To see the other types of publications on this topic, follow the link: HVDC power transmission.

Dissertations / Theses on the topic 'HVDC power transmission'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'HVDC power transmission.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Eriksson, Robert. "Coordinated Control of HVDC Links in Transmission Systems." Doctoral thesis, KTH, Elektriska energisystem, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-30625.

Full text
Abstract:
Dynamic security limits the power transfer capacity between regions and therefore has an economic impact. The power modulation control of high-voltage direct current (HVDC) links can improve the dynamic security of the power system. Having several HVDC links in a system creates the opportunity to coordinate such control, and coordination also ensures that negative interactions do not occur among the controllable devices. This thesis aims to increase dynamic security by coordinating HVDC links, as an alternative to decreasing the transfer capacity. This thesis contributes four control approaches for increasing the dynamic stability, based on feedforward control, adaptive control, optimal control, and exact-feedback linearization control. Depending on the available measurements, dynamic system model, and system topology, one of the developed methods can be applied. The wide-area measurement system provides the central controller with real-time data and sends control signals to the HVDC links. The feedforward controller applies rapid power dispatch, and the strategy used here is to link the N-1 criterion between two systems. The adaptive controller uses the modal analysis approach; based on forecasted load paths, the controller gains are adaptively adjusted to maximize the damping in the system. The optimal controller is designed based on an estimated reduced-order model; system identification develops the model based on the system response. The exact-feedback linearization approach uses a pre-feedback loop to cancel the nonlinearities; a stabilizing controller is designed for the remaining linear system. The conclusion is that coordinating the HVDC links improves the dynamic stability, which makes it possible to increase the transfer capacity. This conclusion is also supported by simulations of each control approach.
QC 20110302
APA, Harvard, Vancouver, ISO, and other styles
2

Babazadeh, Davood. "Distributed Control of HVDC Transmission Grids." Doctoral thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202753.

Full text
Abstract:
Recent issues such as priority access of renewable resources recommended by European energy directives and increase the electricity trading among countries lead to new requirements on the operation and expansion of transmission grids. Since AC grid expansions are limited by legislative issues and long distance transmission capacity, there is a considerable attention drawn to application of HVDC transmission grids on top of, or in complement to, existing AC power systems. The secure operation of HVDC grids requires a hierarchical control system. In HVDC grids, the primary control action to deal with power or DC voltage deviations is communication-free and local. In addition to primary control, the higher supervisory control actions are needed to guarantee the optimal operation of HVDC grids. However, the implementation of supervisory control functions is linked to the arrangement of system operators; i.e. an individual HVDC operator (central structure) or sharing tasks among AC system operators (distributed structure). This thesis presents distributed control of an HVDC grid. To this end, three possible supervisory functions are investigated; coordination of power injection set-points, DC slack bus selection and network topology identification. In this thesis, all three functions are first studied for the central structure. For the distributed solution, two algorithms based on Alternating Direction Method of Multipliers (ADMM) and Auxiliary Problem Principle (APP) are adopted to solve the coordination of power injection. For distributed selection of DC slack bus, the choice of parameters for quantitative ranking of converters is important. These parameters should be calculated based on local measurements if distributed decision is desired. To this end, the short circuit capacity of connected AC grid and power margin of converters are considered. To estimate the short circuit capacity as one of the required selection parameters, the result shows that the recursive least square algorithm can be very efficiently used. Besides, it is possible to intelligently use a naturally occurring droop response in HVDC grids as a local measurement for this estimation algorithm. Regarding the network topology, a two-stage distributed algorithm is introduced to use the abstract information about the neighbouring substation topology to determine the grid connectivity.

QC 20170306

APA, Harvard, Vancouver, ISO, and other styles
3

Fitton, Colin Robert. "Mathematical modelling of balanced and unbalanced HVDC power transmission links." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/9033.

Full text
Abstract:
In high voltage direct current power transmission, the need to filter the non-sinusoidal current wave forms drawn by the converters from the ac supply has long been acknowledged. Assessment of the harmonic content of these waveforms to the best accuracy possible is a desirable objective to aid filter design. The conventional analytical technique necessitates making simplifying assumptions and produces only approximate results. Such practical considerations as system unbalance cannot be taken into account. The objective of the research was to perform in-depth analyses of hvdc transmission links, by developing a mathematical model which, in addition to perfectly balanced conditions, allows for the following practical operational abnormalities: (i) Unbalanced 3-phase ac supply voltages (ii) Unbalanced converter transformer impedances (iii) Asymmetrical thyristor valve triggering, whilst not making the usual assumptions of infinite dc side inductance and zero ac system impedance. In other words to develop a completely comprehensive mathematical model. The initial approach was to develop the tensor analysis of a six-pulse Graetz bridge supplied first by a star-star, and then by a star-delta connected transformer. A twelve-pulse converter system was then investigated by modelling the series connection of these two arrangements. The technique of diakoptlcs was introduced and combined with the previous tensor analysis to model a complete dc link with a twelve pulse converter at each end of a transmission line. The diakoptic approach enables the full circuit to be torn, for the purpose of the analysis, into the two twelve pulse converters and the dc line. Summary The final stage of the development of the model involved the inclusion of a more sophisticated representation of the ac system impedance and the addition of tuned or damped filters at the ac busbars. To verify the program, computed results from the mathematical model are compared with corresponding experimental results obtained from a laboratory-scale model of a typical hvdc link configuration. Comparisons are also made with conventionally based calculations involving the assumptions included in the computer-based results, in order to investigate the relative accuracy of the computed solution.
APA, Harvard, Vancouver, ISO, and other styles
4

Shehata, S. A. M. "Analysis of stresses in the cross channel HVDC link transition joint." Thesis, University of Southampton, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agha, Ebrahimi Mohammad R. "A GTO-based scheme for small power tapping from HVDC transmission systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23579.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Yunpeng. "A novel N-phase multi-modular series HVDC tap." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/44134/.

Full text
Abstract:
High-voltage direct-current (HVDC) transmission has higher efficiency and lower expenses for the long-distance bulk-power transmission. A HVDC tap is one type of the multi-terminal HVDC systems which transfers a small amount of power from the HVDC line to the nearby communities with no access to the electricity. Developed from the 1960s, HVDC taps can be summarised into series taps and parallel taps, between which series taps are considered to be more promising on the use of devices and the cost. The conventional series taps have some evident drawbacks, which a modular multilevel based series tap may overcome. Here a novel n-phase Multi-Modular Series HVDC Tap (MMST) is proposed to realise the utilisation of the modular multilevel structure into the series tap and improve the performance of typical series taps. In this PhD thesis the theoretical analysis and the parameter design of two-phase and three-phase MMSTs based on the South-West HVDC Link in Sweden have been carried out. The control strategy for the n-phase MMST, including the load current control, the mean capacitor voltage control and the DC link voltage control, has been designed. In order to verify the feasibility of the proposed topology and the validity of the presented control strategy, simulations have been validated using a low power prototype. The simulation and experimental results indicate that the MMST offers better performance when compared to the conventional series taps.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaseke, R. "Development of corona-based power supplies for remote repeater stations for overhead HVDC power transmission systems." Thesis, University of Fort Hare, 2012. http://hdl.handle.net/10353/d1006787.

Full text
Abstract:
More and more people worldwide are becoming “carbon conscious”. This means they are becoming increasingly aware of the imminent adverse effects of global warming. Of late there has been an urgent drive for governments to be on the forefront of all carbon mitigation initiatives. One such drive involves the United Nations Framework Convention on Climate Change whose parties have been meeting regularly under the banner of Conference of Parties (COP) since 1995. At this conference, parties to the convention review progress made in dealing with climate change. Also key to the deliberations in such meetings are better ways of developing cleaner “carbon free” energy sources. Energy sources of this nature are commonly known as renewable energy sources. In essence global energy trends are constantly moving towards development of more renewable energy sources. It is an undeniable fact that some of viable renewable energy sources especially those with bulk capacity are usually located remotely from load centers. This inevitable reality necessitates the construction of long distance bulk power transmission corridors to link generation sites with load centers. Due to its many inherent advantages over High Voltage Alternate Current (HVAC) for long distance power transmission, High Voltage Direct Current (HVDC) is gradually winning the favor of many utilities. In fact, recent advances in HVDC technology have encouraged many utilities to explore the possibility of harnessing remotely located renewable energy sources which would have otherwise not been viable with HVAC transmission. Through the unfortunate and inevitable phenomenon known as corona effect, overhead HVDC conductors suffer real power losses to the air dielectric surrounding them. Through corona, part of the energy carried on the transmission line is expended through ionization and movement of charges in the air dielectric. This study combined physics, mathematical as well engineering concepts to review corona phenomenon around HVDC lines with specific emphasis on space charge generation and motion within ionized DC fields as well as the influence of temperature on corona discharge or power loss. Also, unlike HVAC, performance of an HVDC system relies heavily on the availability of a reliable and robust telecommunication system. One of the key ways of ensuring reliability of a telecommunication system is by making sure that reliable power supplies are in place to power remote repeater stations. A novel concept of quasi-autonomous corona-based power supply (or QC power supply in short) that works on the principle of magnetohydrodymic (MHD) power generation was developed. A small scale experiment was then designed to assess the feasibility of such power supplies. The experiment was conducted with DC supply of a maximum rated voltage of 30 kVDC and generated up to 6 VDC at an optimum ambient temperature of 23°C. These results have confirmed that with further development QC power supplies have the potential of proving reliable power to remotely located repeaters or any other small critical loads along the stretch of the HVDC transmission line. Practical HVDC transmission systems operate voltages in the excess of 500 kV. By linear extrapolation of the above mentioned results; one would expect to yield up to 100-, 120- and 160-VDC from a 500-, 600- and 800- kV HVDC system, respectively. Although the study succeeded in conceptualizing a CMHD idea upon which the novel QC power supply was developed, quite extensive and rigorous design, modeling, prototyping and experimentation processes are still required before the first QC power supply can be commissioned on a practical HVDC line
APA, Harvard, Vancouver, ISO, and other styles
8

Kong, Dechao. "Advanced HVDC systems for renewable energy integration and power transmission : modelling and control for power system transient stability." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4217/.

Full text
Abstract:
The first part is concerned with dynamic aggregated modelling of large offshore wind farms and their integration into power systems via VSC-HVDC links. The dynamic aggregated modelling of offshore wind farms including WT-DFIGs and WT-PMSGs are proposed to achieve effective representations of wind farms in terms of computational time and simulation accuracy for transient stability analysis. Modelling and control of VSC-HVDC systems for integration of offshore wind farms are investigated. Comparisons of two control schemes of rectifier-side converter are carried out to evaluate their dynamic performance for integration of these offshore wind farms in terms of transient stability. The second part is to address the advanced transmission systems with innovative HVDC configurations. Feasibility studies of updated schemes of monoplolar CSC-HVDC link with support of monopolar VSC-HVDC link as the hybrid bipolar CSC/I{VDC system is carried out to deal with two key issues of CSC-HVDC. Small-signal modelling of MTDC grids is investigated and parameter optimisation of PI controller of converters in MTDC grids is carried out using PSO method based on small-signal models of the system at multiple operating points to obtain optimised parameters of PI controllers to improve dynamic performance of MTDC grids at multiple operating points.
APA, Harvard, Vancouver, ISO, and other styles
9

Meier, Stephan. "Novel voltage source converter based HVDC transmission system for offshore wind farms." Licentiate thesis, KTH, School of Electrical Engineering (EES), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-568.

Full text
Abstract:

Offshore wind farms have recently emerged as promising renewable energy sources. For increasing distances between offshore generation and onshore distribution grid, HVDC transmission systems based on voltage source converters can be a feasible and competitive solution. This thesis presents a comprehensive evaluation of a novel integrated wind farm topology that includes the generator drive system, the turbine interconnection and the HVDC transmission.

