecture that is able to learn visuomotor association with babbling exploration of the environment. We show with this model implemented on the robot Tino that we can observe the emergence of implicit social interaction through the sensorimotor loops, such are imitation and pointing gesture. But this model use a simple associative learning which is able to construct an “actions repertoire” but is unable to react to the environment and humans finely. To solve this problem we have developed, through two simulations, a learning model based on reinforcement learning to allow our system to produce coherent trajectory in order to act in an environment. We applied this in a simulated task of grasping and moving an object on a table. We show then the analogies between this model and historic experiments about the impact of intention on the motor actions and trajectories in humans Finally we study in this thesis the dynamic of interactions and the interest of bringing oscillatory neural network in these sensorimotor architectures. To this end we propose in this thesis several oscillatory models able to learn and to adapt in the context of bio-inspired architecture that learn in interaction with a real environment
APA, Harvard, Vancouver, ISO, and other styles
3

Naveau, Maximilien. "Advanced human inspired walking strategies for humanoid robots." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30188/document.

Full text
Abstract:
Cette thèse traite du problème de la locomotion des robots humanoïdes dans le contexte du projet européen KoroiBot. En s'inspirant de l'être humain, l'objectif de ce projet est l'amélioration des capacités des robots humanoïdes à se mouvoir de façon dynamique et polyvalente. Le coeur de l'approche scientifique repose sur l'utilisation du controle optimal, à la fois pour l'identification des couts optimisés par l'être humain et pour leur mise en oeuvre sur les robots des partenaires roboticiens. Cette thèse s'illustre donc par une collaboration à la fois avec des mathématiciens du contrôle et des spécialistes de la modélisation des primitives motrices. Les contributions majeures de cette thèse reposent donc sur la conception de nouveaux algorithmes temps-réel de contrôle pour la locomotion des robots humanoïdes avec nos collégues de l'université d'Heidelberg et leur intégration sur le robot HRP-2. Deux contrôleurs seront présentés, le premier permettant la locomotion multi-contacts avec une connaissance a priori des futures positions des contacts. Le deuxième étant une extension d'un travail réalisé sur de la marche sur sol plat améliorant les performances et ajoutant des fonctionnalitées au précédent algorithme. En collaborant avec des spécialistes du mouvement humain nous avons implementé un contrôleur innovant permettant de suivre des trajectoires cycliques du centre de masse. Nous présenterons aussi un contrôleur corps-complet utilisant, pour le haut du corps, des primitives de mouvements extraites du mouvement humain et pour le bas du corps, un générateur de marche. Les résultats de cette thèse ont été intégrés dans la suite logicielle "Stack-of-Tasks" du LAAS-CNRS<br>This thesis covers the topic of humanoid robot locomotion in the frame of the European project KoroiBot. The goal of this project is to enhance the ability of humanoid robots to walk in a dynamic and versatile fashion as humans do. Research and innovation studies in KoroiBot rely on optimal control methods both for the identification of cost functions used by human being and for their implementations on robots owned by roboticist partners. Hence, this thesis includes fruitful collaborations with both control mathematicians and experts in motion primitive modeling. The main contributions of this PhD thesis lies in the design of new real time controllers for humanoid robot locomotion with our partners from the University of Heidelberg and their integration on the HRP-2 robot. Two controllers will be shown, one allowing multi-contact locomotion with a prior knowledge of the future contacts. And the second is an extension of a previous work improving performance and providing additional functionalities. In a collaboration with experts in human motion we designed an innovating controller for tracking cyclic trajectories of the center of mass. We also show a whole body controller using upper body movement primitives extracted from human behavior and lower body movement computed by a walking pattern generator. The results of this thesis have been integrated into the LAAS-CNRS "Stack-of-Tasks" software suit
APA, Harvard, Vancouver, ISO, and other styles
4

Göller, Michael [Verfasser], and R. [Akademischer Betreuer] Dillmann. "Behavior-based Control for Service Robots inspired by Human Motion Patterns : a Robotic Shopping Assistant / Michael Göller. Betreuer: R. Dillmann." Karlsruhe : KIT-Bibliothek, 2014. http://d-nb.info/1049236998/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schulz, Simon [Verfasser]. "Design, Control, and Evaluation of a Human-Inspired Robotic Eye / Simon Schulz." Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1212177347/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maldonado, Toro Galo Xavier. "Analysis and generation of highly dynamic motions of anthropomorphic systems : application to parkour." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30375/document.

