Academic literature on the topic 'HV overhead lines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HV overhead lines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "HV overhead lines"
Lazaropoulos, Athanasios G. "Review and Progress towards the Common Broadband Management of High-Voltage Transmission Grids: Model Expansion and Comparative Modal Analysis." ISRN Electronics 2012 (December 27, 2012): 1–18. http://dx.doi.org/10.5402/2012/935286.
Full textLazaropoulos, Athanasios G. "Broadband Transmission and Statistical Performance Properties of Overhead High-Voltage Transmission Networks." Journal of Computer Networks and Communications 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/875632.
Full textLazaropoulos, Athanasios G. "Wireless Sensor Network Design for Transmission Line Monitoring, Metering, and Controlling: Introducing Broadband over Power Lines-Enhanced Network Model (BPLeNM)." ISRN Power Engineering 2014 (June 4, 2014): 1–22. http://dx.doi.org/10.1155/2014/894628.
Full textAhmed, Y., and S. M. Rowland. "U.K. Linesmen's Experience of Microshocks on HV Overhead Lines." Journal of Occupational and Environmental Hygiene 6, no. 8 (June 17, 2009): 475–82. http://dx.doi.org/10.1080/15459620902966737.
Full textRabah, Djekidel, Sid Ahmed, and Samar Akef. "Accurate computation of magnetic induction generated by HV overhead power lines." Facta universitatis - series: Electronics and Energetics 32, no. 2 (2019): 267–85. http://dx.doi.org/10.2298/fuee1902267r.
Full textRowland, Simon M., Konstantinos Kopsidas, and Ian Cotton. "Modeling of Currents on Long Span, Dielectric Cables on HV Overhead Lines." IEEE Transactions on Power Delivery 22, no. 2 (April 2007): 1138–44. http://dx.doi.org/10.1109/tpwrd.2007.893434.
Full textDjurić, M., K. Zorić, and N. Jejina. "Neural-network-based approach for secondary arc recognition on HV overhead lines." European Transactions on Electrical Power 9, no. 5 (September 1999): 309–12. http://dx.doi.org/10.1002/etep.4450090505.
Full textKrajewski, W. "3-D model of the electric field excited by overhead HV lines." Electrical Engineering 81, no. 1 (February 1998): 55–63. http://dx.doi.org/10.1007/bf01233057.
Full textDjekidel, Rabah, Sid Bessedik, and Abdechafik Hadjadj. "Assessment of electrical interference on metallic pipeline from HV overhead power line in complex situation." Facta universitatis - series: Electronics and Energetics 34, no. 1 (2021): 53–69. http://dx.doi.org/10.2298/fuee2101053d.
Full textPylarinos, D. "Overhead Transmission Line Easement and Right-of-Way Cases in Crete, Greece: A Statistical Analysis of 1220 Cases from 1974 to 2019." Engineering, Technology & Applied Science Research 10, no. 3 (June 7, 2020): 5581–89. http://dx.doi.org/10.48084/etasr.3591.
Full textDissertations / Theses on the topic "HV overhead lines"
Groch, Matthew. "HV Transmission line and tower inspection safe-fly zone modelling and metrology." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85795.
Full textENGLISH ABSTRACT: The deployment of Unmanned Aerial Vehicles (UAV) for power line inspection requires the definition of safe-fly zones. Transient Over-Voltages (TOVs) on the Overhead Transmission Lines (OHTLs) put the UAV at risk if it encroaches on these zones. In order to determine the safe-fly zones of a UAV in the vicinity of OHTLs, realistic full-scale experimental tests are done. Non-linearity in breakdown effects renders small-scale testing and computational work inaccurate. Experimental work is used to describe the close-up approach distances for worst-case scenarios. Testing cannot provide a full solution due to the limitation of the equipment available. Further tests must therefore be done at a specialised facility. Experiments are run in two phases, namely non-linear and linear tests in the High Voltage (HV) laboratory. The non-linear tests are done to derive Minimum Approach Distances (MAD). The linear experiments are used to calibrate FEKO, the simulation tool, to the measurement environment. Once correlation between the linear test data and the simulated data is found, confidence is derived in both the simulation model and the test setup. The simulations can then be used to determine a geometric factor as an input into F. Rizk’s prediction equations. The Rizk equations are used to describe the safe-fly zones alongside OHTLs as an addition to the non-linear experimental work. Along with the standard’s suggestions, the Rizk predictions are formulated in such a way that line-specific solutions can be determined. The suggested clearance values are provided in terms of per unit values, which can be selected in accordance with historical line data. Power line sparking is investigated to better understand the line radiation phenomenon. This understanding could assist in the line inspection process, as well as in the layout of power lines near radio quiet areas. Knowledge of OHTL radiation patterns can aid in the location of corona and sparking sources in the inspection process. Aerial sparking measurements are taken using a UAV carrying a spectrum analyser. Measured sparking levels are used to verify a Computational Electromagnetic (CEM) model. The CEM model can then be used to further investigate OHTL radiation characteristics.