In the proposed concept, every wind turbine is connected to a single-phase medium-frequency collection grid via a distribution transformer and a cycloconverter, which allows the wind turbines to operate at variable speed. The collection grid is connected to an HVDC cable via a transmission transformer and a single-phase voltage source converter. This thesis evaluates in detail the principle of operation, which is also verified with system simulations in PSCAD.

The proposed concept promises several potential benefits. Converter switching losses and stress on the semiconductors for example can be considerably reduced by applying a soft-switched commutation scheme in all points of operation. Single-phase medium-frequency transformers have comparably low losses and their compact size and low weight implies an important benefit in an offshore environment. In addition, the voltage source converter is considerably simplified by the reduction to one phase leg, which implies a substantial cost saving.

Several technical challenges are identified and critically evaluated in order to guarantee the feasibility of the proposed concept. Especially the design of the medium-frequency collection grid is crucial as unwanted system resonances can cause dangerous overvoltages. Most of the technical challenges concern the specific characteristics of the proposed concept. The insulation of the single-phase medium-frequency transformers for example needs to withstand the high voltage derivatives. This thesis contains also considerations regarding the dimensioning and optimization of different system components.

A survey of different transmission systems for the grid connection of wind farms shows the potential of the proposed concept, which addresses several problems associated with electrical systems of wind farms. Both the requirements for variable-speed operation of the wind turbines and an interface for HVDC transmission are fulfilled in a cost-effective way. Compared to conventional voltage source converter based HVDC transmission systems, the initial costs are reduced and the expected annual energy production is increased. In addition, the proposed voltage source converter based HVDC transmission system can fully comply with recent requirements regarding the grid connection of wind farms.

APA, Harvard, Vancouver, ISO, and other styles
10

Gonzalez-Torres, Juan Carlos. "Transient stability of high voltage AC-DC electric transmission systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS041.

Full text
Abstract:
Les nouvelles politiques adoptées par les autorités nationales ont encouragé pendant les dernières années l'intégration à grande échelle des systèmes d'énergie renouvelable (RES). L'intégration à grande échelle des RES aura inévitablement des conséquences sur le réseau de transport d'électricité tel qu'il est conçu aujourd'hui, car le transport de l'électricité massif sur de longues distances pourrait amener les réseaux de transport à fonctionner près de leurs limites, réduisant ainsi leurs marges de sécurité. Des systèmes de transport d’électricité plus complexes seront donc nécessaires.Dans ce scénario, les systèmes de transmission à Courant Continu Haute Tension (HVDC) constituent la solution la plus intéressante pour le renforcement et l'amélioration des réseaux à Courant Alternatif (AC) existants, non seulement en utilisant des configurations point à point, mais aussi dans des configurations multi-terminales. L'introduction des systèmes HVDC aboutira à terme à un réseau électrique hybride haute tension AC/DC, qui doit être analysé comme un système unique afin de mieux comprendre les interactions entre le réseau AC et le réseau DC.Cette thèse porte sur l'analyse de la stabilité transitoire des systèmes de transmission électrique hybrides AC/DC. Plus particulièrement, deux questions ont été abordées: Quel est l'impact d'un défaut du réseau DC sur la stabilité transitoire du réseau AC? Comment est-il possible de se servir des systèmes de transmission DC en tant qu'actionneurs afin d'améliorer la stabilité transitoire AC ?Dans la première partie de ce travail, les modèles mathématiques du réseau hybride AC/DC sont décrits ainsi que les outils nécessaires à l'analyse du système en tenant compte de sa nature non linéaire. Ensuite, une analyse approfondie de la stabilité transitoire du réseau électrique dans le cas particulier d'un court-circuit dans le réseau DC et l'exécution des stratégies de protection correspondantes sont effectuées. En complément, des indicateurs de stabilité et des outils pour dimensionner les futurs réseaux de la MTDC afin de respecter les contraintes des stratégies de protection existantes sont proposés.La deuxième partie de la thèse porte sur les propositions de commande pour la modulation des références de puissance des systèmes de transmission HVDC dans le but d'améliorer la stabilité transitoire du système AC connecté à ce réseau DC. Tout d'abord, nous axons notre étude sur le contrôle non linéaire des liaisons HVDC point à point dans des liaisons hybrides AC/DC. La compensation rapide des perturbations de puissance, l'injection de puissance d'amortissement et l'injection de puissance de synchronisation sont identifiées comme des mécanismes par lesquels les systèmes HVDC peuvent améliorer les marges de stabilité des réseaux AC.Enfin, une stratégie de contrôle pour l'amélioration de la stabilité transitoire par injection de puissance active dans par un réseau MTDC est proposée. Grâce à la communication entre les stations, la commande décentralisée proposée injecte la puissance d'amortissement et de synchronisation entre chaque paire de convertisseurs en utilisant uniquement des mesures au niveau des convertisseurs. L'implémentation proposée permet d'utiliser au maximum la capacité disponible des convertisseurs en gérant les limites de puissance d'une manière décentralisée
The new policy frameworks adopted by national authorities has encouraged the large scale-integration of Renewable Energy Systems (RES) into bulk power systems. The large-scale integration of RES will have consequences on the electricity transmission system as it is conceived today, since the transmission of bulk power over long distances could lead the existing transmission systems to work close to their limits, thus decreasing their dynamic security margins. Therefore more complex transmissions systems are needed.Under this scenario, HVDC transmission systems raise as the most attractive solution for the reinforcement and improvement of existing AC networks, not only using point-to-point configurations, but also in a Multi-Terminal configuration. The introduction of HVDC transmission systems will eventually result in a hybrid high voltage AC/DC power system, which requires to be analyzed as a unique system in order to understand the interactions between the AC network and the DC grid.This thesis addresses the transient stability analysis of hybrid AC/DC electric transmission systems. More in particular, two questions sought to be investigated: What is the impact of a DC contingency on AC transient stability? How can we take advantage of the of DC transmission systems as control inputs in order to enhance AC transient stability?In the first part of this work, the mathematical models of the hybrid AC/DC grid are described as well as the necessary tools for the analysis of the system taking into account its nonlinear nature. Then, a thorough analysis of transient stability of the power system in the particular case of a DC fault and the execution of the corresponding protection strategies is done. As a complement, stability indicators and tools for sizing future MTDC grids in order to respect the constraints of existing protection strategies are proposed.The second part of the thesis addresses the control proposals for the modulation of power references of the HVDC transmission systems with the purpose of transient stability enhancement of the surrounding AC system. Firstly, we focus our study in the nonlinear control of point-to-point HVDC links in hybrid corridors. Fast power compensation, injection of damping power and injection of synchronizing power are identified as the mechanisms through which HVDC systems can improve stability margins.Finally, a control strategy for transient stability enhancement via active power injections of an MTDC grid is proposed. Using communication between the stations, the proposed decentralized control injects damping and synchronizing power between each pair of converters using only measurements at the converters level. The proposed implementation allows to fully use the available headroom of the converters by dealing with power limits in a decentralized way
APA, Harvard, Vancouver, ISO, and other styles
11

Mohamed, Ramadan Haitham Saad. "Non-linear control and stabilization of VSC-HVDC transmission systems." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112046/document.

Full text
Abstract:
L'intégration des liaisons à courant continu dans les systèmes électriques permet d’accroitre les possibilités de pilotage des réseaux, ce qui permet d’en améliorer la sûreté et de raccorder de nouveaux moyens de production. Pour cela la technologie VSC-HVDC est de plus en plus plébiscitée pour interconnecter des réseaux non synchrones, raccorder des parcs éoliens offshore, ou contrôler le flux d’énergie notamment sur des longues distances au travers de liaisons sous-marines (liaison NorNed). Les travaux de cette thèse portent sur la modélisation, la commande non-linéaire et la stabilisation des systèmes VSC–HVDC, avec deux axes de travail. Le premier se focalise sur la conception et la synthèse des lois de commandes non-linéaires avancées basées sur des systèmes de structures variables (VSS). Ainsi, les commandes par modes glissants (SMC) et le suivi asymptotique de trajectoire des sorties (AOT) ont été proposées afin d’assurer un degré désiré de stabilité en utilisant des fonctions de Lyapunov convenables. Ensuite, la robustesse de ces commandes face à des perturbations et/ou incertitudes paramétriques a été étudiée. Le compromis nécessaire entre la robustesse et le comportement dynamique requis dépend du choix approprié des gains. Ces approches robustes, qui sont facile à mettre en œuvre, ont été appliquées avec succès afin d’atteindre des performances dynamiques élevées et un niveau raisonnable de stabilité vis-à-vis des diverses conditions anormales de fonctionnement, pour des longueurs différentes de liaison DC. Le deuxième vise à étudier l’influence de la commande du convertisseur VSC-HVDC sur l'amélioration de la performance dynamique du réseau de courant alternatif en cas d’oscillations. Après une modélisation analytique d’un système de référence constitué d’un groupe connecté à un convertisseur VSC-HVDC via un transformateur et une ligne, un contrôleur conventionnel simple PI est appliqué au niveau du convertisseur du système pour agir sur les oscillations rotoriques de la machine synchrone. Cette commande classique garantie une amélioration acceptable des performances dynamiques du système; surtout pour l'amortissement des oscillations de l'angle de puissance de la machine synchrone lors de défauts
The integration of nonlinear VSC-HVDC transmission systems in power grids becomes very important for environmental, technical, and economic reasons. These systems have enabled the interconnection of asynchronous networks, the connection of offshore wind farms, and the control of power flow especially for long distances. This thesis aims the non-linear control and stabilization of VSC-HVDC systems, with two main themes. The first theme focuses on the design and synthesis of nonlinear control laws based on Variable Structure Systems (VSS) for VSC-HVDC systems. Thus, the Sliding Mode Control (SMC) and the Asymptotic Output Tracking (AOT) have been proposed to provide an adequate degree of stability via suitable Lyapunov functions. Then, the robustness of these commands has been studied in presence of parameter uncertainties and/or disturbances. The compromise between controller’s robustness and the system’s dynamic behavior depends on the gain settings. These control approaches, which are robust and can be easily implemented, have been applied to enhance the system dynamic performance and stability level in presence of different abnormal conditions for different DC link lengths. The second theme concerns the influence of VSC-HVDC control on improving the AC network dynamic performance during transients. After modeling the Single Machine via VSC-HVDC system in which the detailed synchronous generator model is considered, the conventional PI controller is applied to the converter side to act on damping the synchronous machine power angle oscillations. This simple control guarantees the reinforcement of the system dynamic performance and the power angle oscillations damping of the synchronous machine in presence of faults
APA, Harvard, Vancouver, ISO, and other styles
12

Giraneza, Martial. "High voltage direct current (HVDC) in applications for distributed independent power providers (IPP)." Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/1077.

Full text
Abstract:
Thesis submitted in fulfillment of the requirements for the degree Master of Technology: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology 2013
The development of power electronics did remove most of technical limitations that high voltage direct current (HVDC) used to have. HVDC, now, is mostly used for the transmission of bulk power over long distances and for the interconnection of asynchronous grid. Along with the development of the HVDC, the growth of power demand also increased beyond the utilities capacities. Besides the on-going increasing of power demand, the reforms in electricity market have led to the liberalization and the incorporation of Independent power providers in power system operation. Regulations and rules have been established by regulating authority for grid integration of Independent power providers. With the expected increase of penetration level of those new independent power providers, result of economic reason and actual green energy trend, best method of integration of those new power plants are required. In this research HVDC technology, namely VSC-HVDC is used as interface for connecting independent power providers units to the grid. VSC-HVDC has various advantages such as short-circuit contribution and independent control of active and reactive power. VSC-HVDC advantages are used for a safe integration of IPPs and make them participate to grid stabilization. MATLAB/Simulink simulations of different grid connected, through VSC-HVDC system, IPPs technologies models are performed. For each IPP technology model, system model performances are studied and dynamics responses during the disturbance are analyzed in MATLAB/ Simulink program. The simulation results show that the model satisfy the standard imposed by the regulating authority in terms of power quality and grid support. Also the results show the effect of the VSC-HVDC in preventing faults propagation from grid to integrated IPPs units.
APA, Harvard, Vancouver, ISO, and other styles
13

Durrant, Martyn. "VSC HVDC power transmission control a case study in linear controller design for uncertain nonlinear plants." Aachen Shaker, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Meah, Kala. "A self coordinating parallel multi-PI control scheme for an HVDC transmission system to accommodate a weak AC system." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1445047021&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Renaudin, Fabien. "Integration and Stability of a Large Offshore Wind Farm with HVDC Transmission in the Norwegian Power System." Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9820.