Full text
Abstract:
Cette thèse propose une approche interdisciplinaire originale du traitement du mouvement humain corps-complet grâce à l'utilisation couplée d'approches issues de la biomécanique, du contrôle moteur et de la robotique. Les méthodes biomécaniques sont utilisées pour l'enregistrement, le traitement et l'analyse du mouvement humain. L'approche &lt;&lt; Uncontrolled Manifold &gt;&gt; du contrôle moteur est étendue à l'étude des mouvements hautement dynamiques. Ceci permet de déterminer si d'éventuelles tâches dynamiques sont contrôlées et stabilisées par le cerveau, puis d'inférer une organisation hiérarchique des tâches motrices. Le formalisme de l'espace des tâches utilisé en robotique pour la génération de mouvement corps-complet ainsi que la hiérarchie des tâches extraites dans l'étude du contrôle moteur sont utilisés pour simuler des mouvements humains hautement dynamiques. Cette approche permet de mieux comprendre le mouvement humain et de générer des mouvements inspirés de l'humain pour d'autres systèmes anthropomorphes tel que des robots ou avatars. La discipline du Parkour, impliquant des actions hautement dynamiques tels que des sauts et des techniques d'atterisage, est choisie pour illustrer l'approche proposée<br>This thesis proposes an original and interdisciplinary approach to the treatment of whole-body human movements through the synergistic utilization of biomechanics, motor control and robotics. Robust methods of biomechanics are used to record, process and analyze whole-body human motions. The Uncontrolled Manifold approach (UCM) of motor control is extended to study highly dynamic movements processed in the biomechanical study, in order to determine if hypothesized dynamic tasks are being controlled stably by the central nervous system. This extension permits also to infer a hierarchical organization of the controlled dynamic tasks. The task space formalism of motion generation in robotics is used to generate whole-body motion by taking into account the hierarchy of tasks extracted in the motor control study. This approach permits to better understand the organization of human dynamic motions and provide a new methodology to generate whole-body human motions with anthropomorphic systems. A case study of highly dynamic and complex movements of Parkour, including jumps and landings, is utilized to illustrate the proposed approach
APA, Harvard, Vancouver, ISO, and other styles
7

Vassallo, Christian. "Using human-inspired models for guiding robot locomotion." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30177/document.

