Journal articles on the topic 'Human pluripotent stem cells (hPSC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Human pluripotent stem cells (hPSC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hayashi, Yohei, and Miho Kusuda Furue. "Biological Effects of Culture Substrates on Human Pluripotent Stem Cells." Stem Cells International 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/5380560.
Full textMaysubara, Hiroyuki, Akira Niwa, Tatsutoshi Nakahata, and Megumu K. Saito. "NK Cells from Human Pluripotent Stem Cells for Immunotherapy." Blood 132, Supplement 1 (2018): 4955. http://dx.doi.org/10.1182/blood-2018-99-115499.
Full textWei, Yanxing, Tianyu Wang, Lishi Ma, et al. "Efficient derivation of human trophoblast stem cells from primed pluripotent stem cells." Science Advances 7, no. 33 (2021): eabf4416. http://dx.doi.org/10.1126/sciadv.abf4416.
Full textLipsitz, Yonatan Y., Curtis Woodford, Ting Yin, Jacob H. Hanna, and Peter W. Zandstra. "Modulating cell state to enhance suspension expansion of human pluripotent stem cells." Proceedings of the National Academy of Sciences 115, no. 25 (2018): 6369–74. http://dx.doi.org/10.1073/pnas.1714099115.
Full textLim, Seakcheng, Rachel A. Shparberg, Jens R. Coorssen, and Michael D. O’Connor. "Application of the RBBP9 Serine Hydrolase Inhibitor, ML114, Decouples Human Pluripotent Stem Cell Proliferation and Differentiation." International Journal of Molecular Sciences 21, no. 23 (2020): 8983. http://dx.doi.org/10.3390/ijms21238983.
Full textRan, Dan, Wei-Jong Shia, Miao-Chia Lo, et al. "RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells." Blood 121, no. 15 (2013): 2882–90. http://dx.doi.org/10.1182/blood-2012-08-451641.
Full textNemade, Harshal, Aviseka Acharya, Umesh Chaudhari, et al. "Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells." Cells 9, no. 3 (2020): 554. http://dx.doi.org/10.3390/cells9030554.
Full textKaram, Manale, Ihab Younis, Noor R. Elareer, Sara Nasser, and Essam M. Abdelalim. "Scalable Generation of Mesenchymal Stem Cells and Adipocytes from Human Pluripotent Stem Cells." Cells 9, no. 3 (2020): 710. http://dx.doi.org/10.3390/cells9030710.
Full textWalasek, Marta A., Crystal Chau, Christian Barborini, et al. "A Reproducible and Simple Method to Generate Red Blood Cells from Human Pluripotent Stem Cells." Blood 134, Supplement_1 (2019): 1189. http://dx.doi.org/10.1182/blood-2019-128830.
Full textRehakova, Daniela, Tereza Souralova, and Irena Koutna. "Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy." International Journal of Molecular Sciences 21, no. 7 (2020): 2435. http://dx.doi.org/10.3390/ijms21072435.
Full textRungsiwiwut, Ruttachuk, Praewphan Ingrungruanglert, Pranee Numchaisrika, Pramuan Virutamasen, Tatsanee Phermthai, and Kamthorn Pruksananonda. "Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines." Stem Cells International 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/4626048.
Full textGo, Young-Hyun, Jumee Kim, Ho-Chang Jeong, et al. "Luteolin Induces Selective Cell Death of Human Pluripotent Stem Cells." Biomedicines 8, no. 11 (2020): 453. http://dx.doi.org/10.3390/biomedicines8110453.
Full textLe, Minh Nguyen Tuyet, and Kouichi Hasegawa. "Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes." Bioengineering 6, no. 2 (2019): 48. http://dx.doi.org/10.3390/bioengineering6020048.
Full textRoberts, R. Michael, Kyle M. Loh, Mitsuyoshi Amita, et al. "Differentiation of trophoblast cells from human embryonic stem cells: to be or not to be?" REPRODUCTION 147, no. 5 (2014): D1—D12. http://dx.doi.org/10.1530/rep-14-0080.
Full textDick, Emily, Divya Rajamohan, Jonathon Ronksley, and Chris Denning. "Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening." Biochemical Society Transactions 38, no. 4 (2010): 1037–45. http://dx.doi.org/10.1042/bst0381037.
Full textGhosheh, Nidal, Barbara Küppers-Munther, Annika Asplund, et al. "Comparative transcriptomics of hepatic differentiation of human pluripotent stem cells and adult human liver tissue." Physiological Genomics 49, no. 8 (2017): 430–46. http://dx.doi.org/10.1152/physiolgenomics.00007.2017.
Full textNii, Takenobu, Hiroshi Kohara, Tomotoshi Marumoto, Tetsushi Sakuma, Takashi Yamamoto, and Kenzaburo Tani. "Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency." Blood 126, no. 23 (2015): 2037. http://dx.doi.org/10.1182/blood.v126.23.2037.2037.
Full textLees, Jarmon G., Timothy S. Cliff, Amanda Gammilonghi, et al. "Oxygen Regulates Human Pluripotent Stem Cell Metabolic Flux." Stem Cells International 2019 (May 19, 2019): 1–17. http://dx.doi.org/10.1155/2019/8195614.
Full textPavarajarn, Wipawee, Ruttachuk Rungsiwiwut, Pranee Numchaisrika, Pramuan Virutamasen, and Kamthorn Pruksananonda. "Human Caesarean scar-derived feeder cells: a novel feeder cell type for culturing human pluripotent stem cells without exogenous basic fibroblast growth factor supplementation." Reproduction, Fertility and Development 32, no. 9 (2020): 822. http://dx.doi.org/10.1071/rd19128.
Full textButts, Jessica C., Dylan A. McCreedy, Jorge Alexis Martinez-Vargas, et al. "Differentiation of V2a interneurons from human pluripotent stem cells." Proceedings of the National Academy of Sciences 114, no. 19 (2017): 4969–74. http://dx.doi.org/10.1073/pnas.1608254114.
Full textWang, Zongjie, Mark Gagliardi, Reza M. Mohamadi, et al. "Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations." Science Advances 6, no. 12 (2020): eaay7629. http://dx.doi.org/10.1126/sciadv.aay7629.
Full textHu, Zhixing, Hanqin Li, Houbo Jiang, et al. "Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos." Science Advances 6, no. 20 (2020): eaaz0298. http://dx.doi.org/10.1126/sciadv.aaz0298.
Full textGoldsteen, Pien A., Christina Yoseif, Amalia M. Dolga, and Reinoud Gosens. "Human pluripotent stem cells for the modelling and treatment of respiratory diseases." European Respiratory Review 30, no. 161 (2021): 210042. http://dx.doi.org/10.1183/16000617.0042-2021.
Full textBuchholz, David E., Thomas S. Carroll, Arif Kocabas, et al. "Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics." Proceedings of the National Academy of Sciences 117, no. 26 (2020): 15085–95. http://dx.doi.org/10.1073/pnas.2000102117.
Full textVerma, Vinod, A. Mehta, and S. J. S. Flora. "Human Pluripotent Stem Cells and Drug Discovery: A New Beginning." Defence Life Science Journal 1, no. 1 (2016): 27. http://dx.doi.org/10.14429/dlsj.1.10060.
Full textPark, Sang-Wook, Young Jun Koh, Jongwook Jeon, et al. "Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways." Blood 116, no. 25 (2010): 5762–72. http://dx.doi.org/10.1182/blood-2010-04-280719.
Full textLin, Xiying, Jiayu Tang, and Yan-Ru Lou. "Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development." Pharmaceuticals 14, no. 6 (2021): 525. http://dx.doi.org/10.3390/ph14060525.
Full textJongkamonwiwat, Nopporn, and Parinya Noisa. "Biomedical and Clinical Promises of Human Pluripotent Stem Cells for Neurological Disorders." BioMed Research International 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/656531.
Full textYang, Hui, Weiyi Zhong, Mohammad Rafi Hamidi, Gaojun Zhou, and Chen Liu. "Functional improvement and maturation of human cardiomyocytes derived from human pluripotent stem cells by barbaloin preconditioning." Acta Biochimica et Biophysica Sinica 51, no. 10 (2019): 1041–48. http://dx.doi.org/10.1093/abbs/gmz090.
Full textAlshawaf, Abdullah J., Ana Antonic, Efstratios Skafidas, Dominic Chi-Hung Ng, and Mirella Dottori. "WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells." Stem Cells International 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/7848932.
Full textMcKnight, Cameron L., Yau Chung Low, David A. Elliott, David R. Thorburn, and Ann E. Frazier. "Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned?" International Journal of Molecular Sciences 22, no. 14 (2021): 7730. http://dx.doi.org/10.3390/ijms22147730.
Full textHazeltine, Laurie B., Chelsey S. Simmons, Max R. Salick, et al. "Effects of Substrate Mechanics on Contractility of Cardiomyocytes Generated from Human Pluripotent Stem Cells." International Journal of Cell Biology 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/508294.
Full textDakhore, Sushrut, Bhavana Nayer, and Kouichi Hasegawa. "Human Pluripotent Stem Cell Culture: Current Status, Challenges, and Advancement." Stem Cells International 2018 (November 22, 2018): 1–17. http://dx.doi.org/10.1155/2018/7396905.
Full textLuff, Stephanie A., J. Philip Creamer, Carissa Dege, et al. "Generation of Retinoic Acid-Dependent Definitive Hematopoietic Progenitors from Human Pluripotent Stem Cells." Blood 136, Supplement 1 (2020): 35. http://dx.doi.org/10.1182/blood-2020-142468.
Full textLi, Sen, Wendy Keung, Heping Cheng, and Ronald A. Li. "Structural and Mechanistic Bases of Nuclear Calcium Signaling in Human Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes." Stem Cells International 2019 (April 1, 2019): 1–17. http://dx.doi.org/10.1155/2019/8765752.
Full textZhang, Fengzhi, Hui Qiu, Xiaohui Dong, et al. "Transferrin improved the generation of cardiomyocyte from human pluripotent stem cells for myocardial infarction repair." Journal of Molecular Histology 52, no. 1 (2020): 87–99. http://dx.doi.org/10.1007/s10735-020-09926-0.
Full textMatsubara, Hiroyuki, Akira Niwa, Tatsutoshi Nakahata, and Megumu K. Saito. "Induction of Natural Killer Cells from Human Pluripotent Stem Cells Under Chemically Defined Condition." Blood 128, no. 22 (2016): 1345. http://dx.doi.org/10.1182/blood.v128.22.1345.1345.
Full textJelinkova, Sarka, Petr Fojtik, Aneta Kohutova, et al. "Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress." Cells 8, no. 1 (2019): 53. http://dx.doi.org/10.3390/cells8010053.
Full textHyakumura, Tomoko, Stuart McDougall, Sue Finch, Karina Needham, Mirella Dottori, and Bryony A. Nayagam. "Organotypic Cocultures of Human Pluripotent Stem Cell Derived-Neurons with Mammalian Inner Ear Hair Cells and Cochlear Nucleus Slices." Stem Cells International 2019 (November 20, 2019): 1–14. http://dx.doi.org/10.1155/2019/8419493.
Full textGhosheh, Nidal, Björn Olsson, Josefina Edsbagge, et al. "Highly Synchronized Expression of Lineage-Specific Genes duringIn VitroHepatic Differentiation of Human Pluripotent Stem Cell Lines." Stem Cells International 2016 (2016): 1–22. http://dx.doi.org/10.1155/2016/8648356.
Full textPan, Fong Cheng, Todd Evans, and Shuibing Chen. "Modeling endodermal organ development and diseases using human pluripotent stem cell-derived organoids." Journal of Molecular Cell Biology 12, no. 8 (2020): 580–92. http://dx.doi.org/10.1093/jmcb/mjaa031.
Full textPandey, Puspa R., Amarel Tomney, Marites T. Woon, et al. "End-to-End Platform for Human Pluripotent Stem Cell Manufacturing." International Journal of Molecular Sciences 21, no. 1 (2019): 89. http://dx.doi.org/10.3390/ijms21010089.
Full textMcIntyre, Brendan A. S., Veronica Ramos-Mejia, Shravanti Rampalli, et al. "Gli3-mediated hedgehog inhibition in human pluripotent stem cells initiates and augments developmental programming of adult hematopoiesis." Blood 121, no. 9 (2013): 1543–52. http://dx.doi.org/10.1182/blood-2012-09-457747.
Full textWadkin, L. E., S. Orozco-Fuentes, I. Neganova, M. Lako, N. G. Parker, and A. Shukurov. "A mathematical modelling framework for the regulation of intra-cellular OCT4 in human pluripotent stem cells." PLOS ONE 16, no. 8 (2021): e0254991. http://dx.doi.org/10.1371/journal.pone.0254991.
Full textChang, Yolanda W., Arend W. Overeem, Celine M. Roelse, Xueying Fan, Christian Freund, and Susana M. Chuva de Sousa Lopes. "Tissue of Origin, but Not XCI State, Influences Germ Cell Differentiation from Human Pluripotent Stem Cells." Cells 10, no. 9 (2021): 2400. http://dx.doi.org/10.3390/cells10092400.
Full textRan, Dan, Wei-Jong Shia, Miao-Chia Lo, et al. "RUNX1a Enhances Hematopoietic Lineage Commitment From Human Embryonic Stem Cells and Inducible Pluripotent Stem Cells." Blood 120, no. 21 (2012): 347. http://dx.doi.org/10.1182/blood.v120.21.347.347.
Full textYuzuriha, Akinori, Sou Nakamura, Toshie Kusunoki, et al. "Environmental Cell-Matrix Adhesion Modulates Pluripotent Stem Cell Fate Toward Definitive Hemogenic Endothelium and Hematopoietic Progenitor Cells." Blood 132, Supplement 1 (2018): 3845. http://dx.doi.org/10.1182/blood-2018-99-114505.
Full textBarrault, Laetitia, Jacqueline Gide, Tingting Qing, et al. "Expression of miRNAs from the Imprinted DLK1/DIO3 Locus Signals the Osteogenic Potential of Human Pluripotent Stem Cells." Cells 8, no. 12 (2019): 1523. http://dx.doi.org/10.3390/cells8121523.
Full textCreamer, John Philip, Carissa Dege, Jolie T. K. Ho, Qihao Ren, Mark C. Valentine, and Christopher Michael Sturgeon. "Human Definitive Hematopoietic Specification from Pluripotent Stem Cells Is Regulated By Mesodermal Expression of CDX4." Blood 128, no. 22 (2016): 883. http://dx.doi.org/10.1182/blood.v128.22.883.883.
Full textMianné, Joffrey, Chloé Bourguignon, Chloé Nguyen Van, et al. "Pipeline for the Generation and Characterization of Transgenic Human Pluripotent Stem Cells Using the CRISPR/Cas9 Technology." Cells 9, no. 5 (2020): 1312. http://dx.doi.org/10.3390/cells9051312.
Full text