Full text
Abstract:

In the last decades, due to the environmental concerns and the increase of energy demand, wind power has strongly penetrated the field of electricity generation. Today, because of the lack of onshore sites and visual and noise nuisances, the development of wind farms turns more and more to offshore and Norway has a great potential of offshore wind power. This thesis investigates the impact of the integration of an offshore 1000MW wind farm on the Norwegian power system. Two different transmissions are used, one HVAC transmission system and one HVDC transmission system. They are installed in four different configurations which represent the possible cases of wind farm integration regarding the distance from the shore. Two different connection points have been chosen regarding the load flow simulations. The first one is situated in the region of Bergen in the West Norway and the other one is situated between Kristiansand and Stavanger in the south Norway. In order to investigate the power stability and the behaviour of the system, simulations are performed under both steady-state and dynamic conditions by using PSSTME. Disturbances are applied in different locations on the system both near the connection point and on the offshore wind farm. The results show that the power system with large offshore wind power remains stable after the different faults. The requirements of the Norwegian Transmission System Operator, Statnett, are respected after the integration of a large offshore wind farm in the Norwegian power system.

APA, Harvard, Vancouver, ISO, and other styles
16

Ridenour, Daniel Keith. "Examination of Power Systems Solutions Considering High Voltage Direct Current Transmission." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/63927.

Full text
Abstract:
Since the end of the Current Wars in the 19th Century, alternating current (AC) has dominated the production, transmission, and use of electrical energy. The chief reason for this dominance was (and continues to be) that AC offers a way minimize transmission losses yet transmit large power from generation to load. With the Digital Revolution and the entrance of most of the post-industrialized world into the Information Age, energy usage levels have increased due to the proliferation of electrical and electronic devices in nearly all sectors of life. A stable electrical grid has become synonymous with a stable nation-state and a healthy populace. Large-scale blackouts around the world in the 20th and the early 21st Centuries highlighted the heavy reliance on power systems and because of that, governments and utilities have strived to improve reliability. Simultaneously occurring with the rise in energy usage is the mandate to cut the pollution by generation facilities and to mitigate the impact grid expansion has on environment as a whole. The traditional methods of transmission expansion are beginning to show their limits as utilities move generation facilities farther from load centers, which reduces geographic diversity, and the integration of nondispatchable, renewable energy sources upsets the current operating regime. A challenge faces engineers - how to expand generation, expand transmission capacity, and integrate renewable energy sources while maintaining maximum system efficiency and reliability. A technology that may prove beneficial to the operation of power system is high voltage direct current transmission. The technology brings its own set of advantages and disadvantages, which are in many ways the complement of AC. It is important to update transmission planning processes to account for the new possibilities that HVDC offers. This thesis submits a discussion of high voltage direct current transmission technology itself and an examination of how HVDC can be considered in the planning process.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
17

Boinne, Raphael. "Stability Studies of an Offshore Wind Farms Cluster Connected with VSC-HVDC Transmission to the NORDEL Grid." Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8961.

Full text
Abstract:

Offshore wind power has proven to be a renewable energy source with a high potential, especially in the North Sea, where an important development is going on. The location of the wind farms tends to move far from the coast to benefit stronger and more constant wind. In the same time, the power output of the wind farm is increasing to several hundreds of MW up to 1 GW. In the European liberalized electricity market, the interconnection of the countries become very important to facilitate the cross-border trade of electricity but also to improve the reliability of the grid. Combining this both aspects into one, a big offshore HVDC grid connecting countries and large wind farms spread allover the North Sea is currently being studied and developed. So in addition of the challenge given by a high penetration of the wind power production in the European power production scheme, new challenges are opened especially for the offshore transmission. This master thesis presents the integration to grid of a single 1 GW or a cluster of wind farms connected to an oil rig with different connection scheme based on HVDC transmission using the Voltage Source Converter (VSC) technology. The connection of the offshore wind farms is done either with a single HVDC transmission or two HVDC transmissions connected to the main grid at two different Points of Common Connection situated in the south-west of Norway. The wind farms are not represented in detail but by a single generator. They are equipped for the simulation with Double Fed Induction Generators (DFIG) to be representative of the reality, almost half of the wind turbines are today equipped with DFIG technology. Two disturbances are used to test the electrical stability of the system: a classical 150ms three fault phase in agreement with the grid code requirements on the ride fault through requirements and 100ms fault leading to the tripping of a line. The impact of using different types of generator is also investigated with the simulation of cluster wind farm where a wind farm is equipped with Fixed Speed Generator (FIG). The emphasis is put on the response of the VSC-converter and to a lesser extent on the behaviour of the wind turbine generator. It is demonstrated the capacity of the VSC-converter to stabilize a small grid alone and to “isolate” a disturbance. The voltage and the frequency offshore are practically unaffected by a fault onshore and vice versa. As expected, it is demonstrated that the multiplication of the VSC-HVDC converter in a grid improves the stability of the system. Finally, it has been noticed that there maybe some interactions if several different types of generators are used. The replacement of a generator by another type inside the wind farm cluster may change completely the dynamic behaviour after a disturbance. Simulations are performed with PSS/E.

APA, Harvard, Vancouver, ISO, and other styles
18

Durrant, Martyn [Verfasser]. "VSC-HVDC Power Transmission Control: A Case Study in Linear Controller Design for Uncertain Nonlinear Plants / Martyn Durrant." Aachen : Shaker, 2008. http://d-nb.info/116434241X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Karlsson, Casper. "Analysis of harmonic cross-modulation in HVDC line-commutated converters for practical design purposes." Thesis, Högskolan Väst, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-12308.

Full text
Abstract:
The use of HVDC has many benefits over HVAC for some specific power transmission purposes. However, two major problems with HVDC links are that the converters produce harmonics and consume reactive power. Electrical filters are used to compensate for this and are a major cost driver of HVDC links. An accurate analysis of the modulation makes it possible to design an optimal filter solution in order to make the link financial viable. This report investigates how the complex cross-modulation phenomenon affects the harmonics. The investigation is limited to line-commutated converter technology (LCC) and excludes the newer voltage-source converter technology (VSC) for which the crossmodulation behavior is very different and requires completely different analysis techniques. This report refers to several MATLAB programs. All of these have been developed by the author as part of this thesis work. The report starts by explaining analytically, with the help of switching functions, how harmonics are cross-modulated across line-commutated converters. It is then explained and shown how a MATLAB program, BOWSER, in the time-domain can be used to calculate accurate switching functions when the converter is supplied with a general voltage source and when the DC current contains ripple. After that it is explained and shown how a second MATLAB program, DONKEYKONG, can be created to model an HVDC link in the frequency domain by iterating BOWSER. The cross-modulation phenomena is then finally analyzed in the frequency domain with the help of DONKEYKONG. The result is that the cross-modulation phenomenon can be divided into two groups, affected by grid and DC-side impedance as well as the overlap angle variation. Which will affect the characteristic and non-characteristic harmonics in different ways. It was found that the characteristic harmonics are affected by the cross-modulation due to grid and DC-side impedance by up to 12 % and that low order non-characteristic harmonics can diverge up to 900 % when the converter was supplied with 1 % fundamental unbalance. It also showed that the non-characteristic harmonics have almost the same amplitude for all power transmission levels of the HVDC link. The report shows that the cross-modulation caused by the grid and DC-side impedance, which is sometimes ignored or treated in a simplified way, can affect the practical filter design a lot. It also shows step by step how the MATLAB programs are created
APA, Harvard, Vancouver, ISO, and other styles
20

Wood, Thomas Benedict. "Interaction of DC-DC converters and submarine power cables in offshore wind farm DC networks." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/11767.

Full text
Abstract:
Offshore wind power is attracting increasing levels of research and investment. The use of HVDC transmission and the development of DC grids are topics with similar high levels of interest that go hand in hand with the development of large scale, far from shore wind farms. Despite increased capital cost of some components, DC power transmission can have significant advantages over AC transmission, in particular in the offshore environment. These advantages are well established for large scale, long distance point to point transmission. This thesis assesses the suitability of a multi-terminal DC power collection network, with short cables and relatively small amounts of power, addresses a number of the technical challenges in realising such a network and shows methods for overall system cost reduction. Technical and modelling challenges result from the interaction between power electronic DC-DC converters and the cables in a DC transmission network. In particular, the propagation of the ripple current in bipole DC transmission cables constructed with a metallic sheath and armour is examined in detail. The finite element method is used to predict the response of the cable to the ripple current produced by the converters. These results are used along with wave propagation theory to demonstrate that cable design plays a crucial role in the behaviour of the DC system. The frequency dependent cable models are then integrated with time domain DC-DC converter models. The work in the thesis is, broadly, in two parts. First, it is demonstrated that care and accuracy are required in modelling the cables in the DC transmission system and appropriate models are implemented and validated. Second, these models are combined with DC-DC converter models and used to demonstrate the practicality of the DC grid, make design recommendations and assess its suitability when compared with alternative approaches (e.g. AC collection and/or transmission).
APA, Harvard, Vancouver, ISO, and other styles
21

Cho, Yongnam. "Modeling methodology of converters for HVDC systems and LFAC systems: integration and transmission of renewable energy." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49064.

Full text
Abstract:
The major achievements of this work are based on two categories: (A) introduction of an advanced simulation technique in both time domain and frequency domain, and (B) realistic and reliable models for converters applicable to analysis of alternative transmission systems. The proposed modeling-methodology using a combination of model quadratization and quadratic integration (QMQI) is demonstrated as a more robust, stable, and accurate method than previous modeling methodologies for power system analyses. The quadratic-integration method is free of artificial numerical-oscillations exhibited by trapezoidal integration (which is the most popularly used method in power system analyses). Artificial numerical oscillations can be the direct reason for switching malfunction of switching systems. However, the quadratic-integration method has a natural characteristic to eliminate fictitious oscillations with great simulation accuracy. Also, model quadratization permits nonlinear equations to be solved without simplification or approximation, leading to realistic models of nonlinearities. Therefore, the QMQI method is suitable for simulations of network systems with nonlinear components and switching subsystems. Realistic and reliable converter models by the application of the QMQI method can be used for advanced designs and optimization studies for alternative transmission systems; they can also be used to perform a comprehensive evaluation of the technical performance and economics of alternative transmission systems. For example, the converters can be used for comprehensive methodology for determining the optimal topology, kV-levels, etc. of alternative transmission systems for wind farms, for given distances of wind farms from major power grid substations. In this case, a comprehensive evaluation may help make more-informed decisions for the type of transmission (HVAC, HVDC, and LFAC) for wind farms.
APA, Harvard, Vancouver, ISO, and other styles
22

Björk, Joakim. "Performance Quantification of Interarea Oscillation Damping Using HVDC." Licentiate thesis, KTH, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245223.