Full text
Abstract:
Cette thèse a été effectuée dans le cadre du projet européen Koroibot dont l'objectif est le développement d'algorithmes de marche avancés pour les robots humanoïdes. Dans le but de contrôler les robots d'une manière sûre et efficace chez les humains, il est nécessaire de comprendre les règles, les principes et les stratégies de l'homme lors de la locomotion et de les transférer à des robots. L'objectif de cette thèse est d'étudier et d'identifier les stratégies de locomotion humaine et créer des algorithmes qui pourraient être utilisés pour améliorer les capacités du robot. La contribution principale est l'analyse sur les principes de piétons qui guident les stratégies d'évitement des collisions. En particulier, nous observons comment les humains adapter une tâche de locomotion objectif direct quand ils ont à interférer avec un obstacle en mouvement traversant leur chemin. Nous montrons les différences entre la stratégie définie par les humains pour éviter un obstacle non-collaboratif et la stratégie pour éviter un autre être humain, et la façon dont les humains interagissent avec un objet si se déplaçant en manier simil à l'humaine. Deuxièmement, nous présentons un travail effectué en collaboration avec les neuroscientifiques de calcul. Nous proposons une nouvelle approche pour synthétiser réalistes complexes mouvements du robot humanoïde avec des primitives de mouvement. Trajectoires humaines walking-to-grasp ont été enregistrés. L'ensemble des mouvements du corps sont reciblées et proportionnée afin de correspondre à la cinématique de robots humanoïdes. Sur la base de cette base de données des mouvements, nous extrayons les primitives de mouvement. Nous montrons que ces signaux sources peuvent être exprimées sous forme de solutions stables d'un système dynamique autonome, qui peut être considéré comme un système de central pattern generators (CPGs). Sur la base de cette approche, les stratégies réactives walking-to-grasp ont été développés et expérimenté avec succès sur le robot humanoïde HRP-2 au LAAS-CNRS. Dans la troisième partie de la thèse, nous présentons une nouvelle approche du problème de pilotage d'un robot soumis à des contraintes non holonomes par une porte en utilisant l'asservissement visuel. La porte est représentée par deux points de repère situés sur ses supports verticaux. La plan géométric qui a été construit autour de la porte est constituée de faisceaux de hyperboles, des ellipses et des cercles orthogonaux. Nous montrons que cette géométrie peut être mesurée directement dans le plan d'image de la caméra et que la stratégie basée sur la vision présentée peut également être lié à l'homme. Simulation et expériences réalistes sont présentés pour montrer l'efficacité de nos solutions<br>This thesis has been done within the framework of the European Project Koroibot which aims at developing advanced algorithms to improve the humanoid robots locomotion. It is organized in three parts. With the aim of steering robots in a safe and efficient manner among humans it is required to understand the rules, principles and strategies of human during locomotion and transfer them to robots. The goal of this thesis is to investigate and identify the human locomotion strategies and create algorithms that could be used to improve robot capabilities. A first contribution is the analysis on pedestrian principles which guide collision avoidance strategies. In particular, we observe how humans adapt a goal-direct locomotion task when they have to interfere with a moving obstacle crossing their way. We show differences both in the strategy set by humans to avoid a non-collaborative obstacle with respect to avoid another human, and the way humans interact with an object moving in human-like way. Secondly, we present a work done in collaboration with computational neuroscientists. We propose a new approach to synthetize realistic complex humanoid robot movements with motion primitives. Human walking-to-grasp trajectories have been recorded. The whole body movements are retargeted and scaled in order to match the humanoid robot kinematics. Based on this database of movements, we extract the motion primitives. We prove that these sources signals can be expressed as stable solutions of an autonomous dynamical system, which can be regarded as a system of coupled central pattern generators (CPGs). Based on this approach, reactive walking-to-grasp strategies have been developed and successfully experimented on the humanoid robot HRP at LAAS-CNRS. In the third part of the thesis, we present a new approach to the problem of vision-based steering of robot subject to non-holonomic constrained to pass through a door. The door is represented by two landmarks located on its vertical supports. The planar geometry that has been built around the door consists of bundles of hyperbolae, ellipses, and orthogonal circles. We prove that this geometry can be directly measured in the camera image plane and that the proposed vision-based control strategy can also be related to human. Realistic simulation and experiments are reported to show the effectiveness of our solutions
APA, Harvard, Vancouver, ISO, and other styles
8