AFRIKAANSE OPSOMMING: Die aanwending van Onbemande Vliegtuie (UAVs) vir kraglyn inspeksies, vereis die definiëring van veilige vlieg sones. Oorspannings (TOVs) op oorhoofse kraglyne (OHTLs) kan hierdie vliegtuie in gevaar stel as hulle die grense van hierdie sones oorskry. Om die veilige vlieg sones van 'n UAV in die omgewing van OHTLs te bepaal, is realistiese volskaalse toetse gedoen. Die nie-lineariteit in afbreek effekte lewer onakkurate kleinskaal toetse en rekenaar werk. Eksperimentele werk word gebruik om die benaderde afstande vir die ergste geval te beskryf. Hierdie werk kan nie 'n volledige oplossing gee nie as gevolg van ‘n beperking op huidige toerusting. Dit beteken dat verdere toetse, by ‘n meer gespesialiseerde fasiliteit, gedoen moet word. Eksperimente is uitgevoer in twee fases: nie-lineêre en lineêre toetse in die Hoogspannings (HV) laboratorium. Die nie-lineêre toetse word gedoen om die kleinste-benaderde-afstand (MAD) af te lei en die lineêre eksperimente word gebruik om FEKO (‘n numeriese elektromagnetika simulasie program) met die metings omgewing te kalibreer. Sodra daar ‘n korrelasie tussen die lineêre data en die gesimuleerde data is, kan daar aangeneem word dat die simulasie model en die toets-opstelling betroubaar is. Die simulasies kan dan gebruik word om 'n meetkundige faktor te bepaal as 'n bydrae tot F. Rizk se voorspellings vergelykings. Die Rizk vergelykings word gebruik om die veilige vlieg sones langs die OHTLs te beskryf. Dit kan dus gebruik word as ‘n toevoeging tot die nie-lineêre eksperimentele werk. Saam met die normale meet standaard voorstellings, is die Rizk voorspellings geformuleer sodat dit die lyn spesifieke oplossings kan bepaal. Die voorgestelde verklarings waardes word in per eenheid waardes beskryf, wat dan gekies kan word met ooreenstemmende historiese lyn data. Kraglyn-vonke word ondersoek om die lyn-bestraling verskynsel beter te verstaan. Hierdie begrip kan in die lyn inspeksie proses en in die uitleg van kraglyne naby radiostilte-areas help. Kennis van OHTL bestralings patrone kan help met die identifisering van corona en vonk-bronne tydens die inspeksie proses. 'n UAV met 'n aangehegte spektrum analiseerder is gebruik om die lug-vonkende metings te neem. Vonk vlakke wat gemeet is word dan gebruik om 'n Numeriese Elektromagnetiese (CEM) model te bevestig. Die CEM model kan dan gebruik word om OHTL bestralings eienskappe verder te ondersoek.
Veselý, Tomáš. "Pořizovací a provozní náklady (efektivnost) různých typů vedení VN." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377152.
Full textConference papers on the topic "HV overhead lines"
Solomon, Teona, Marcel Istrate, and Dragos Machidon. "Study of lightning’s strokes on HV overhead power lines." In 2021 9th International Conference on Modern Power Systems (MPS). IEEE, 2021. http://dx.doi.org/10.1109/mps52805.2021.9492600.
Full textBarsali, Stefano, Roberto Cappagli, Romano Giglioli, and Davide Poli. "Operational experiences of active shielding systems for overhead HV lines." In 2012 IEEE International Energy Conference (ENERGYCON 2012). IEEE, 2012. http://dx.doi.org/10.1109/energycon.2012.6348255.
Full textGu, Shanqiang, Jiahong Chen, Xuefang Tong, Xiaolan Li, and Rui Zhang. "Evaluation of Lightning Flashover Risk of HV Overhead Transmission Lines." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449261.
Full textIssouribehere, Pedro, Daniel Esteban, Fernando Issouribehere, Gustavo Barbera, and Hugo Mayer. "Perturbation measurements on HV overhead lines using Electric Field Sensors." In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672569.
Full textGao, Zhilong, Dongtao Wang, and Xiaocen Cai. "Research and Development of On-line Monitoring System for HV Overhead Transmission Lines." In 2015 International conference on Applied Science and Engineering Innovation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/asei-15.2015.72.
Full textGardiner, I. P. "On-site experience of an adaptive autoreclose relay for HV overhead lines." In 6th International Conference on Developments in Power Systems Protection. IEE, 1997. http://dx.doi.org/10.1049/cp:19970103.
Full textNazarcik, Tomas, and Zdenka Benesova. "Modelling of the transients on the multi-circuit EHV/HV overhead transmission lines." In 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE). IEEE, 2017. http://dx.doi.org/10.1109/cpee.2017.8093069.
Full textWiessner, Fabian, Torsten Tobien, and Faouzi Derbel. "Reducing effect of neighboring HV overhead lines on interference at single-pole automatic reclosing." In 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2021. http://dx.doi.org/10.1109/ssd52085.2021.9429513.
Full textSamy, M. M., and A. M. Emam. "Computation of electric fields around parallel HV and EHV overhead transmission lines in Egyptian power network." In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2017. http://dx.doi.org/10.1109/eeeic.2017.7977403.
Full textLoboda, Marek, and Krzysztof Lenarczyk. "Correlation between recorded CG lightning discharges and shut-downs of selected HV overhead power transmission lines in Poland." In 2014 International Conference on Lightning Protection (ICLP). IEEE, 2014. http://dx.doi.org/10.1109/iclp.2014.6973114.
Full text