Full text
Abstract:
With the transition towards renewable energy, and the deregulation of the electricity market, generation patterns and grid topology are changing. These changes increase the need for transfer capacity. One limiting factor, which sometimes leads to underutilization of the transmission grid, is interarea oscillations. These system-wide modes involve groups of generators oscillating relative to each other and are sometimes hard to control due to their scale and complexity. In this thesis we investigate how high-voltage direct current (HVDC) transmission can be used to attenuate interarea oscillations. The thesis has two main contributions. In the first contribution we show how the stability of two asynchronous grids can be improved by modulating the active power of a single interconnecting HVDC link. One concern with modulating HVDC active power is that the interaction between interarea modes of the two grids may have a negative impact on system stability. By studying the controllability Gramian, we show that it is always possible to improve the damping in both grids as long as the frequencies of their interarea modes are not too close. For simplified models, it is explicitly shown how the controllability, and therefore the achievable damping improvements, deteriorates as the frequency difference becomes small. The second contribution of the thesis is to show how coordinated control of two (or more) links can be used to avoid interaction between troublesome interarea modes. We investigate the performance of some multivariable control designs. In particular we look at input usage as well as robustness to measurement, communication, and actuator failures. Suitable controllers are thereby characterized.
Övergången till förnybar energi och avregleringen av elmarknaden leder till förändrade produktions-och överföringsmönster. Dessa förändringar medför behov av en ökad överföringskapacitet. En begränsande faktor, som kan leda till ett underutnyttjande av stamnätet, är interareapendlingar. Dessa systemövergripande pendlingar involverar grupper av generatorer som svänger i förhållande till varandra. Interareapendlingar är ibland svåra att styra på grund av deras skala och komplexitet. I denna avhandling undersöker vi hur förbindelser med högspänd likström, engleska high-voltage direct current (HVDC), kan användas för att dämpa interareapendlingar. Avhandlingen har två huvudbidrag. I det första bidraget visar vi hur stabiliteten hos två olika synkrona nät kan förbättras genom att modulera den aktiva effekten hos en enda HVDC-länk. Ett bekymmer med aktiv effektmodulering är att växelverkan mellan interareapendlingar hos de två näten kan ha en negativ inverkan på systemets stabilitet. Genom att studera styrbarhetsgramianen visar vi att det alltid är möjligt att förbättra dämpningen i båda näten så länge som frekvenserna hos deras interareapendlingar inte ligger för nära varandra. För förenklade modeller visas det uttryckligen hur styrbarheten och därmed de möjliga dämpningsförbättringarna, försämras då frekvensskillnaden blir liten. Avhandlings andra bidrag visar hur koordinerad styrning av två (eller fler) länkar kan användas för att undvika växelverkan mellan besvärliga interareapendlingar. Vi undersöker prestandan hos olika typer av flervariabla regulatorer. I synnerhet undersökers styrsignalsanvändning samt robusthet mot mät-, kommunikations- och aktuatorfel. Därigenom karakteriseras lämpliga regulatortyper.

QC 20190308

APA, Harvard, Vancouver, ISO, and other styles
23

Olsson, Johanna. "Implementation of Nodes in HVDC Grids." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293884.

Full text
Abstract:
This project is made for a deeper understanding ofhow frequency and amplitude of the waves that create the controlwave in a Pulse Width Modulated 2-level inverter affect the powerquality and power losses. The results were that a high frequencyreduces the Total Harmonic Distortion but increases the powerloss. The amplitude, however, reduces both the Total HarmonicDistortion and the power loss as it increases. All the analyseswere done in a simulation program called Simulink. The resultscan be applied when improving High Voltage Direct Currentinverters to develop a functional High Voltage Direct Currentgrid that enables wider use of renewable energy sources.
Projektet syftar till att få en djupare förståelse för hur frekvensen och amplituden på de vågor som skapar kontollvågen i en pulsbreddsmodulerad likspänningsomvandlare med två nivåer påverkar effektkvalitén och effektförlusterna. Resultatet av studien var att en hög frekvens minskar ”Total Harmonic Distortion” men ökar effektförlusterna. Amplituden å andra sidan reducerar både ”Total Harmonic Distortion” och effektförlusterna när den ökar. Alla analyserna är gjorda i simuleringsprogrammet Simulink. Resultaten kan appliceras när högspända likspänningsomvandlare vidareutvecklas för att skapa ett fungerande högspänt-likströms elnät som öppnar upp för en bredare användning av förnyelsebara energikällor.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
APA, Harvard, Vancouver, ISO, and other styles
24

Diban, Bassel. "Life Estimation of HVDC Cables Subjected to Qualification Test Conditions." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18955/.

Full text
Abstract:
The goal of the Master Thesis is estimating the life of HVDC XLPE-insulated cables subjected to the Qualification Tests conditions according to CIGRÉ Technical Brochure 496 and for different values of the coefficients (a) and (b). During the Electrical Type Test (TT), a series of load cycles (LC) with DC voltage UT=1.85 U0 (rated voltage) are applied in three stages, i.e.: • 12 cycles lasting 24 hours each with a negative polarity of the applied voltage (12 days). • 12 cycles lasting 24 hours each with a positive polarity of the applied voltage (12 days). • 3 cycles lasting 48 hours each with a positive polarity of the applied voltage (6 days). according to CIGRÉ technical brochure 496, Load Cycles are of two types: 1. A 24-hour Load Cycle consists of 8 hours heating (with steady conductor temperature equal to the rated one during at least the last 2 hours), followed by 16 hours of natural cooling. 2. A 48-hour Load Cycle consists of 24 hours heating (with steady conductor temperature equal to the rated one during at least the last 18 hours), followed by 24 hours of natural cooling. Results: -The phenomenon called “Field Inversion” takes place only in the case of high values of “a” and “b” coefficients where the outer part of the insulation is stressed more than the inner part. -In case of low “a” and “b” that the lower those values are, the more the inner part of the insulation is stressed. -The life of the cable under the Type Test condition (around 90 days) is three times longer than the Type Test duration (30 days), considering the worst-case which corresponds to low values of “a” and “b”. -The loss of life in one 48-hour Load Cycle (LC) is twice that in two 24-hour LC (equivalent to the same duration of 48 hours). -For the same values of a and b, the inversion of the life curve over the insulation thickness in the Pre-Qualification Test is greater than that in the Type Test because of the High Load period in PQ test.
APA, Harvard, Vancouver, ISO, and other styles
25

Meier, Stephan. "System Aspects and Modulation Strategies of an HVDC-based Converter System for Wind Farms." Doctoral thesis, Stockholm : Skolan för elektro- och systemteknik, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Santos, Milana Lima dos. "Transmissão de energia elétrica em meia-onda e em corrente contínua - análise técnico-econômica." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-29102012-114533/.

Full text
Abstract:
Ao buscar alternativas para interligação entre importantes centros de geração de energia elétrica localizados no Norte do Brasil e centros consumidores no Nordeste e Sudeste, o setor elétrico brasileiro se depara com o desafio de transpor distâncias superiores a 2000 km. A alternativa em corrente contínua já é bastante utilizada, com desempenho satisfatório. Já a transmissão em meia-onda, ainda não utilizada comercialmente em país algum do mundo, é uma alternativa sugerida por alguns artigos como adequada a esse propósito. Este trabalho se propõe a apresentar uma metodologia de comparação econômica entre alternativas de transmissão e aplicá-la à comparação entre a meia-onda e a corrente contínua, utilizando um cenário muito próximo ao brasileiro. Para possibilitar esta comparação, são apresentados detalhes do funcionamento da linha de meia-onda, já que pouco foi publicado sobre o assunto. São mencionados alguns aspectos adversos de seu comportamento transitório e também são descritas etapas de definição de alternativas de transmissão a serem avaliadas.
In order to connect important power generation plants located in Northern region to the major load centers in the Northeast and Southeast parts of the country, the Brazilian electric sector should deal with the challenge of planning transmission systems to cover distances of more than 2000 km. The HVDC transmission alternative, which has shown satisfactory response and performance to also carry bulk power over long distances, is already used in many countries. Still, the half-wavelength power transmission line (HWLL), not yet commercially used in any country, is an alternative suggested by some papers as suitable for this purpose. Thus, the objective of this work is to present a methodology for the economic comparison amongst the transmission alternatives present today, to thereafter apply it to the HWLL and HVDC transmission technologies. To do so, a closest scenario to that of the Brazilian case will be used. In order to perform this comparison, some details of the HWLL operation are explored, since little was published on this subject. Also, some adverse aspects of the HWLL transient behavior as well as the steps for defining the transmission alternatives to be evaluated are presented.
APA, Harvard, Vancouver, ISO, and other styles
27

De, Bonis Gianluca. "Studio, simulazione e verifica sperimentale di tecniche di controllo per convertitori multilivello modulari." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6771/.

Full text
Abstract:
L’evoluzione dei componenti elettronici di potenza ed il conseguente sviluppo dei convertitori statici dell’energia elettrica hanno consentito di ottenere un’elevata efficienza energetica, sia nell’ambito degli azionamenti elettrici, sia nell’ambito della trasmissione e distribuzione dell’energia elettrica. L’efficienza energetica è una questione molto importante nell’attuale contesto storico, in quanto si sta facendo fronte ad una elevatissima richiesta di energia, sfruttando prevalentemente fonti di energia non rinnovabili. L’introduzione dei convertitori statici ha reso possibile un notevolissimo incremento dello sfruttamento delle fonti di energia rinnovabili: si pensi ad esempio agli inverter per impianti fotovoltaici o ai convertitori back to back per applicazioni eoliche. All’aumentare della potenza di un convertitore aumenta la sua tensione di esercizio: le limitazioni della tensione sopportabile dagli IGBT, che sono i componenti elettronici di potenza di più largo impiego nei convertitori statici, rendono necessarie modifiche strutturali per i convertitori nei casi in cui la tensione superi determinati valori. Tipicamente in media ed alta tensione si impiegano strutture multilivello. Esistono più tipi di configurazioni multilivello: nel presente lavoro è stato fatto un confronto tra le varie strutture esistenti e sono state valutate le possibilità offerte dall’architettura innovativa Modular Multilevel Converter, nota come MMC. Attualmente le strutture più diffuse sono la Diode Clamped e la Cascaded. La prima non è modulare, in quanto richiede un’apposita progettazione in relazione al numero di livelli di tensione. La seconda è modulare, ma richiede alimentazioni separate e indipendenti per ogni modulo. La struttura MMC è modulare e necessita di un’unica alimentazione per il bus DC, ma la presenza dei condensatori richiede particolare attenzione in fase di progettazione della tecnica di controllo, analogamente al caso del Diode Clamped. Un esempio di possibile utilizzo del convertitore MMC riguarda le trasmissioni HVDC, alle quali si sta dedicando un crescente interesse negli ultimi anni.
APA, Harvard, Vancouver, ISO, and other styles
28

Samborsky, Michael [Verfasser], Harald [Gutachter] Schwarz, Harald [Gutachter] Fien, and Heinz-Helmut [Gutachter] Schramm. "Conceptual aspects of future High Voltage Direct Current (HVDC) electrical power transmission networks / Michael Samborsky ; Gutachter: Harald Schwarz, Harald Fien, Heinz-Helmut Schramm." Cottbus : BTU Cottbus - Senftenberg, 2017. http://d-nb.info/1149052465/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pettersson, Martin. "Analyser av två VSC-HVDC-stationer genom långtidsmätningar med elkvalitetsmätare." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70056.