Kaul, Lukas Sebastian [Verfasser]. "Human-Inspired Balancing and Recovery Stepping for Humanoid Robots / Lukas Sebastian Kaul." Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1186281987/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaul, Lukas [Verfasser]. "Human-Inspired Balancing and Recovery Stepping for Humanoid Robots / Lukas Sebastian Kaul." Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1186281987/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaul, Lukas Sebastian [Verfasser], and T. [Akademischer Betreuer] Asfour. "Human-Inspired Balancing and Recovery Stepping for Humanoid Robots / Lukas Sebastian Kaul ; Betreuer: T. Asfour." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1182430724/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kaul, Lukas [Verfasser], and T. [Akademischer Betreuer] Asfour. "Human-Inspired Balancing and Recovery Stepping for Humanoid Robots / Lukas Sebastian Kaul ; Betreuer: T. Asfour." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1182430724/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yesmunt, Garrett Scot. "Design, analysis, and simulation of a humanoid robotic arm applied to catching." Thesis, 2014. http://hdl.handle.net/1805/5610.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)<br>There have been many endeavors to design humanoid robots that have human characteristics such as dexterity, autonomy and intelligence. Humanoid robots are intended to cooperate with humans and perform useful work that humans can perform. The main advantage of humanoid robots over other machines is that they are flexible and multi-purpose. In this thesis, a human-like robotic arm is designed and used in a task which is typically performed by humans, namely, catching a ball. The robotic arm was designed to closely resemble a human arm, based on anthropometric studies. A rigid multibody dynamics software was used to create a virtual model of the robotic arm, perform experiments, and collect data. The inverse kinematics of the robotic arm was solved using a Newton-Raphson numerical method with a numerically calculated Jacobian. The system was validated by testing its ability to find a kinematic solution for the catch position and successfully catch the ball within the robot's workspace. The tests were conducted by throwing the ball such that its path intersects different target points within the robot's workspace. The method used for determining the catch location consists of finding the intersection of the ball's trajectory with a virtual catch plane. The hand orientation was set so that the normal vector to the palm of the hand is parallel to the trajectory of the ball at the intersection point and a vector perpendicular to this normal vector remains in a constant orientation during the catch. It was found that this catch orientation approach was reliable within a 0.35 x 0.4 meter window in the robot's workspace. For all tests within this window, the robotic arm successfully caught and dropped the ball in a bin. Also, for the tests within this window, the maximum position and orientation (Euler angle) tracking errors were 13.6 mm and 4.3 degrees, respectively. The average position and orientation tracking errors were 3.5 mm and 0.3 degrees, respectively. The work presented in this study can be applied to humanoid robots in industrial assembly lines and hazardous environment recovery tasks, amongst other applications.
APA, Harvard, Vancouver, ISO, and other styles
13

Cordella, Francesca. "Grasping algorithms for anthropomorphic robotic hands inspired to human behavior." Tesi di dottorato, 2011. http://www.fedoa.unina.it/8880/2/Cordella_Francesca_24.pdf.

