Journal articles on the topic 'Huygens-Fresnel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Huygens-Fresnel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Volpe, F. A., P. D. Létourneau, and A. Zhao. "Huygens–Fresnel wavefront tracing." Computer Physics Communications 212 (March 2017): 123–31. http://dx.doi.org/10.1016/j.cpc.2016.10.021.
Full textBorovytsky, Volodymyr. "Huygens–Fresnel principle and Abbe formula." Optical Engineering 57, no. 09 (2018): 1. http://dx.doi.org/10.1117/1.oe.57.9.095104.
Full textMakris, Konstantinos G., and Demetri Psaltis. "Huygens–Fresnel diffraction and evanescent waves." Optics Communications 284, no. 6 (2011): 1686–89. http://dx.doi.org/10.1016/j.optcom.2010.10.001.
Full textPham, Frédéric. "Résurgence d’un thème de Huygens-Fresnel." Publications mathématiques de l'IHÉS 68, no. 1 (1988): 77–90. http://dx.doi.org/10.1007/bf02698542.
Full textTeperik, T. V., A. Archambault, F. Marquier, and J. J. Greffet. "Huygens-Fresnel principle for surface plasmons." Optics Express 17, no. 20 (2009): 17483. http://dx.doi.org/10.1364/oe.17.017483.
Full textDepasse, F., M. A. Paesler, D. Courjon, and J. M. Vigoureux. "Huygens–Fresnel principle in the near field." Optics Letters 20, no. 3 (1995): 234. http://dx.doi.org/10.1364/ol.20.000234.
Full textKinnunen, Jami J. "Why is there no Poisson spot in a solar eclipse?" American Journal of Physics 92, no. 12 (2024): 945–49. http://dx.doi.org/10.1119/5.0227357.
Full textKraus, Hal G. "Huygens–Fresnel–Kirchhoff wave-front diffraction formulation: spherical waves." Journal of the Optical Society of America A 6, no. 8 (1989): 1196. http://dx.doi.org/10.1364/josaa.6.001196.
Full textGluza, Marek, Per Moosavi, and Spyros Sotiriadis. "Breaking of Huygens–Fresnel principle in inhomogeneous Tomonaga–Luttinger liquids." Journal of Physics A: Mathematical and Theoretical 55, no. 5 (2022): 054002. http://dx.doi.org/10.1088/1751-8121/ac39cc.
Full textUeda, Mitsuhiro. "Extension of the Huygens–Fresnel principle to a virtual space." Journal of the Acoustical Society of America 96, no. 5 (1994): 3226. http://dx.doi.org/10.1121/1.411146.
Full textFogret, Éric, and Pierre Pellat-Finet. "Agreement of fractional Fourier optics with the Huygens–Fresnel principle." Optics Communications 272, no. 2 (2007): 281–88. http://dx.doi.org/10.1016/j.optcom.2006.11.039.
Full textGitin, Andrey V. "Huygens–Feynman–Fresnel principle as the basis of applied optics." Applied Optics 52, no. 31 (2013): 7419. http://dx.doi.org/10.1364/ao.52.007419.
Full textVolosyuk, V. K., S. S. Zhyla, and D. V. Kolesnikov. "Phenomenological description of coherent radar images based on concepts of the measure on a set and stochastic integral." Radiotekhnika, no. 194 (September 26, 2018): 5–11. http://dx.doi.org/10.30837/rt.2018.3.194.01.
Full textTausendfreund, Andreas, S. Patzelt, S. Simon, and G. Goch. "Simulation of Light Scattering from Nanostructured Surfaces." Key Engineering Materials 381-382 (June 2008): 27–30. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.27.
Full textBogdanov, O. V., and E. I. Rozhkova. "Cherenkov radiation from relativistic heavy ions: interpretation in terms of diffraction." Journal of Instrumentation 19, no. 11 (2024): C11011. http://dx.doi.org/10.1088/1748-0221/19/11/c11011.
Full textZhu, Kaicheng, Xiaolei Ma, Chang Gao, Dengjuan Ren, and Jie Zhu. "Propagation Properties of an Astigmatic Cos-Gaussian Beam through Turbulent Atmosphere." E3S Web of Conferences 299 (2021): 02003. http://dx.doi.org/10.1051/e3sconf/202129902003.
Full textAlkelly, Abdu A., M. A. H. Khaled, and Labiba F. Hassan. "INFLUENCE OF ANISOTROPIC TURBULENT PLASMA ON THE PARTIALLY COHERENT FOUR-PETAL GAUSSIAN VORTEX BEAMS." Electronic Journal of University of Aden for Basic and Applied Sciences 3, no. 3 (2022): 145–51. http://dx.doi.org/10.47372/ejua-ba.2022.3.179.
Full textLaurenzis, Martin, and Frank Christnacher. "Time domain analysis of photon scattering and Huygens-Fresnel back projection." Optics Express 30, no. 17 (2022): 30441. http://dx.doi.org/10.1364/oe.468668.