Full text
Abstract:
Gotland har länge präglats av mycket speciella lösningar och legat i framkant vad gäller ny teknik. Under ca 20 år har Gotland haft en VSC-HVDC-station som har stabiliserat spänningen i det gotländska nätet. HVDC Light har löst en del av de tekniska begränsningarna som hindrat utvecklingen av vindkraftverk. Anläggningen börjar lida mot slutet av sin tekniska livslängd och examensarbetet är ett första steg i utredningen för en eventuell ersättning. Med hjälp av elkvalitetsmätare kartlagdes prestanda och eventuella förbättringsområden. Den svenska stamnätsoperatören Svenska kraftnät har sedan 2016 haft en VSC-HVDC-station som använts för att utväxla energi till asynkrona systemet i Östeuropa. Svenska kraftnät har på senare tid velat utnyttja spänningsregleringsmöjligheterna och utreda mättekniska metoder. Elkvalitetsmätare placerades ut på lämpliga mätpunkter för att utreda anläggningens beteenden. ELSPEC G4500 elkvalitetsmätare installerades på Nordbalt och Gotlands HVDC Light för att mäta under sensommar till hösten 2017. Skillnader mellan CVT och IVT samt Rogowskispole och CT mättes. Valet av ELSPEC lämpade sig bra eftersom att inga triggningsvillkor behövdes som tillåter att man kan upptäcka små men viktiga avvikelser. Gotlands HVDC Light stabiliserar nätet främst mot spänningsdippar efter kortslutningar i 10 kV-elnätet och flimmer ifrån vindkraftsparkerna i ände 2. Märkeffekten för en uppdaterad anläggning kommer baseras på den kortslutningseffekt i 10 kV-nätet som kan utvecklas under anläggningens livstid. Spänningsregleringen ska baseras på en PI-regulator och ska kunna reglera fullt på 40 ms. Komponentspänningar kan användas för att ge reaktiv effekt på de faser som behöver det. Behovet mot flimmer ska baseras på en mätning i närmaste konsumtionscentrum, två mil från ände 2. Om behovet finns, ska en separat loop för flimmerkontroll som motverkar 1,5 Hz-komponenter implementeras utifrån en punkt ca 1,5 mil ifrån ände 2. Teknikvalet står mellan two-level generation 3 eller MMC, beroende på uppgradering eller ersättning. Många olika framtida scenarion påverkar HVDC Lights roll och oavsett, kommer mycket resurser behövas för Gotlands och HVDC Lights framtid. Det har observerats två beteenden på Nordbalt varav ena är långsam och det andra beteendet är snabbt. Det snabba beteendet uppstår när lågohmiga fel sker som också synkronmaskinerna tar hand om. Nordbalt kan hjälpa till för mindre spänningsvariationer om den varit snabbare likt beteendet vid lågohmiga fel. En stabilitetsbedömning behövs dock eftersom att snabbare beteende ökar risken för instabilitet. Eftersom att data mellan CVT och IVT skiljde sig mycket, upplystes mättekniska problem. Några lösningar diskuteras varav RCVT och PQSensor gås igenom grundligt. Alternativa lösningar som MoW och mobila enheter presenteras också vagt. Samtliga lösningar visade sig ha praktiska hinder, vilket försvårar genomförandet. Det uppmanas därför att man bör testa teknikerna i laborationsmiljö eftersom begränsat med studier gjorts på dessa samt att konkurrerande tillverkare uppger olika uppgifter.
Gotland has long been known for various special solutions and been on the leading edge regarding new technology. For the past 20 years Gotland has had a VSC-HVDC station that has stabilized the voltage in the Gotlandic grid. HVDC Light has solved some of the technical limitations that has hindered the growth of wind turbines. The station has almost reached the end of its technical lifespan and the thesis is a first step in the investigation for an eventual replacement. With power quality analyzers performance and improvements were investigated. The Swedish transmission system operator Svenska kraftnät have since 2016 had a VSCHVDC station that have been used to exchange energy to the asynchronous system in Eastern Europe. Svenska kraftnät has of lately wanted to take advantage of the voltage control capabilities and investigate measurement technologies. Power quality analyzers were installed on suitable connection points to investigate the behavior of the station. ELSPEC G4500 power quality analyzers were installed on Nordbalt’s and Gotland’s HVDC Light to measure during the late summer to fall of 2017. The differences between CVT and IVT, and Rogowski coil and CT were captured. The choice of ELSPEC suited well since no trigger conditions are needed which allows small but important errors to be discovered. Gotland’s HVDC Light stabilizes the grid mostly against voltage sags for faults in the 10 kVgrid and flicker from the wind farms in node 2. The rated power for an upgrade should be based on the 10 kV-grid short-circuit power to be developed during the station’s life span. The voltage control should be based on a PI-controller and should be able to transmit full power in 40 ms. Component voltages can be used to produce reactive power on the phases in need. The need against flicker should be based on measurements in the closest center of consumption, 2 miles from node 2. If it’s needed, a separate loop for flicker-control that prevents 1.5 Hz-components based on a point 1.5 mile from node 2 should be implemented. Depending on an upgrade or replacement, the topology can either be “two-level generation 3” or MMC. Many different future scenarios affect HVDC Light’s role and more resources will be required for Gotland’s and HVDC Light’s future. Two behaviors have been observed on Nordbalt where one is slow and the other behavior is fast. The fast behavior was only observed when low impedance faults occurs, that the synchronous generators also handles. Nordbalt can contribute to small voltage variations if it was faster, like the behavior for low impedance faults. A consideration in stability is needed since a faster behavior can lead to stability problems. Since the data between CVT and IVT differed a lot, metrology problems were discovered. Some solutions were discussed, of which RCVT and PQSensor was thoroughly reviewed. Alternative solutions like MoW and mobile units were also presented vaguely. All solutions showed practical difficulties, which complicates the implementation. It is therefore encouraged to test the technologies in a laboratory environment since few studies have been made on these and competing manufactures state different information.
APA, Harvard, Vancouver, ISO, and other styles
30

Rodríguez, D'Derlée Johel José. "Control strategies for offshore wind farms based on PMSG wind turbines and HVdc connection with uncontrolled rectifier." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/34510.

Full text
Abstract:
The selection of the bulk power transmission technology in offshore wind farms is strongly related to the wind farm size and its distance to shore. Several alternatives can be evaluated depending on the rated power of the offshore wind farm, the transmission losses and the investment cost for constructing the transmission system. However, when is necessary to connect larger and more distant offshore wind farms; the best technological solution tends to the transmission system based on highvoltage and direct-current with line commutated converters (LCC-HVdc). This dissertation proposes the use of diode-based rectifers as a technical alternative to replace the thyristor-based rectifers in an LCC-HVdc link with unidirectional power flow. This alternative shows advantages with regard to lower conduction losses, lower installation costs and higher reliability. Nonetheless, as a counterpart the offshore ac-grid control performed by the thyristor-based HVdc rectifer is no longer available. This lack of control is compensated by using new control strategies over an offshore wind farm composed by wind turbines with permanent-magnet generators and fully-rated converters. The control strategies have been based mainly on the ability of the wind turbine grid-side converter to perform the control of the offshore ac-grid voltage and frequency. The performance has been evaluated by using PSCAD. Wherein, the most common grid disturbances have been used to demonstrate the fault-ride-through capability as well as the adequate steady state and transient response.
Rodríguez D'derlée, JJ. (2013). Control strategies for offshore wind farms based on PMSG wind turbines and HVdc connection with uncontrolled rectifier [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34510
TESIS
APA, Harvard, Vancouver, ISO, and other styles
31

Vasconcelos, Leandro Almeida. "Metodologia para representação de sistemas de transmissão em corrente contínua multiterminais no problema de fluxo de potência." Universidade Federal de Juiz de Fora, 2014. https://repositorio.ufjf.br/jspui/handle/ufjf/699.

Full text
Abstract:
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-02-11T10:37:14Z No. of bitstreams: 1 leandroalmeidavasconcelos.pdf: 2921811 bytes, checksum: acf68048e9da96cbcc9355d4ebc70813 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-02-26T11:53:39Z (GMT) No. of bitstreams: 1 leandroalmeidavasconcelos.pdf: 2921811 bytes, checksum: acf68048e9da96cbcc9355d4ebc70813 (MD5)
Made available in DSpace on 2016-02-26T11:53:39Z (GMT). No. of bitstreams: 1 leandroalmeidavasconcelos.pdf: 2921811 bytes, checksum: acf68048e9da96cbcc9355d4ebc70813 (MD5) Previous issue date: 2014-10-23
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A tecnologia HVDC (High Voltage Direct Current) possui características que a tornam especialmente atrativa para determinadas aplicações em transmissão de energia elétrica. Além disso, pode-se verificar a partir do estudo de utilização desse tipo de tecnologia no mundo que existe uma tendência e perspectiva de utilização crescente nos Sistemas Elétricos de Potência. Desta forma, torna-se cada vez mais importante dispor de técnicas que possibilitem a inclusão dos modelos destes equipamentos em programas de análise de redes de forma eficiente, principalmente no fluxo de potência, com a finalidade de permitir a correta modelagem da rede como um todo nos estudos de planejamento da expansão e operação. A transmissão em corrente contínua vem se tornando amplamente reconhecida no que tange as suas vantagens no transporte de grandes blocos de energia a grandes distâncias, no transporte de potência entre parques eólicos offshore para terra, na interconexão de sistemas com frequências não compatíveis, em travessias subaquáticas, dentre outras questões que a tornam técnica e economicamente viável em algumas situações. Nesse contexto, este trabalho tem por principal objetivo desenvolver e implementar uma metodologia genérica para a representação de Sistemas de Transmissão HVDC Multiterminais no problema de fluxo de potência. Neste sentido, tal metodologia é baseada na solução simultânea de um sistema de equações não lineares composto pelas representações em regime permanente das redes C.C. e C.A., utilizando-se o método de Newton-Raphson para sua solução. A partir deste contexto, são apresentadas as equações que representam a resposta de regime permanente dos conversores, da rede C.C. e das estratégias de controle aplicáveis a esses sistemas. Além disso, são apresentadas as principais configurações existentes de conversores HVDC, suas características e como é feita sua modelagem em regime permanente e no problema de Fluxo de Potência. A metodologia proposta é validada através do estudo de sistemas tutoriais e sistemas teste encontrados como referência na literatura especializada. Os resultados apresentados demonstram que a metodologia proposta é capaz de representar de forma satisfatória os modelos de sistemas HVDC Multiterminais nos estudos de regime permanente em Sistemas Elétricos de Potência.
High Voltage Direct Current (HVDC) technology has characteristics that make it especially attractive for certain transmission applications. Furthermore, it is possible to notice that there is a trend and prospect of increased use of this technology in Electric Power Systems around the world. In this context, it has been increasingly important to have techniques that efficiently include these equipment models in network analysis programs, especially in power flow, in order to allow a correct modeling of the network in studies of expansion planning and operation. The direct current transmission is becoming widely recognized by their advantages in transporting large blocks of power over long distances, to transport power from offshore wind farms to land, in asynchronous interconnection of systems, in underwater crossings, and other issues that make it technically and economically feasible in some situations. In this context, this thesis has the objective to develop and implement a generic methodology for the representation of HVDC Multi-Terminal Systems in the power flow problem. In this sense, this methodology is based on the simultaneous solution of a system of nonlinear equations that represent, in steady state studies, the DC and AC networks, using the Newton-Raphson method to solve the problem. Equations that represent the steady state response of the converters, the DC network and control strategies are presented. In addition, it will be presented the main settings of HVDC converters, their characteristics and how their modelling are set forth in the Power Flow problem. The proposed methodology is validated by studying tutorial and test systems found in the literature. The results show that the proposed methodology is able to represent satisfactorily models of HVDC Multi-Terminal Systems in studies of steady state in Electric Power Systems.
APA, Harvard, Vancouver, ISO, and other styles
32

Ghossein, Layal. "Alimentation de circuit de commande rapprochée « Gate-drive » pour nouveaux convertisseurs de puissance haute tension." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI016.