Full text
Abstract:
Biologically inspired robotic systems are becoming increasingly popular, especially in the field of medical robotics, in which building robotic devices able to replicate the human behavior guarantees obtaining motor recovery, functional substitution or human-robot interaction as human-like as possible. It is widely recognized that robotic rehabilitation devices improve the performance of the rehabilitation therapy performed by a human therapist in terms of action repetition and accurate tracking of the desired trajectory. Taking advantage from the plasticity of the neuro-muscular system, a human-inspired robotic rehabilitation therapy helps patients to re-learn movements. In the field of upper limb prosthetics, since the aim of a prosthetic hand is to replace a human hand, the robotic device has to be not only functional, but also as similar as possible to the human one both from the morphological point of view and as regards movement naturalness. On the other hand, since grasping is one of the human skills that robotic researchers mostly attempt at imitating, in the development of new robotic hands, the inspiration to the human hand behavior is increasing. From the analysis of the grasping action performed by human beings and from the study of the anatomy of the human hand and of its behavior during grasping, it is possible to obtain useful information for developing human-like grasping algorithms so as to acquire a better knowledge of the hand kinematics in order to design new human-like robotic hands and new rehabilitation devices. The definition of the kinematic structure of the hand and of the fingers is, in fact, the basis for designing new dexterous robotic hands and devices devoted to interact with the human hand (such as rehabilitation devices). Therefore this work is focused on the study of the hand kinematics, providing the basis for a further study regarding the hand dynamics. All the experiments done are in fact adaptable for a future study of the hand dynamics. In assistive robotics, as well as in the field of hand prostheses, the ability of performing smooth movements and obtaining a stable grasp is essential. Therefore, one of the aims of this thesis is to develop a bio-inspired approach for posture prediction and finger trajectory planning with a robotic hand. In order to do that, the human grasping action has been deeply analyzed. It has been decomposed in three main phases: reaching, pre-shaping and grasping. In order to reduce the complexity of planning dexterous hand grasps, it is useful to find the best hand preshape: therefore, this work is focused on this grasping phase. An accurate analysis of anatomy, surgery and rehabilitation literature has been done. In order to confirm the literature results and to cope with the lack of information, e.g. about thumb behavior, different methods for acquiring information about the human hand behavior have been used. Some important features about grasping have been collected from the analysis of the data obtained from two different devices for movement analysis: the Vicon system and a sensorized glove (the CyberGlove). The hand joint behavior during the grasping action has been analyzed asking different subjects to realize four different grasping tasks. The selected tasks guarantee that the subjects pose the hand in the most commonly used configurations. The experiments were performed asking subjects to wear the CyberGlove or attaching on their hands markers visible by the Vicon cameras. The obtained data have been analyzed using different hand kinematic human-inspired models. In order to overcome the drawbacks of the motion analysis devices listed before (as the not completely natural movements performed wearing a data glove, the impossibility to use the CyberGlove from people of different hand sizes and the high cost of the Vicon system), and to obtain information about the hand movements, the Kinect motion sensing device has also been used. For determining the finger joint positions and trajectories during hand movements, a finger tracking algorithm for the Kinect camera has been implemented. Blue markers have been placed on the hand joints following the same configuration used in the experiments performed with the Vicon cameras. A coloured blob detection algorithm and a multiple object tracking algorithm based on particle filters and extended Kalman filter has been implemented. When observing the human grasping behavior, thanks to the input devices listed before, it has been possible to notice some common characteristics among different subjects. The literature results about the dependence of grasping shape on object properties and grip types have been confirmed. The relationship between hand joints for each subject and among different subject has been investigated. One of the obtained results has been finding a constant value of the hand aperture angle (the angle between thumb and index finger). Also the curvature of the fingers is constant among different subjects (related to hand dimensions). Therefore, on the basis of neurological studies and of the analysis of the obtained data, a bio-inspired algorithm for predicting the power-grip posture and planning the finger trajectory of a robotic hand has been developed. The method estimates the best joint hand configuration during diagonal and transverse volar grasp minimizing a purposely defined objective function given by the sum of the joint distances from the object center of rotation (COR). The developed grasping algorithm calculates the position of the fingers for grasping, finding the best hand configuration that ensures a stable human-like grasp. The implementation of the algorithm on a real robotic platform has validated its effectiveness. From the above discussion, it is clear that the aim of this work is to find a way of exploiting the knowledge about a natural system, namely the human hand, in order to design a robotic system. After investigating and understanding in depth the human grasping action, the obtained results have multiple applications such as: overcoming the structural lack of the actual robotic hands (for instance, the non opposable thumb); developing new interfaces for rehabilitation (the finger tracking algorithm developed for the Kinect motion sensing device could be a new rehabilitation interface with potential application in the rehabilitation field); developing bio-inspired approaches for posture prediction and finger trajectory planning in order to perform a stable human-like grasp with a robotic hand.
APA, Harvard, Vancouver, ISO, and other styles
14

Hinwood, David. "Human-inspired dexterous manipulation of deformable objects: towards economically sustainable robotic textile recycling." Doctoral thesis, 2024. https://researchprofiles.canberra.edu.au/en/studentTheses/3f45e955-d6ff-4073-8023-def70eee8def.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nadubettu, Yadukumar Shishir 1986. "Bipedal Robotic Walking on Flat-Ground, Up-Slope and Rough Terrain with Human-Inspired Hybrid Zero Dynamics." Thesis, 2012. http://hdl.handle.net/1969.1/148284.