Full textMahan, J. R., N. Q. Vinh, V. X. Ho, and N. B. Munir. "Monte Carlo ray-trace diffraction based on the Huygens–Fresnel principle." Applied Optics 57, no. 18 (2018): D56. http://dx.doi.org/10.1364/ao.57.000d56.
Full textCharnotskii, Mikhail. "Extended Huygens–Fresnel principle and optical waves propagation in turbulence: discussion." Journal of the Optical Society of America A 32, no. 7 (2015): 1357. http://dx.doi.org/10.1364/josaa.32.001357.
Full textZhang, Mei. "Determination of Glucose-Concentration of Turbid Sample by Optical Coherence Tomography at 1550nm Wavelength." Advanced Materials Research 677 (March 2013): 368–72. http://dx.doi.org/10.4028/www.scientific.net/amr.677.368.
Full textRomero, P. C., and A. S. Ostrovsky. "Goos-Hänchen effect on a one transverse dimensional Hermite-Gaussian Beam." Revista Mexicana de Física 65, no. 2 (2019): 175. http://dx.doi.org/10.31349/revmexfis.65.175.
Full textKrivoruchenko, Mikhail I. "Superposition Principle and Kirchhoff’s Integral Theorem." Universe 8, no. 6 (2022): 315. http://dx.doi.org/10.3390/universe8060315.
Full textLi, Ya Qing, Zhen Sen Wu, Yuan Yuan Zhang, and Han Lu Zhang. "Study of Aperture-Averaged Scintillation for a Partially Coherent Gaussian Schell-Model Beam Propagation in Slant Atmospheric Turbulence." Advanced Materials Research 571 (September 2012): 337–41. http://dx.doi.org/10.4028/www.scientific.net/amr.571.337.
Full textZhu, Kaicheng, Chang Gao, Jiahui Li, Dengjuan Ren, and Jie Zhu. "Propagations of Sin-Gaussian Beam with Astigmatism through Oceanic Turbulence." E3S Web of Conferences 299 (2021): 03013. http://dx.doi.org/10.1051/e3sconf/202129903013.
Full textHashemipour, Seyed Hamid, A. Salman Ogli, and Nasim Mohammadian. "The Effect of Atmosphere Disturbances on Laser Beam Propagation." Key Engineering Materials 500 (January 2012): 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.500.3.
Full textLưu Đức Thọ та Lương Văn Trình. "Phương pháp Hybrid để giải quyết bài toán tán xạ sóng điện từ trên vật thể lý tưởng". Journal of Military Science and Technology, FEE (10 грудня 2023): 127–33. http://dx.doi.org/10.54939/1859-1043.j.mst.fee.2023.127-133.
Full textKorotkova, Olga, and Yalçın Ata. "Electromagnetic Hanbury Brown and Twiss Effect in Atmospheric Turbulence." Photonics 8, no. 6 (2021): 186. http://dx.doi.org/10.3390/photonics8060186.
Full textXianyang, Yang, and Fu Wenyu. "Properties of the Rotation and Mergence of Twisted Gaussian Schell Model Array Beams Propagating in Turbulent Biological Tissues." International Journal of Optics 2022 (March 10, 2022): 1–9. http://dx.doi.org/10.1155/2022/1157777.
Full textLUKIN, I. P. "COHERENCE DISTRIBUTION IN THE CROSS-SECTION OF A PARTIALLY COHERENT VORTEX-FREE BESSEL-GAUSSIAN BEAM." Izvestiya vysshikh uchebnykh zavedenii. Fizika 67, no. 10 (2024): 92–101. https://doi.org/10.17223/00213411/67/10/12.
Full textMorrissey, F. X., and H. P. Chou. "Mode calculations in asymmetrically aberrated laser resonators using the Huygens–Fresnel kernel formulation." Optics Express 19, no. 20 (2011): 19702. http://dx.doi.org/10.1364/oe.19.019702.
Full textKraus, Hal G. "Huygens–Fresnel–Kirchhoff wave-front diffraction formulation: paraxial and exact Gaussian laser beams." Journal of the Optical Society of America A 7, no. 1 (1990): 47. http://dx.doi.org/10.1364/josaa.7.000047.
Full textThrane, Lars, Harold T. Yura, and Peter E. Andersen. "Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle." Journal of the Optical Society of America A 17, no. 3 (2000): 484. http://dx.doi.org/10.1364/josaa.17.000484.
Full textNonogaki, Saburo. "A Rigorous Solution of Two-Dimensional Diffraction Based on the Huygens-Fresnel Principle." Japanese Journal of Applied Physics 28, Part 1, No. 5 (1989): 786–90. http://dx.doi.org/10.1143/jjap.28.786.
Full textAlkelly, Abdu A., M. A. H. Khaled, and Labiba F. Hassan. "Propagation of Partially Coherent Flat-Topped Vortex Hollow Beams in Anisotropic Turbulent Plasma." International Journal of Optics 2022 (September 7, 2022): 1–10. http://dx.doi.org/10.1155/2022/7798053.
Full textBorovitsky, V. M., O. E. Hudz, and S. Ye Tuzhansky. "Method for calculating the scattering function of an optical system point." Optoelectronic Information-Power Technologies 41, no. 1 (2022): 69–77. http://dx.doi.org/10.31649/1681-7893-2021-41-1-69-77.
Full textCao, Pengfei. "Influence of anisotropic ocean turbulence on effective radius of curvature of partially coherent Hermite–Gaussian beam." Canadian Journal of Physics 100, no. 3 (2022): 158–63. http://dx.doi.org/10.1139/cjp-2019-0066.
Full textFogret, Éric, and Pierre Pellat-Finet. "A Light-Ray Approach to Fractional Fourier Optics." Fractal and Fractional 7, no. 7 (2023): 505. http://dx.doi.org/10.3390/fractalfract7070505.
Full textWang, Jun, Yu Hen Hu, Xin Zhou, Da Hai Li, and Qiong Hua Wang. "Calculation of Diffraction Patterns on inside Cylindrical Surface." Applied Mechanics and Materials 533 (February 2014): 260–63. http://dx.doi.org/10.4028/www.scientific.net/amm.533.260.
Full textGuo, Lina, Li Chen, Rong Lin, Minghui Zhang, Yaru Gao, and Yangjian Cai. "Generation of an Adjustable Optical Cage through Focusing an Apertured Bessel-Gaussian Correlated Schell-Model Beam." Applied Sciences 9, no. 3 (2019): 550. http://dx.doi.org/10.3390/app9030550.
Full textCollins, David, Sam Raymond, Ye Ai, John Willams, Richard O'Rorke, and Mahnoush Tayebi. "Acoustic field design in microfluidic geometries via Huygens-Fresnel diffraction and deep neural networks." Journal of the Acoustical Society of America 148, no. 4 (2020): 2707. http://dx.doi.org/10.1121/1.5147500.
Full textHofer, Dominik, and Bernhard G. Zagar. "A numerical approximation of the Huygens-Fresnel integral – Simulations of a rough wetting problem." Measurement 46, no. 8 (2013): 2828–36. http://dx.doi.org/10.1016/j.measurement.2013.05.003.
Full textSamad, Ricardo Elgul, and Nilson Dias Vieira, Jr. "Analytical description of z-scan on-axis intensity based on the Huygens–Fresnel principle." Journal of the Optical Society of America B 15, no. 11 (1998): 2742. http://dx.doi.org/10.1364/josab.15.002742.
Full textKovalev, Alexey A., Victor V. Kotlyar, and Anton G. Nalimov. "Topological Charge and Asymptotic Phase Invariants of Vortex Laser Beams." Photonics 8, no. 10 (2021): 445. http://dx.doi.org/10.3390/photonics8100445.
Full textJin, Long, Zirui Zhang, Nuo Wang, Zixin Liu, Yuwei Deng, and Yanhua Fu. "Intensity Distribution of Partially Coherent Array Finite Airy Beams Propagating in Atmospheric Turbulence." International Journal of Optics 2021 (February 5, 2021): 1–11. http://dx.doi.org/10.1155/2021/6649144.
Full textAl-Nadary, H. O., Shukri Kaid, Abdu A. Alkelly, Hassan T. Al-Ahsab, and M. S. Qusaila. "Influence of astigmatic aberration on partially coherent Gaussian-Schell vortex beam focused by lensacon." مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا 2, no. 5 (2024): 432–39. http://dx.doi.org/10.59628/jast.v2i5.1274.
Full textZhang, Xueqian, Quan Xu, Quan Li, et al. "Asymmetric excitation of surface plasmons by dark mode coupling." Science Advances 2, no. 2 (2016): e1501142. http://dx.doi.org/10.1126/sciadv.1501142.
Full textKaid, Shukri A. M., Hatim O. Al-Nadary, Mohammad S. Qusailah, and Abdu A. Alkelly. "Intensity distribution of the partially coherent Gaussian Schell vortex beam diffracted by classical axicon." مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا 2, no. 2 (2024): 197–204. http://dx.doi.org/10.59628/jast.v2i2.899.
Full textZhao, Yang, Zhiwen Yan, Yibo Wang, et al. "Second-Order Statistics of Partially Coherent Beams with Laguerre Non-Uniform Coherence Properties under Turbulence." Photonics 10, no. 7 (2023): 837. http://dx.doi.org/10.3390/photonics10070837.
Full textGuerrero-Viramontes, J. A., D. Moreno-Hernández, F. Mendoza-Santoyo, and M. Funes-Gallanzi. "3D particle positioning from CCD images using the generalized Lorenz–Mie and Huygens–Fresnel theories." Measurement Science and Technology 17, no. 8 (2006): 2328–34. http://dx.doi.org/10.1088/0957-0233/17/8/039.
Full text