Full text
Abstract:
Le transport d’énergie par des lignes HVDC constitue le principal réseau de transmission d’énergie électrique du futur. Les convertisseurs de puissance (par exemple de type MMC) qui constitueront ce réseau devront être capables de gérer des tensions de l’ordre de centaines de kilovolts ce qui rend critique l’alimentation des dispositifs de contrôle (gate-drive) de ces convertisseurs. Il est nécessaire de concevoir des solutions qui garantissent l’alimentation de ces gate-drives avec une isolation.Pour ce faire, un circuit basé sur le principe du flyback et utilisant un JFET normalement passant a été développé. Il est placé en parallèle d’un condensateur typiquement connecté aux bornes d’un bras d’onduleur. Il permet d’alimenter le dispositif de puissance dès qu’une faible tension est appliquée à son entrée. Cette fonction est assurée grâce au caractère normalement passant du JFET. Pour le prototype développé, la tension du bras est de 2 kV. La tension de sortie est régulée à 24 V. De nos jours, des JFET normalement passants avec une tenue en tension supérieure à 2 kV n’existent pas sur le marché. Donc, pour supporter les tensions mises en jeu dans le circuit, une mise en série de JFET SiC normalement passants commandés par un MOSFET Si a été réalisée (montage « super-cascode »). Le circuit développé est capable de fournir 20 W pour alimenter des gate-drives à des potentiels flottants. Le rendement obtenu est proche de 60 %. Aussi, le problème d’isolation est résolu par cette solution d’auto-alimentation
HVDC power transmission is the future of the electrical energy transmission network. The power converters (e.g. MMC) used in this network will be able to cope with voltages of hundreds of kV, making the power supply of the gate-drive devices in these converters challenging. It is then necessary to design solutions that guarantee the power supply of these gate-drives, while providing high voltage isolation. To do this, a circuit, based on the flyback principle, was developed. It is placed in parallel with a capacitor typically connected to a half-bridge circuit. It has an auto-start feature. This allows to supply the gate-drive as soon as a low voltage is applied to the input of the self-supply system. This is obtained by taking advantage of the normally-ON character of the JFET. In our prototype, the input voltage is 2 kV. High voltage JFETs of 2 kV and higher breakdown voltages are not yet available on the market. So, to achieve this high voltage capacity, a series of Normally-ON SiC JFETs controlled by a low voltage Si MOSFET (Super-cascode circuit) is used in the circuit. The developed circuit is able to supply 20 W at different floating potentials with output voltage regulated at 24 V and an efficiency close to 60%. The isolation problem is then solved using this solution
APA, Harvard, Vancouver, ISO, and other styles
33

Parizzi, Jocemar Biasi. "Utilização avançada da capacidade excedente de sistemas de transmissão CCAT para produção de oxigênio e hidrogênio." Universidade Federal de Santa Maria, 2008. http://repositorio.ufsm.br/handle/1/3654.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This PhD thesis discusses the use of the power plant capacity in HVDC transmission systems during inactive periods of the main converters to feed local loads, aiming at a better AC power quality and DC transmission. The power available in the inactive periods is drained by an auxiliary converter connected in parallel with the HVDC converter. This energy can be used to: feed thermal equipments; battery charging; supply of local services; AC power re-injection; and to produce high purity hydrogen and oxygen through electrolysis. The overall control was designed to improve the power transmission quality at the AC side of the HVDC plant. Simulated and lab practical results from a reduced model of a HVDC plant and from the auxiliary converter connected in parallel with the main converter are presented. The proposed arrangement of converters demonstrates the possibility of THD reduction and increase of the power and utilization factors, without disturbing the efficiency of the HVDC transmission system, and making evident loss reduction, sizing of the harmonic filters and PF reactors. For their special characteristics, at the end of this thesis it is presented the state of art of the auxiliary converter energy utilization to produce hydrogen and oxygen through water electrolysis.
Esta tese discute o uso da capacidade instalada dos sistemas de transmissão CCAT nos períodos inativos das chaves eletrônicas dos conversores de potência para alimentar cargas locais, de tal modo que a qualidade da energia e a transmissão em corrente contínua possam ser amplamente melhoradas. A energia dos períodos inativos é drenada por um conversor auxiliar conectado em paralelo com o conversor CCAT. Esta energia pode servir para: alimentar equipamentos térmicos; carregar baterias; suprir serviços ancilares; retro-injeção na rede; e produção de hidrogênio e oxigênio por eletrólise com alto grau de pureza, entre outras cargas. O controle dos conversores conectados em paralelo foi projetado criteriosamente visando melhorar a qualidade da energia no lado CA da planta de CCAT. São apresentados dados provenientes da adição do conversor auxiliar em paralelo com o conversor CCAT, tanto de simulações como de dados reais e ensaios de laboratório em um protótipo em escala reduzida. Com o arranjo de conversores proposto nesta tese fica demonstrada a possibilidade de uma redução considerável da distorção harmônica total e o aumento dos fatores de potência e de utilização, sem prejudicar o rendimento da transmissão CCAT. Também fica evidente a redução de perdas e do tamanho dos filtros harmônicos e reatores de compensação de reativos por diminuir a corrente nos mesmos. Pela sua peculiaridade, no final desta tese é apresentado um estudo sobre o estado da arte da utilização da energia processada por conversores auxiliares junto a conversores CCAT para a produção de hidrogênio e oxigênio através da eletrólise de água.
APA, Harvard, Vancouver, ISO, and other styles
34

Otto, Abraham Johannes. "Direct current conductor corona modelling and metrology." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1497.

Full text
Abstract:
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2009.
ENGLISH ABSTRACT: Prospects of up-rating existing high voltage direct current (HVDC) transmission schemes, as well as the conversion of existing alternating current (AC) to direct current (DC) lines and the development of new HVDC schemes in sub-Saharan Africa, have led to renewed interest in DC research. The radio interference (RI), audible noise (AN) and corona loss (CL) performance of HVDC transmission lines are critical factors when assessing the reliability of the line design. The RI performance is especially important when considering the successful transmission of the carrier signal of the power line carrier (PLC) system. The PLC system is the main form of communication between teleprotection devices on the Cahora Bassa HVDC scheme. The aim of the dissertation is to devise modelling as well as metrological techniques to characterise DC conductor corona. A particle-in-cell (PIC) computational code is developed to gain a better understanding of the physical processes that occur during corona events. The numerical code makes use of the charge simulation method (CSM) and nite element method (FEM) to solve for the Laplace and Poisson eld equations. Higher-order basis functions are implemented to obtain a more accurate solution to the Poisson equation. The computational tool yields insight into the mathematical models for the various ionization, attachment and electron avalanche processes that give rise to corona currents. Together with a designed and developed electrometer-type circuit, the numerical code assists the visualisation of the space charge particle dynamics that form in the electrode gap during corona events. The metrological techniques consider the wideband time domain (TD) as well as the frequency domain (FD) information of the measured corona pulses in the presence of noise. These are then compared to the narrowband CISPR standard measurements centred around 500kHz. The importance of impedance matching when attempting to derive a wideband excitation function is investigated. The TD measurements are quite distinct from the well-published FD measurements, and consider the pulse shape, pulse spectrum and pulse repetition rates. The use of three possible conductor corona test methods to study direct current conductor RI performance under both positive and negative polarities is investigated at high altitude in this dissertation. These include a small corona cage, a short test line and the Eskom Megawatt Park large outdoor corona cage. Derived wideband and narrowband monopolar DC RI excitation functions at 500kHz are consolidated with existing radio noise (RN) measurement protocols and prediction methods. The use of a corona cage to derive excitation functions for monopolar RI predictions is explored and it is shown that a small corona cage, due to the build-up of space charge in the small distance between the electrodes, cannot be used to predict the RI levels on HVDC transmission lines accurately. As a consequence of the physics, computational modelling and both frequency and time domain measurements, it is now possible to explain why a small cage system prevents the accurate RI prediction on transmission lines. The large outdoor corona cage and short test line RI performance predictions agree with existing empirical prediction formulas.
AFRIKAANSE OPSOMMING: Vooruitsigte van die opgradering van bestaande hoogspanningsgelykstroom transmissielyn skemas, asook die omkering van bestaande wisselstroom na gelykstroom lyne en die ontwikkeling van nuwe hoogspanningsgelykstroom skemas in sub-Sahara Afrika, het gelei to hernude belangstelling in gelykstroomnavorsing. Die korona-werkverrigting van hoogspanningsgelykstroom oorshoofselyne in terme van radiosteuring, hoorbare-geraas en koronaverliese is kritiese faktore om in aanmerking te neem wanneer die betroubaarheid van die lynontwerp geëvalueer word. Die radiosteuring-werkverrigting is veral van belang tot die suksesvolle oordrag van die kraglyndragolf draersein wat die hoof kommunikasievorm tussen beskermingstoerusting op die Cahora Bassa transmissielyn skema is. Die doel van hierdie proefskrif is om modellering- sowel as meettegnieke te ontwerp om gelykstroomgeleierkorona te karakteriseer. 'n Partikel-in-sel numeriese kode is ontwikkel om 'n beter begrip te verkry van die siese prosesse gedurende koronagebeure. Die numeriese kode maak gebruik van die lading-simulasiemetode, sowel as die eindige element metode om die Laplace en Poisson veldvergelykings op te los. Hoër-orde basisfunksies is geimplimenteer om 'n meer akkurate oplossing vir die Poisson vergelyking te verkry. Die numeriese kode bied insig tot die wiskundige modelle vir die verskeie ionisasie-, aanhegtings- en lawineprosesse wat lei tot koronastrome in die area om die hoogspanningsgeleier. Die numeriese kode, saam met 'n elektro-meter wat ontwerp en ontwikkel is, dra by tot die begrip van die ruimtelading partikeldinamika wat onstaan in die elektrodegaping gedurende koronagebeure. Die meettegnieke neem die wyeband tydgebied- en frekwensiegebiedinformasie van die koronapulse in ag in die teenwoordigheid van geraas. Dit word dan vergelyk met die nouband CISPR meetstandaard vir 'n frekwensie van 500kHz. Die belangrikheid van impedansie-aanpassing vir wyeband metings met die doel om opwekkingsfunksies af te lei, word ondersoek. Die tydgebiedmetings verskil van die algemene frekwensiegebiedmetings, en ondersoek die pulsvorm, -spektrum en -herhalingskoers. Die gebruik van drie moontlike koronageleier-toetsmetodes om gelykstroom radiosteurings-werkverrigting vir positiewe en negatiewe polariteite te bestudeer by hoë vlakke bo seespieël word ondersoek in die proefskrif. Dit sluit in 'n klein koronakou, 'n kort toetslyn en die Eskom Megawatt Park groot buitelug-koronakou. Afgeleide wye- en nouband monopolêre gelykstroom radiosteuring opwekkingsfunksies by 500kHz word gekonsolideer met bestaande radioruis metingsprotokolle en voorspellingsmetodes. Die gebruik van 'n koronakou om opwekkingsfunksies af te lei vir monopolêre radiosteuringvoorspellings is ondersoek en daar is gevind dat 'n klein koronakou nie gebruik kan word om radiosteuringvlakke op hoogspanningsgelykstroom transmissielyne akkuraat te voorspel nie. Dit is as gevolg van die opbou van ruimtelading in die klein elektrodegaping. Met behulp van die sika, numeriese modellering en beide die frekwensie- en tydgebiedmetings, is dit nou moontlik om te verklaar waarom die klein koronakou die akkurate radiosteuringvoorspellings op transmissielyne onmoontlik maak. Die groot buitelug-koronakou en kort toetslyn radiosteuringvoorspellings stem ooreen met bestaande empiriese voorspellings formules.
APA, Harvard, Vancouver, ISO, and other styles
35

Itiki, Rodney. "Metodologia para mapeamento de zonas operacionais em sistemas de transmissão VSC-HVDC." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-09042018-145504/.