Full text
Abstract:
The thesis shows how to achieve bipedal robotic walking on flat-ground, up-slope and rough terrain by using Human-Inspired control. We begin by considering human walking data and find outputs (or virtual constraints) that, when calculated from the human data, are described by simple functions of time (termed canonical walking functions). Formally, we construct a torque controller, through model inversion, that drives the outputs of the robot to the outputs of the human as represented by the canonical walking function; while these functions fit the human data well, they do not apriori guarantee robotic walking (due to do the physical differences between humans and robots). An optimization problem is presented that determines the best fit of the canonical walking function to the human data, while guaranteeing walking for a specific bipedal robot; in addition, constraints can be added that guarantee physically realizable walking. We consider a physical bipedal robot, AMBER, and considering the special property of the motors used in the robot, i.e., low leakage inductance, we approximate the motor model and use the formal controllers that satisfy the constraints and translate into an efficient voltage-based controller that can be directly implemented on AMBER. The end result is walking on flat-ground and up-slope which is not just human-like, but also amazingly robust. Having obtained walking on specific well defined terrains separately, rough terrain walking is achieved by dynamically changing the extended canonical walking functions (ECWF) that the robot outputs should track at every step. The state of the robot, after every non-stance foot strike, is actively sensed and the new CWF is constructed to ensure Hybrid Zero Dynamics is respected in the next step. Finally, the technique developed is tried on different terrains in simulation and in AMBER showing how the walking gait morphs depending on the terrain.
APA, Harvard, Vancouver, ISO, and other styles
16

Kuo, Pei-Hsin. "Bio-inspired robotic joint and manipulator : from biomechanical experimentation and modeling to human-like compliant finger design and control." Thesis, 2014. http://hdl.handle.net/2152/28426.

Full text
Abstract:
One of the greatest challenges in controlling robotic hands is grasping and manipulating objects in unstructured and uncertain environments. Robotic hands are typically too rigid to react against unexpected impacts and disturbances in order to prevent damage. The human hands have great versatility and robustness due, in part, to the passive compliance and damping. Designing mechanical elements that are inspired by the nonlinear joint compliance of human hands is a promising solution to achieve human-like grasping and manipulation. However, the exact role of biomechanical elements in realizing joint stiffness is unknown. We conducted a series of experiments to investigate nonlinear stiffness and damping of the metacarpophalangeal (MCP) joint at the index finger. We designed a custom-made mechanism to integrate electromyography sensors (EMGs) and a motion capture system to collect data from 19 subjects. We investigated the relative contributions of muscle-tendon units and the MCP capsule ligament complex to joint stiffness with subject-specific modeling. The results show that the muscle-tendon units provide limited contribution to the passive joint compliance. This findings indicate that the parallel compliance, in the form of the capsule-ligament complex, is significant in defining the passive properties of the hand. To identify the passive damping, we used the hysteresis loops to investigate the energy dissipation function. We used symbolic regression and principal component analysis to derive and interpret the damping models. The results show that the nonlinear viscous damping depends on the cyclic frequency, and fluid and structural types of damping also exist at the MCP joint. Inspired by the nonlinear stiffness of the MCP joint, we developed a miniaturized mechanism that uses pouring liquid plastic to design energy storing elements. The key innovations in this design are: a) a set of nonlinear elasticity of compliant materials, b) variable pulley configurations to tune the stiffness profile, and c) pretension mechanism to scale the stiffness profile. The design exhibits human-like passive compliance. By taking advantage of miniaturized joint size and additive manufacturing, we incorporated the novel joint design in a novel robotic manipulator with six series elastic actuators (SEA). The robotic manipulator has passive joint compliance with the intrinsic property of human hands. To validate the system, we investigated the Cartesian stiffness of grasping with low-level force control. The results show that that the overall system performs a great force tracking with position feedback. The parallel compliance decreases the motor efforts and can stabilize the system.<br>text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!