Full text
Abstract:
Sistemas de transmissão de energia elétrica em corrente contínua e alta tensão baseados em tecnologia de conversores a fonte de tensão (VSC-HVDC), ao contrário de linhas de transmissão em corrente alternada, operam como elementos de controle de variáveis elétricas, podendo ser úteis na estabilidade do sistema de potência. Mas apesar desta vantagem, sistemas VSC-HVDC possuem limitações no desempenho estável, o que enseja o desenvolvimento de uma metodologia para mapeamento de suas zonas de operação estável e possíveis regiões de instabilidade. Inicialmente estudou-se os detalhes da tecnologia VSC-HVDC tais como o funcionamento da eletrônica de potência e estratégias de controle utilizadas. Em seguida, investigou-se os modelos de geradores síncronos para interconexão com o lado CA das estações conversoras do VSC-HVDC. E, finalmente, aplicou-se a tecnologia VSC-HVDC sobre um modelo de sistema de potência com uma estação conversora localizada em um porto offshore e uma outra no continente, próxima à rede de alta tensão em corrente alternada. Simulações e análise deste sistema foram executadas considerando várias condições operacionais. O gráfico de potência gerada e consumida, obtido pela aplicação da metodologia, apresenta grande potencial de uso prático como por exemplo sua implementação na interface homem-máquina da estação de operação do porto offshore, provendo informação em tempo real de alto nível ao operador do sistema elétrico do porto offshore e consequentemente aumentando sua consciência situacional quanto a proximidade dos limites de instabilidade.
High voltage direct current power transmission systems based on voltage source converters (VSC-HVDC), as opposed to alternating current ones, operates as elements of control of electrical variables, being useful for stability of power system. Besides this advantage, VSC-HVDC systems have limitations in stable performance, which instigates the development of a methodology for mapping its operational zones of stability and possible regions of instability. The author initially studied the details of the VSC-HVDC technology such as the power electronic principles and the control strategies used on this research. Subsequently, the author investigated synchronous generator models for interconnection on the AC side of the VSC-HVDC converter stations. Finally, the author applied the VSC-HVDC technology on a model of power system with two converter stations, one located on an offshore port and the other on the shore, next to an alternating current high voltage power grid. Simulations and analysis of this system were carried out considering various operational conditions. The graphic of generated and consumed power on offshore port, obtained by the application of the methodology for mapping operational zones, presents a great potential of being implemented in the man-machine interface of an operation workstation, thus providing high level online information for the operator of the offshore port electrical system and consequently improving its situational awareness of the proximity to instability limits.
APA, Harvard, Vancouver, ISO, and other styles
36

Hobdell, Stephen Barry. "Thermally stimulated current and electrokinetic investigations of HV cable models." Thesis, Bangor University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Naidoo, Pathmanathan. "Investigations into the upgrading of transmission lines from HVAC to HVDC." Thesis, 2007. http://hdl.handle.net/10413/2224.

Full text
Abstract:
Emanating from the proceedings of CIGRE 2004, a new idea for higher power transmission by recycling and up rating high voltage alternating current transmission lines for high voltage direct current application was presented at the HYDC working group session. To date, there is no known application of the idea. Globally, transmission congestion, power transfer bottlenecks with restricted and limited power transfers and unobtainable servitudes challenge electric power utilities. The literature review shows that since the early sixties, several authors have studied this proposal. However, no applications were done. Admittedly, early HYDC technology was troubled by problems with multi-terminal designs, external insulation breakdown in the presence of DC stress and mercury valve rectifiers struggled with arc backs. To date, power electronic and external insulation technology has grown and matured for confident application both in point to point and multi-terminal application. The economic costs of introducing the DC technology are also more affordable given reducing prices due to higher volume of purchases. With promising developments in insulation and power electronic technology and driven by South Africa's surging growth in the consumption of electrical energy; the subject of upgrading HYAC transmission for HYDC application is revisited. For the research, the emphasis is beyond FACTS and towards a solution that could develop into a new supergrid that could overlay the existing national grid. Thus, the solution is prepared specifically for the case of recycling existing assets for higher power transfers. The working environment is defined by the difficulty in acquiring new powerline servitudes, transmission congestion in complex networks, the need for electrical islands within complex interconnections, and the need for enhanced power system stability and to promote new ancillary services energy management. The focus of this research study was to determine the technical feasibility of upgrading of existing HYAC circuits for HYDC application. It is assumed that the transmission line will remain as is in structure, layout and mechanical design. The changing of external line insulators using live line technology is an accepted modification to the original HYAC line, if required. From the study, we conclude that not all HYAC lines are recommended for upgrade to HYDe. We introduce boundary conditions as a first step towards checking on the suitability of the proposed upgrade from HVAC to HYDC mode. Emanating from this study, the first paper published introduced the initial boundary conditions as being only those lines where the "unused gap" between surge impedance loading and conductor current carrying capability is appreciable and large; generally three to four times surge impedance loading. In the case where the unused gap is the smallest or negligible, then we do nothing. In between, where the unused gap is about two to three times the surge impedance loading, then we can consider active or passive compensation using the HVAC FACTS technology options as proposed by EPRl. Having determined the candidate transmission line configuration for the proposed upgrade to HYDC application, we select the DC operating voltage as based on the voltage withstand capability of external insulation for varying environmental conditions. In addition, the DC voltage will generate allowable electrical fields and corona effects within and outside the transmission servitude. The optimum DC operating voltage would satisfy the conditions of minimum transmission power losses and volt drop for the case of maximum power transfers; within the limits of electrical fields and corona effects.
Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.
APA, Harvard, Vancouver, ISO, and other styles
38

Hassanpoor, Arman. "Modulation of Modular Multilevel Converters for HVDC Transmission." Doctoral thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192607.

Full text
Abstract:
The outstanding features of modular multilevel converters (MMC) have recently gained much attention in the high-voltage direct-current (HVDC) transmission field. Power quality, converter cost and system performance are three crucial aspects of HVDC MMCs which are directly linked to the converter modulation and switching schemes. High power quality and performance require high switching frequency and large cell capacitor whereas low switching frequency and small cell capacitor are needed to reduce the converter cost. The main objective of this thesis is to propose a practical switching method for HVDC MMCs which balances the aforementioned contradictory requirements. A mathematical analysis of the converter switching pattern, against the power quality and converter cost, has been conducted to formulate an optimization problem for MMCs. Different objective functions are studied for the formulated optimization problem such as converter loss minimization, voltage imbalance minimization and computational burden minimization. This thesis proposes three methods to address different objective functions. Ultimately, a real-time simulator has been built to practically verify and investigate the performance of the proposed methods in a realistic point-to-point HVDC link. The most significant outcome of this thesis is the tolerance band-based switching scheme which offers a direct control of the cell capacitor voltage, low power losses, and robust dynamic performance. As a result, the converter switching frequency can reach frequencies as low as 70 Hz (with the proposed cell tolerance band (CTB) method). A modified optimized CTB method is proposed to minimize the converter switching losses and it could reduce the converter switching losses by 60% in comparison to the conventional phase shifted carrier modulation method. It is concluded intelligent utilization of sorting algorithm can enable efficient HVDC station operation by reducing the converter cost.

QC 20160916

APA, Harvard, Vancouver, ISO, and other styles
39

Larsson, Jesper. "Transmission Systems for Grid Connection of Offshore Wind Farms : HVAC vs HVDC Breaking Point." Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444333.

Full text
Abstract:
Offshore wind is rapidly growing and optimised grid connections are crucial for its success. Generally, costs and losses are higher for HVDC at short distances due to the converters, while HVAC costs and losses increase more rapidly with distance due to the ac cables. Hence, there is a breaking point over which HVDC becomes beneficial, which is important knowledge for grid connection design. Recent research and practice indicate increasing distances for the breaking point, enabled by the introduction of offshore reactive compensation substations (RCS) for HVAC. In the study, steady-state models of HVAC and modular-multilevel converter (MMC) based VSC HVDC systems up to 260 km have been simulated in the Matlab/Simulink based program EeFarm-II. For base case assumptions, the average loss breaking point is 80 km and the levelised cost breaking point is 229 km. The resulting breaking point with respect to levelised cost of energy (LCOE) is 205 km and with respect to net present value (NPV) 186 km, agreeing with the trend of increasing breaking points. Given the range of distances in literature, it is of interest to also investigate how the breaking point depends on assumptions on technical, practical and economic parameters. For the NPV breaking point: lifetime and interest rate have no impact, availability and cost of RCSs have low impact, electricity price has moderate impact, operation and maintenance (O&M) cost has high impact while investment cost and lead time have very high impact. This could be taken into consideration in offshore projects and in future research.
APA, Harvard, Vancouver, ISO, and other styles
40

Naidoo, Divoloshanan. "Protection of ultra long HVDC transmission lines." Thesis, 2005. http://hdl.handle.net/10413/2929.

Full text
Abstract:
HVDC transmission is today widely used in modem Power Systems as an alternative to HVAC. Current trends indicate that many future conventional HVDC systems will be systems of increasing power ratings, delivered over larger distances as well as multi-terminal systems. In order to ensure the security and dependability of such systems, the current protection schemes need to be evaluated to assess their ability to provide adequate protection for the envisaged HVDC systems. This research work firstly reviews the present HVDC transmission line protection systems, and highlights their advantages and disadvantages, including factors that adversely influence their performance. The author critically evaluates the current protection schemes and reveals the drawbacks and other factors that render them unsuitable for the protection oflong dc transmission lines. The author then goes on to propose and develop an HVDC line protection system that will be able to provide adequate protection for proposed long HVDC transmission lines. The proposed protection system is able to make decisions based solely on local detection increasing its overall reliability. The author then recommends that the proposed protection system be used in conjunction with the existing main protection system in order to optimise the protection response times for both close in and distant faults. The author also proposes and develops a method of further enhancing the reliability of the protection system by the use of the telecommunication infrastructure when available. Finally the performance and feasibility of the proposed protection system is evaluated using the results obtained from the extensive fault simulations performed in EMTDC and Matlab. The simulations are performed using a bipole model of an HVDC System on which the required line and protection systems are modelled. The simulation results obtained are very favourable and promote the use of this proposed protection system, for the protection of long HVDC transmission lines.
Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2005.
APA, Harvard, Vancouver, ISO, and other styles
41

Govender, Dhevandhran. "A study of the electrical environment below HVDC transmission lines." Thesis, 2008. http://hdl.handle.net/10413/545.

Full text
Abstract:
The main aim of this project was to determine the extent to which the study of electric fields and ions in a laboratory can be used to study the electrical environment below High Voltage Direct Current (HVDC) transmission lines. The focus of the study was to set up small scale laboratory experiments and to compare these results to actual line measurements and to software simulations. The laboratory tests were undertaken at the HVDC Centre at the University of KwaZulu-Natal (Westville Campus). The software simulations that were conducted as part of this study were done using EPRI TL 3.0 and Microsoft Excel. Initially tests conducted were the measurement of the induced voltage and corona leakage current on a floating object. The next set of laboratory tests conducted was the measurement of ion current density and the electric field at ground level. The ion current density was measured with a Wilson Plate (lm2) and the electric field at ground level was measured using a JCI static monitor field meter (JCI 140) and a Monroe (257D) Portable Electrostatic Fieldmeter, with an elevated earth plane. Measurements of ion current density and electric field at ground level were also taken under an operating HVDC transmission line (Cahora Bassa to Apollo), in order to compare the laboratory measurements and simulations with real line measurements. The results have shown that the electrical parameters (i.e. ion current, induced voltages, corona currents, electric field, ion density, space charge) are higher under the negative pole as compared to the positive pole. The results of the laboratory measurements show that the ion currents under the negative polarity are almost double the ion currents that were measured under positive polarity, while the electric field under negative polarity was 20 percent higher than under positive polarity. Measurements of the electric field show that the total electric field below the line is greatly enhanced when corona generated space charge is present. The results of the EPRI TL Workstation simulations show good correlation with the EXCEL® simulations. However, there was poor correlation between EPRI simulations and test line measurements in the laboratory. The EPRI simulations show good correlation to the measured electric field values below the Cahora Bassa line. The comparison between the actual measurements on the test line and the Cahora Bassa line showed poor correlation and this was attributed to factors such as scaling, laboratory size constraints, ion concentration in laboratory, line loading and wind speeds.
Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2008.
APA, Harvard, Vancouver, ISO, and other styles
42

Naidoo, Kribashen. "Bird streamer initiated breakdowns under HVDC conditions." Thesis, 2007. http://hdl.handle.net/10413/2231.

Full text
Abstract:
This dissertation describes the role played by bird streamers in transmission line faults under HVDC conditions. The research was initiated due to the lack of knowledge of these faults under HVDC conditions. An explanation as to what bird streamers faults are, the role they play in the breakdown of air-gaps and a means of preventing bird streamer caused faults from occurring is made Experimental work has been carried out in order to gain an understanding of these faults under HVDC conditions. The overall aim of the experiments was to find a horizontal distance (protected zone) on an HVDC tower top, in order to prevent birds from perching around the centre of the tower. This will lead to a reduction of bird streamer caused faults. A brass rod was used as the artificial streamer in the experiments, under both negative and positive polarity (voltages in the range 0 to 220 kV DC were applied). Later in the experimental phase, a string soaked in a saline solution was used as a more realistic simulation of a bird streamer. QuickField™, an FEM package, was used to simulate the electric field in the region of the live conductor fitting and the tip of the bird streamer, to assess the degree of distortion of the electric field caused by the introduction of the bird streamer. These simulations served as means of verifying the laboratory experiments. This dissertation has proposed a relationship between the breakdown voltage and the protected zone length, based on the air-gap breakdown voltages for both I-String and V-String insulator configurations in the air-gap range 0 to 350 mm. These curves can be used in the design of transmission lines, as a means of reducing bird streamer faults.
Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2007.
APA, Harvard, Vancouver, ISO, and other styles
43

Ntshangase, Zola. "A study of fire-induced air-gap voltage breakdown characteristics under HVDC conditions." Thesis, 2012. http://hdl.handle.net/10413/8300.

Full text
Abstract:
This dissertation investigates the role that is played by high temperatures of air gaps on the breakdown voltage levels under DC positive and negative polarity applied voltages. Due to past experience of AC transmission lines tripping as a result of sugar-cane fires that occur under these lines during cultivation seasons, this study was initiated to investigate this effect under DC applied voltages. Results were obtained from laboratory work conducted and these were closely analysed to understand the behaviour of air gaps under these conditions. A 17mm2 square-cut brass rodrod electrode configuration was used to carry out these tests at the various air gap temperatures. These were induced by a gas burner for both the positive and negative polarities at 200C – 3000C for the 10 mm – 150 mm air gap range and 200C – 1500C for the 200 mm – 500 mm air gap range. Later particles were introduced into the air gap to determine the subsequent behaviour. These were introduced vertically from the top into an air gap via a vibrating micro sieve mechanism to regulate the consistency of the introduction of these particles in the air gap. A reduction of 55% and 50% was observed on the breakdown voltage under positive and negative polarity applied voltages respectively from ambient conditions to 3000C. Additionally the breakdown behaviour of both negative and positive DC was found to be linear which is similar to the AC case. However, air gaps subjected to positive DC applied voltages were found to portray an inferior dielectric strength as opposed to the equivalent negative DC polarity. The study found that the effect of particles in the air gap is practically negligible and that for practical purposes, only the temperature effect plays a role due to the reduced air density at high temperatures. Empirical models for both the positive and negative DC polarities have been proposed by the study that incorporate the effect of the temperature in the air gap to enable the determination or prediction of the breakdown voltage level at various temperatures. These models may be utilised for DC transmission line design for servitudes in areas that are known to be prone to fires.
Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
APA, Harvard, Vancouver, ISO, and other styles
44

Veilleux, Etienne. "Interconnection of Direct-drive Wind Turbines Using A Series Connected DC Grid." Thesis, 2009. http://hdl.handle.net/1807/18950.

Full text
Abstract:
This thesis presents the concept of a "distributed HVDC converter" for offshore wind farms. The proposed converter topology allows series interconnection of wind turbines obviating the necessity of transformers and an offshore platform. Each wind turbine is equipped with a 5MW permanent-magnet synchronous generator and an ac-dc-dc converter. The converter topology is a diode rectifier (ac-dc) cascaded with a single-switch step-down converter (dc-dc). The dc-dc stage allows the current to flow at all times in the dc link while regulating generator torque. The receiving end is equipped with a conventional thyristor-based HVDC converter. The inverter station is located onshore and it regulates the dc link current to be constant. Stability of the configuration and independent operation of the wind turbines are validated through simulations using the PSCAD/EMTDC software package. Protection for some key dc fault scenarios are discussed and a possible protection strategy is proposed.
APA, Harvard, Vancouver, ISO, and other styles
45

Lekganyane, Mokwape Johannah. "A study of HVDC transmission line audible noise and corona loss in an indoor corona cage." Thesis, 2007. http://hdl.handle.net/10413/2193.

Full text
Abstract:
The main objective of this research was to study DC conductor corona loss (CL) and audible noise (AN) in the context of local climatic conditions, through corona cage measurements, and do a comparative analysis of the measured data with results available in literature and EPRI TLW software simulation results. The ultimate aim was to assess the applicability of the software to our local conditions and hence determine, if necessary, appropriate correction factors for application in HYDC transmission line designs. For this study, short term measurements of corona AN and currents were carried out in an indoor meshed cylindrical corona cage, under DC and AC voltages. The cage was later converted into a short test line and some of the measurements repeated. The DC supply was obtained from a two stage ±500 kV Walton-Cockroft generator. The AC voltages were obtained from a 2x 100 kV, 50 Hz, AC test transformer set. The tests were performed using single solid and stranded aluminum conductors with three different diameters (1.6 cm, 2.8 cm, and 3.5 cm). All the measurements were carried out at low altitude. A CoroCAM I camera was used to determine the corona inception gradients and to observe the corona activity at different surface gradients and under different voltages and polarities. AN measurements at different conductor surface gradients were done using the Rohde&Schwarz and the Bruel&Kjaer sound level meters. To obtain the frequency spectra, a Bruel&Kjaer octave-band filter set attached to the sound level meter was used. The measured data was corrected for both height and length effects, and then compared with simulations from the EPRI-TLW software through curve fitting. A digital micro-ammeter connected to the centre of the cage through a 560 .Q measuring resistor was used to measure the corona current. Current pulses were viewed using a digital storage oscilloscope. To verify the corona current results obtained from the cage measurements, current measurements were also done for a point-plane spark gap. The corona current data was, later on, used to evaluate the total corona power loss for DC. The results obtained from test line measurements were used to compare the CL and AN for different configurations. The effect of the space charge under DC voltages was assessed through current measurements. The measurements were done with the cage covered with an aluminum foil to trap the charge and then repeated with the cage uncovered. On the test line, the space charge effect was investigated using a high power fan blowing along the conductor, to simulate the wind factor. The results of this study have shown the characteristics of corona discharges under different system voltages. The results also give an understanding of how factors such as conductor surface conditions and size, polarity and system voltage affect CL and AN. Both CL and AN were found to increase with conductor size for the same conductor surface gradient and to be higher for stranded conductors. Positive polarity DC and AC noise levels were higher than the negative polarity levels. CL under positive polarity DC was lower than the negative polarity loss. The effects of space of space charge were noted to some extend. The comparison of test line results and cage results showed that CL depends more on the gap size and the shorter the gap the higher the loss. Hence CL results were not compared with the software simulations. The comparison between the corrected AN results and the software simulations showed a very good agreement. The comparison was done for the 3.5 cm and the 2.8 cm diameter conductors under both positive and negative polarities. The trends compared through curve fitting were quite similar and the trend line equations were of the same order of magnitude. The magnitudes of the corrected noise levels were higher than the CRIEPI and BPA predictions but closer to the EPRl prediction. Generally there is a very good and encouraging agreement between the available literature, simulation results and the results obtained from the laboratory measurements. It is proposed, as part of further studies, to extend this work to high altitude regions and use bundled conductors as well. Consideration of different and larger test configurations will provide an understanding of the effects of geometry on corona discharges. Space charge analysis will also assist in determining the effect of space charge on different configurations.
Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.
APA, Harvard, Vancouver, ISO, and other styles
46

Lal, Ghamandi. "Analysis And Design Of Test Methods And Test Circuits For HVDC Thyristor Valves." Thesis, 1996. http://etd.iisc.ernet.in/handle/2005/1754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Nagesh, Prabhu *. "Analysis Of SubSynchronous Resonance With Voltage Source Converter Based FACTS And HVDC Controllers." Thesis, 2004. http://etd.iisc.ernet.in/handle/2005/1174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gora, Tatenda. "Investigating the effects of altitude (air density) on the HVDC breakdown voltage of small rod-plane air gaps." Thesis, 2016. http://hdl.handle.net/10539/21106.

Full text
Abstract:
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering, 2016
The validity of the atmospheric correction method presented in the IEC 60060-1 (2010) standard is analysed and evaluated by means of theoretical and laboratory work. In order to understand the problem, the evolution of the atmospheric correction methods, from as early as 1914, has been presented. A procedure (Calva prediction method) for predicting the direct current (DC) breakdown voltage for an air gap at any altitude was discovered and was also analysed along with the IEC 60060-1 (2010). A critique of some of the atmospheric correction methods commonly used standards was also done. Experiments were carried out at altitudes of 1 740 m (Wits University), 130 m (UKZN HVDC centre) and at less than 2 m above sea level (Scottburgh beach, Clansthal). More tests were conducted using a pressure vessel where high altitude relative air density was simulated. All tests were conducted on rod-plane air gaps using a 15 mm diameter at tip rod. Test results from Scottburgh beach were used as the standard breakdown voltages of the air gaps tested since the environmental conditions were the closest to the conventional standard conditions (stp). The test results obtained were compared with predictions using the Calva method in order to validate the method. The test results were also corrected according to IEC 60060-1 (2010) and compared to the standard breakdown voltages obtained at Scottburgh beach. It was shown that the IEC 60060-1 (2010) is quite suitable for atmospheric correction for data obtained at low altitudes (about 130 m). When applied to high altitude (1 740 m) data, the correction method is accurate and suitable for very small air gaps less than 0.1 m. As the air gap length increased, the corrected results began to deviate from the expected standard voltage. The same trend was shown with the corrected results from the pressure chamber tests. The prediction method by Calva was accurate when compared to the experimental data from the high altitude and low altitude test results. When compared to the data from the pressure chamber, the prediction method had a linear error factor which was di erent for each gap length. It was concluded that the IEC 60060-1 (2010) is not only unsuitable for atmospheric correction for data at relative air densities below 0.8, but also that the correction method is prone to an increase in error as the air gap length increases when the relative air density is higher than 0.8. The Calva prediction method was found to be suitable to use after additional factors are added when applied to high altitude conditions.
GR2016
APA, Harvard, Vancouver, ISO, and other styles
49

Yu, Ming. "The studies of corona and ion flow fields associated with HVDC power transmission lines in the presence of wind." 1994. http://hdl.handle.net/1993/18610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Strelec, Gavin Jason. "Comparison of the lightning performance between the poles of the Cahora-Bassa ±533 kV HVDC lines." Thesis, 2016. http://hdl.handle.net/10539/21066.

Full text
Abstract:
This work contributes toward research in the field of lightning performance of High Voltage Direct Current (HVDC) transmission lines, focusing on the impact of the line polarity on the incidence of line faults. Although there has been some recent research into the influence of polarity, there appears to be no confirmed effect that might influence the design of new lines. The research presents an investigation into the lightning performance of the two poles of the Cahora-Bassa HVDC transmission line. In order to compare the performance of the two polarities, the average lightning exposure over an 8-year period was confirmed to be very similar for both lines. Lightning stroke data from the South African Lightning Detection Network was correlated with fault times from the transmission-line protection scheme. The classification of the lightning related faults was used to determine the relative performance of the two poles, particularly in relation to polarity, and to infer if there was any influence of polarity on the lightning attachment process. This investigation for the Cahora-Bassa scheme shows that twenty-three out of twenty-five lightning related faults occurred on the positive pole. The results concur with performance experience on several HVDC lines from China and Canada, which indicate that lightning related faults favour the positive pole by a ratio of between 8:1 and 10:1. This represents a valuable contribution, which substantiates that HVDC line polarity has an influence on the lightning attachment process, and indicates that there is a need to re-examine the lightning shielding design for HVDC transmission lines.
GS2016
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography