Academic literature on the topic 'Hyaline cartilage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyaline cartilage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hyaline cartilage"

1

Kheir, Ehab, and David Shaw. "Hyaline articular cartilage." Orthopaedics and Trauma 23, no. 6 (December 2009): 450–55. http://dx.doi.org/10.1016/j.mporth.2009.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jeffrey, D. R., and I. Watt. "Imaging hyaline cartilage." British Journal of Radiology 76, no. 911 (November 2003): 777–87. http://dx.doi.org/10.1259/bjr/51504520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Engfeldt, BENGT, KJELL Hultenby, and MARTIN MÜLler. "ULTRASTRUCTURE OF HYALINE CARTILAGE." Acta Pathologica Microbiologica Scandinavica Series A :Pathology 94A, no. 1-6 (August 15, 2009): 313–23. http://dx.doi.org/10.1111/j.1699-0463.1986.tb03000.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ENGFELDT, BENGT, BRUCE CATERSON, OLE EKLÖF, KJELL HULTENBY, and MARTIN MÜLLER. "ULTRASTRUCTURE OF HYALINE CARTILAGE." Acta Pathologica Microbiologica Scandinavica Series A :Pathology 95A, no. 1-6 (August 19, 2009): 371–76. http://dx.doi.org/10.1111/j.1699-0463.1987.tb00054_95a.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

AL-Mhanna, H. K. N. "Morphological study of the Larynx of the indigenous adult Male Pigeon (Columba domestica)." Al-Qadisiyah Journal of Veterinary Medicine Sciences 12, no. 1 (June 30, 2013): 52. http://dx.doi.org/10.29079/vol12iss1art230.

Full text
Abstract:
Formalistic study elucidate that the larynx in the fourteen healthy indigenous male pigeons (Columba domestica) for benefit in the study of the respiratory physiology, histopathology, and the respiratory diseases analyzes. After bird's preparation, the larynx detected, and then the shape, position and its components studied in details.The larynx emerges in the caudal part of the oropharyngeal cavity as a heart-shaped cartilaginous mass. It composed of a single hyaline cricoid cartilage which consisted of body and left and right wings, double hyaline arytenoid cartilages which consisting of body and rostral and caudal processes, and single hyaline procricoid cartilage which consisted of body dorsally and curved tail caudoventrally. These cartilaginous components surrounded by laryngeal skeletal muscles intrinsic (superficial and deep) and extrinsic (rostral, caudolateral, and caudomedial).
APA, Harvard, Vancouver, ISO, and other styles
6

Hodler, Juerg, Marie-Josée Berthiaume, Mark E. Schweitzer, and Donald Resnick. "Knee Joint Hyaline Cartilage Defects." Journal of Computer Assisted Tomography 16, no. 4 (July 1992): 597–603. http://dx.doi.org/10.1097/00004728-199207000-00020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jonsson, K., K. Buckwalter, M. Helvie, L. Niklason, and W. Martel. "Precision of Hyaline Cartilage Thickness Measurements." Acta Radiologica 33, no. 3 (May 1992): 234–39. http://dx.doi.org/10.1177/028418519203300308.

Full text
Abstract:
Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips as well as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage.
APA, Harvard, Vancouver, ISO, and other styles
8

Fodor, Pal, Arpad Solyon, Raluca Fodor, Cornel Catoi, Flaviu Tabaran, Radu Lacatus, Cristian Trambitas, and Tiberiu Bataga. "Role of the Biomimetic Scaffolds in the Regeneration of Articular Tissue in Deep Osteochondral Defects in a Rabbit Model." Revista de Chimie 69, no. 1 (February 15, 2018): 201–7. http://dx.doi.org/10.37358/rc.18.1.6074.

Full text
Abstract:
The ability of damaged articular cartilage to recover with normal hyaline cartilage is limited. Our aim was to study the mechanism of in vivo cartilage repair in case of severe osteochondral lesions using a three-dimensional matrix implanted without any preseeded cells in the osteochondral defect in a rabbit model. According to the ICRS scores from macroscopic observations of the femoral condyles, the average scores in the scaffold groups were higher than those in the control groups at every time (P[0.001). Histological examination of the ostheochondral defects, revealed regeneration of new tissue with hyaline-like cartilage features only in matrix groups. At twelve weeks from implantation, complete filling of the defect with hyaline cartilage with a tendency of mineralization and the absence of implant material is observed. The superficial area of the defect is completely covered with hyaline-like cartilage. The scaffold used leaded to the regeneration of articular tissue with an ordered histoarchitecture.
APA, Harvard, Vancouver, ISO, and other styles
9

Alcaide-Ruggiero, Lourdes, Verónica Molina-Hernández, María M. Granados, and Juan M. Domínguez. "Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects." International Journal of Molecular Sciences 22, no. 24 (December 11, 2021): 13329. http://dx.doi.org/10.3390/ijms222413329.

Full text
Abstract:
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
APA, Harvard, Vancouver, ISO, and other styles
10

Schroeder, Walter A., Margaret H. Cooper, and William H. Friedman. "The Histologic Effect of Hypervitaminosis A on Laryngeal Cartilages." Otolaryngology–Head and Neck Surgery 96, no. 6 (June 1987): 533–37. http://dx.doi.org/10.1177/019459988709600602.

Full text
Abstract:
This study investigated the role of hypervitaminosis A on the developing larynx. Pregnant rats received a dose of 100,000 units of Vitamin A on either Day 8 or Day 11 of gestation. The hyaline laryngeal cartilages of the neonatal rats were studied. The cricoid and arytenoid cartilages appeared to be the most affected. There was a pronounced central disorganization of the structure of the cartilage, with numerous swollen lacunae devoid of chondrocytes. The thyroid cartilage was the least affected. The center of the cartilage displayed a minimal amount of disorganization, when compared to the control. The effect of hypervitaminosis A on cartilaginous tissue is discussed, as well as its possiible effect on the development of laryngeal cartilages.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hyaline cartilage"

1

Padalkar, Mugdha Vijay. "Spectroscopic Evaluation of Water in Hyaline Cartilage." Master's thesis, Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/124170.

Full text
Abstract:
Mechanical Engineering
M.S.E.
Articular cartilage is hypocellular, aneural, alymphatic, and avascular. In diseased conditions such as osteoarthritis, there is an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. The most explored method for the assessment of water content in cartilage is MRI, but it cannot detect small changes in water content. Other methods such as dry/wet analysis and Karl Fischer titration are destructive. Infrared spectroscopy is extremely sensitive to the chemical composition and molecular structure of the sample. The technique of near infrared spectroscopy (NIRS) has been used for analyses of water in food, pharmaceuticals and skin. The hypothesis that NIR spectra can be used to assess water content in cartilage was investigated here. A model system using bovine nasal cartilage (BNC) to assess water content in hyaline cartilage was developed. The water content was initially determined by finding the integrated areas under the absorbance bands attributable to water centered at 5190 cm-1 and 6890 cm-1, and compared to the gold standard method for water measurement, gravimetric analysis of wet and dry weights.. The integrated areas of the absorbance bands at 5190 cm-1 and 6890 cm-1 , reflective of a combination of bound plus free water, and free water, in the tissues, respectively, were found to correlate with the absolute water content of the tissue. A model system of gelatin with varying amounts of water, representing the primary components of cartilage, collagen and water, was also developed. Regression analysis and partial least square (PLS) models using data from BNC tissues were successfully developed, and demonstrate that NIR spectroscopy can be utilized to quantitatively determine water content in articular cartilage.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
2

Middleton, J. F. S. "Ionic and morphological studies of mammalian hyaline cartilage." Thesis, Lancaster University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shahin, Kifah Biotechnology &amp Biomolecular Sciences Faculty of Science UNSW. "In vitro production of human hyaline cartilage using tissue engineering." Publisher:University of New South Wales. Biotechnology & Biomolecular Sciences, 2008. http://handle.unsw.edu.au/1959.4/42945.

Full text
Abstract:
Articular cartilage disorders are a leading cause of human disability in many countries around the world. In this work, new techniques and strategies were developed to improve the quality of cartilage produced in vitro by methods of tissue engineering. Chondrocytes were isolated from the hip and knee joints of aborted human foetuses. The cells were expanded and seeded into scaffolds and the seeded scaffolds were cultured in perfusion bioreactors. The quality of the final cartilage constructs was assessed biochemically by measuring their content of glycosaminoglycan (GAG), total collagen and collagen type II and histologically by staining cross-sections of the constructs for GAG, collagen type I and collagen type II. The amount of proteoglycan released in the culture medium was also measured at regular intervals. Proteoglycans from tissue-engineered cartilage and spent culture medium were compared and analysed for degradation and capability of aggregation. During monolayer expansion, the chondrocyte differentiation indices decreased, the cell size increased and the percentage of cells present in G2/S??M phase decreased with the greatest changes occurring during the first passage. Expanding chondrocytes in PGA or PGA??alginate scaffolds produced cells with a higher level of differentiation than monolayer-expanded cells. However, PGA and PGA??alginate could not be justified as suitable systems for the routine expansion of chondrocytes mainly because of the relatively low cell proliferation obtained. Two new methods for seeding of cells into scaffolds were investigated using PGA and PGA??alginate as scaffold materials. Both methods produced high seeding efficiencies and homogeneous distribution of cells. When seeded PGA??alginate scaffolds were cultured in perfusion bioreactors, they produced good quality constructs with higher concentrations of extracellular matrix (ECM) components compared with previously described methods. However, when seeded PGA scaffolds were cultured in perfusion bioreactors, they produced small constructs of poor quality. Investigation of the effect of medium flow rate on the PGA scaffolds showed that a low flow rate was needed at the beginning of the culture to enable the cells to form a framework onto which other synthesised elements could deposit. Applying a gradual increase in medium flow rate to PGA scaffolds cultured in perfusion bioreactors solved the shrinkage problem and produced constructs with quality similar to those produced using PGA??alginate scaffolds. A novel compression bioreactor that mimicked the physiological stimulation of cartilage by joint movement was constructed. Using this bioreactor, compressed constructs showed significantly higher wet weight and higher concentrations of GAG, total collagen and collagen type II compared with non-compressed constructs.
APA, Harvard, Vancouver, ISO, and other styles
4

Männicke, Nils Stefan [Verfasser]. "High-frequency ultrasound backscatter analysis of hyaline cartilage / Nils Stefan Männicke." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2018. http://d-nb.info/1160515190/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Malik, Simon Christopher. "Glycoconjugates and protein components of human synovial fluid and hyaline cartilage." Thesis, University of Newcastle Upon Tyne, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.352907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nelson, Larissa. "Evaluation of the potential for repair of degenerate hyaline cartilage in the osteoarthritic knee by cartilage stem cells." Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/42362/.

Full text
Abstract:
Osteoarthritis (OA) is a highly prevalent, debilitating disease affecting many joints including the knee. Despite the involvement of several tissues, it is believed that the articular cartilage is the primary site of pathogenesis in humans. Within this study, a new scoring system of OA was devised, incorporating the articular cartilage and underlying bone, aimed at providing a more comprehensive means of grading the severity of tissue damage. We examined changes progressively from mild to severe and were able to deduce from the scoring system that bone changes may precede those of the overlying cartilage. Immunohistochemistry was used to assess stem cell marker expression, proliferation and progressive changes within the extracellular matrix of sectioned osteochondral plugs, however no distinct pattern of change could be extrapolated, highlighting the variable nature of this taxing disease. Previous studies have demonstrated the presence of a sub-population of chondroprogenitor cells present in normal hyaline cartilage. We demonstrated in this study that a similar group of cells reside in osteoarthritic articular cartilage. We were able to isolate and expand clonally derived primary cell lines to beyond 50 population doublings whilst maintaining a chondrogenic phenotype, and demonstrated the tri-lineage potential of these cells. That said, a significant amount of variation was observed and it was, therefore, postulated that there may be a smaller cohort of viable cells within this sub-population isolated from osteoarthritic cartilage. A preliminary study was also carried out comparing chondroprogenitors from normal articular cartilage to those isolated from OA tissue. Heterogeneity was again encountered, suggesting that there was a group of OA chondroprogenitors with similar characteristics to the normal cells, which differed from the other less metabolically active cells. This finding was agreeable with the aforementioned postulation. Data from our preliminary integration study was promising as we demonstrated the potential for using these chondroprogenitor cells in combination with other cells whilst achieving successful integration. However, further work is necessary to distinguish between the cell lines with the potential for integration from those that lacked this ability, thereby eliminating the heterogeneity. The presence of viable chondroprogenitor cells in OA tissue challenges the dogma that the tissue is irrecoverable, and opens the scope for regenerative medicine using resident progenitor cells. This is an exciting prospect that could significantly contribute to articular cartilage repair.
APA, Harvard, Vancouver, ISO, and other styles
7

Filidoro, Lucianna. "Ultra-high field magnetic resonance diffusion tensor imaging of the hyaline articular cartilage." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-138325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mas, Vinyals Anna. "New design proposal to mimic the joint structure between bone and hyaline cartilage." Doctoral thesis, Universitat Ramon Llull, 2018. http://hdl.handle.net/10803/664480.

Full text
Abstract:
En el disseny de dispositius mèdics existeixen diversos casos en els quals és necessària la utilització de superfícies bioactives per aconseguir la integració òptima d’un implant amb el teixit que l’envolta. L’enginyeria de superfícies planteja diferents solucions, tot i així, per algunes aplicacions, l’obtenció d’una unió íntima entre el teixit i l’implant encara és un repte clínic. En aquest treball, presentem una tècnica que permet obtenir superfícies biomimètiques en qualsevol substrat que pugui ser sotmès a modificació per plasma. Com a proba de concepte, hem aplicat la tecnologia desenvolupada en l’obtenció d’un scaffold heterogeni per la regeneració del teixit osteocondral, amb un gran potencial per ser utilitzat com a teràpia regenerativa. Un dels grans reptes en la regeneració osteocondral, és assolir un grau elevat de semblança amb l’estructura articular, des de l’òs subcondral fins a la superfície articular. La nostra metodologia permet la immobilització d’un hidrogel que imita el teixit cartilaginós a la superfície d’una plataforma bioceràmica, la qual reprodueix el teixit ossi. Aquesta última, actuarà com a suport mecànic i punt d’ancoratge a l’òs subcondral, a la vegada que proporcionarà un reservori de ions de calci i de fosfat que ajudaran a la creació del gradient de duresa present en les articulacions. Així doncs, en aquesta tesi hem treballat en el disseny de les diferents parts que conformaran el scaffold. En primer lloc, per tal d’aprofundir en la creació del gradient de duresa, hem estudiat la bioactivitat de diferents substituts ossis bioceràmics comercials, els quals son candidats potencials per ser utilitzats en la construcció del scaffold. A continuació, hem validat la viabilitat del recobriment polimèric obtingut per PECVD en substrats bioceràmics i hem demostrat que no compromet la seva bioactivitat. A més, hem demostrat que la modificació superficial permet l’obtenció d’una interfície estable, que no es veu alterada per canvis fisiològics i permet l’autoensamblatge de l’hidrogel. Els estudis in vitro realitzats demostren que la tecnologia d’immobilització preserva la viabilitat cel·lular, i que la formulació permet la migració cel·lular a més de proporcionar un entorn adequat per la diferenciació condrogènica i osteogènica de cèl·lules mare mesenquimals.
En el diseño de dispositivos médicos existen numerosos casos en los que es necesaria la utilización de superficies bioactivas para lograr la integración óptima de un implante con el tejido que le rodea. La ingeniería de superficies propone diferentes soluciones, sin embargo, en determinadas aplicaciones, la obtención de una unión íntima entre el tejido y el implante aún es un reto clínico. En el presente trabajo, presentamos una técnica que permite la obtención de superficies biomiméticas en cualquier sustrato que pueda ser sometido a modificación por plasma. Como prueba de concepto, hemos aplicado la tecnología desarrollada en la obtención de un scaffold heterogéneo para la regeneración del tejido osteocondral, con un gran potencial para ser usado como terapia regenerativa. Uno de los grandes retos en la regeneración osteocondral, es lograr un grado elevado de semejanza con la estructura articular, desde el hueso subcondral hasta la superficie articular. Nuestra metodología permite la inmovilización de un hidrogel que imita el tejido cartilaginoso en la superficie de una plataforma bioceràmica, la cual reproduce el hueso. Ésta última, actuará como soporte mecánico y punto de anclaje al hueso subcondral, a la vez que proporcionará un reservorio de iones de calcio y fosfato que ayudarán en la creación del gradiente de dureza presente en las articulaciones. Así pues, en esta tesis hemos trabajado en el diseño de las diferentes partes que conformaran el scaffold. En primer lugar, para profundizar en la creación del gradiente de dureza, hemos estudiado la bioactividad de diferentes sustitutos óseos biocerámicos comerciales, los cuales son candidatos potenciales para ser utilizados en la construcción del scaffold. A continuación, hemos validado la viabilidad del recubrimiento polimérico obtenido por PECVD en sustratos biocerámicos y hemos demostrado como no compromete su bioactividad. Además, hemos demostrado como la modificación superficial permite la obtención de una interfaz estable, que no se altera por cambios fisiológicos, la cual permite el autoensamblaje del hidrogel. Los estudios in vitro realizados demuestran que la tecnología de inmovilización preserva la viabilidad celular, y que la formulación permite la migración celular además de proporcionar un entorno adecuado para la diferenciación condrogénica y osteogénica de células madre mesenquimales.
In medical device engineering, there are several cases where there is an imperative need of obtaining bioresponsive surfaces to achieve an optimal integration of a certain biomaterial with the surrounding tissue. Surface engineering has provided different approaches, however for certain applications obtaining an intimate bonding between the tissue and the implant remains a clinical challenge. In this work, we present a newly developed technique that allows the obtention of biomimetic surfaces onto any substrate that can be subject to plasma modification. As a proof of concept, we have applied the technology to obtain a heterogeneous scaffold for osteochondral repair, which has a great potential to be used as regenerative therapy. One of the great challenges in osteochondral repair is achieving a high degree of mimicry of the whole joint structure, from the subchondral bone to the surface of hyaline cartilage. Our methodology allows the immobilization of a cartilage-like hydrogel onto a bone-like bioceramic platform by means of a polymeric coating. The bioceramic acts not only as mechanical support and anchoring point to the subchondral bone, but also it acts as a reservoir of calcium and phosphate ions, which through diffusion help in the creation of the stiffness gradient present in joints. Thus, in the present thesis, we have worked on the design of the different parts that will form the osteochondral heterogeneous scaffold. First, to gain insight into the stiffness gradient creation, we have studied the bioactivity of different commercially available bioceramic bone substitutes, which are potential candidates to be used as bone-like platform. Next, we have validated the viability of the polymeric coating obtained through PECVD in this type of biomaterials and shown how it does not compromise their bioactive properties. Moreover, we have demonstrated how the designed surface modification allows the obtention of a stable interface, which is not disrupted by physiological changes, that enables the subsequent self-assembly of a cartilage-like hydrogel. In vitro studies show how our immobilizing technology preserves cell viability, and that our hydrogel formulation enables cell migration as well as it provides a suitable environment for both chondrogenic and osteogenic differentiation of mesenchymal stem cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Weaver, Paul Martin. "An investigation of fibrocartilage, hyaline cartilage, flexor tendon and bone density in equine navicular disease." Thesis, Royal Veterinary College (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vaca, González Juan Jairo. "The effect of electric fields on hyaline cartilage: an in vitro and in silico study." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/120023.

Full text
Abstract:
[ES] El cartílago hialino es un tejido conectivo denso con poca capacidad de auto regeneración cuando es afectado por patologías degenerativas. Por lo tanto, la estimulación eléctrica se ha propuesto como una terapia alternativa no invasiva para mejorar la reparación del cartílago hialino. De acuerdo con esto, este trabajo presenta un enfoque computacional y experimental combinado para entender mejor la biología del cartílago hialino y su respuesta a la estimulación eléctrica usando diferentes modelos in vitro. En primer lugar, se ha desarrollado un modelo mecanobiológico para simular el proceso de osificación endocondral. Por otro lado, se ha evaluado el efecto de la estimulación eléctrica sobre el cartílago hialino en tres escenarios diferentes. Inicialmente se ha analizado la proliferación celular y la síntesis de glicosaminoglicanos de condrocitos cultivados en monocapa y estimulados con campos eléctricos. Luego, se ha realizado un análisis histomorfométrico a explantes de condroepífisis que fueron estimulados eléctricamente. Por último, se ha evaluado el efecto de los campos eléctricos sobre la diferenciación condrogénica de células madre mesenquimales cultivadas en hidrogeles. Los resultados indican que la estimulación eléctrica es un estímulo biofísico prometedor, ya que este tipo de estimulación mejora la viabilidad y la proliferación celular, induce cambios morfológicos en los condrocitos, y estimula la síntesis de las principales moléculas que componen el cartílago hialino, tales como SOX-9, glicosaminoglicanos y agrecan. Además, este proyecto es el primer paso hacia la implementación de un estímulo biofísico alternativo que modifica la dinámica celular de los condrocitos de la placa de crecimiento en condiciones ex vivo. Adicionalmente, este estudio resalta el efecto potencial de los campos eléctricos para inducir el proceso de condrogénesis de células madre mesenquimales cultivadas en condiciones basales. En general, la evaluación de la estimulación eléctrica sobre condrocitos, tejidos y andamios es una herramienta útil que puede contribuir al conocimiento actual de las terapias regenerativas enfocadas en la regeneración del cartílago hialino.
[CAT] El cartílag hialí és un teixit connectiu dens amb poca capacitat d'auto regeneració quan es veu afectat per patologies degeneratives. Per tant, l'estimulació elèctrica s'ha proposat com una teràpia alternativa no invasiva per millorar la reparació del cartílag articular. D'acord amb això, aquest treball presenta un enfoc computacional i experimental combinat per entendre millor la biologia del cartílag hialí i la seva resposta a l'estimulació elèctrica usant diferents models in vitro. En primer lloc, s'ha desenvolupat un model mecanobiològic per simular el procés d'ossificació endocondral. D'altra banda, s'ha avaluat l'efecte de l'estimulació elèctrica sobre el cartílag hialí en tres escenaris diferents. Inicialment s'ha analitzat la proliferació cel·lular i la síntesi de glicosaminoglicans de condròcits cultivats en monocapa i estimulats amb camps elèctrics. Després, s'ha realitzat una anàlisi histomorfomètrica a explants de condroepífisis que van ser estimulats elèctricament. Finalment, s'ha avaluat l'efecte dels camps elèctrics sobre la diferenciació condrogénica de cèl·lules mare mesenquimals cultivades en hidrogels. Els resultats indiquen que l'estimulació elèctrica és un estímul biofîsic prometedor, ja que aquest tipus d'estimulació millora la viabilitat i la proliferació cel·lular, indueix canvis morfològics en els condròcits, i estimula la síntesi de les principals molècules que componen el cartílag hialí, com ara SOX-9, glicosaminoglicans i agrecan. A més, aquest projecte és el primer pas cap a la implementació d'un estímul biofísic alternatiu que modifica la dinàmica cel·lular dels condròcits de la placa de creixement en condicions ex vivo. Addicionalment, aquest estudi ressalta l'efecte potencial dels camps elèctrics per induir el procés de condrogènesi de cèl·lules mare mesenquimals cultivades en condicions basals. En general, l'avaluació de l'estimulació elèctrica sobre condròcits, teixits i scaffolds és una eina útil que pot contribuir al coneixement actual de les teràpies regeneratives enfocades a la regeneració del cartílag hialí.
[EN] Hyaline cartilage is a dense connective tissue with low self-healing capacity when is affected by degenerative pathologies. Therefore, electrical stimulation has been proposed as a possible non-invasive alternative therapy to enhance the restoration of the cartilaginous tissue. Accordingly, this work presents a combined computational and experimental approach to understand better the hyaline cartilage biology and its response to electrical stimulation using different in vitro models. On the one hand, a mechanobiological model was developed to simulate the endochondral ossification process. On the other hand, the electrical stimulation on hyaline cartilage was evaluated in three different scenarios. Initially, cell proliferation and glycosaminoglycans synthesis of chondrocytes, cultured in monolayer and stimulated with electric fields, was analyzed. Then, a histomorphometric analysis was performed to chondroepiphysis explants that were electrically stimulated. Finally, the effects of the electric fields on chondrogenic differentiation of mesenchymal stem cells cultured in hydrogels was assessed. The results indicated that electrical stimulation is a promising biophysical stimulus, due to the fact that this type of stimulation enhances the viability and the proliferation of cells, induces morphological changes in the chondrocytes, and stimulates the synthesis of the main molecules that compose the hyaline cartilage, such as SOX-9, glycosaminoglycans and aggrecan. Moreover, this project is the first step towards the implementation of an alternative biophysical stimulus that modifies the cellular dynamics of growth plate chondrocytes in ex vivo conditions. Additionally, this study highlights the potential effect of electric fields to induce the chondrogenesis process of mesenchymal stem cells cultured in basal conditions. Overall, the assessment of electrical stimulation on chondrocytes, tissues and scaffolds is a useful tool that may contribute to the current knowledge of regenerative therapies focused on hyaline cartilage healing.
To the financial support from COLCIENCIAS – COLFUTURO through the fellowship No. 647 for national doctorates. To the financial support from COLCIENCIAS through the research grant 712-2015 No. 50457. To the financial support from the Spanish Ministry of Economy and Competitiveness through the MAT2016-76039-C4-1-R project.
Vaca González, JJ. (2019). The effect of electric fields on hyaline cartilage: an in vitro and in silico study [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/120023
TESIS
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hyaline cartilage"

1

Malinin, George I. Microscopic and histochemical manifestations of hyaline cartilage dynamics. Jena, Germany: Urban & Fischer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roberts, Simon. Articular cartilage. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199533909.003.0005.

Full text
Abstract:
Synovial joints allow the efficient and controlled movement necessary for sport with a biological shock-absorbing bearing of hyaline cartilage. This is an extremely low friction surface, with a coefficient of one-sixth of that of ice on ice, lower than most man-made bearing materials. It has viscoelastic properties allowing dynamic congruity and minimization of transmitted pressure and impact....
APA, Harvard, Vancouver, ISO, and other styles
3

P, Jobanputra, and National Co-ordinating Centre for HTA (Great Britain), eds. Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: A rapid and systematic review. Alton: Core Research on behalf of the NCCHTA, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grassi, Walter, Tadashi Okano, and Emilio Filippucci. Ultrasound in osteoarthritis and crystal-related arthropathies. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0017.

Full text
Abstract:
Ultrasonography (US) is a safe and cheap imaging technique which in experienced hands allows for a multiplanar and multisite high-resolution assessment of both morphological and structural features of bone, cartilage, and intra- or periarticular soft tissues. This chapter describes the main applications of US in patients with osteoarthritis (OA) and crystal-related arthropathies. Imaging plays a key role for diagnosis, prognosis, and follow-up in patients with OA. Although conventional radiography is still the gold standard imaging technique in daily clinical practice, US has been revealed to be capable of detecting a wide spectrum of otherwise undetectable details, including cartilage damage, joint effusion, synovial hypertrophy, osteophyte formation, and meniscal protrusion. Crystal visualization by US has the potential to change the diagnostic approach in patients with suspicion of crystal-related arthropathies. The double-contour sign, due to urate crystal deposits on the chondrosynovial interface of the hyaline cartilage, is a highly specific finding for gout as well as the hyperechoic spots within the hyaline cartilage for calcium pyrophosphate dihydrate crystal deposition disease. The potential applications of US in the management of patients with OA and crystal-related arthropathies are not only limited to diagnosis and monitoring. Finally, US guidance allows the real-time visualization of the needle moving through different tissues and reaching the target to aspirate and/or inject. The correct placement of the tip of the needle plays a key role in improving efficacy and reducing side effects of the injection.
APA, Harvard, Vancouver, ISO, and other styles
5

Goldring, Steven R. Pathophysiology of periarticular bone changes in osteoarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0005.

Full text
Abstract:
Under physiological conditions, the subchondral bone of diarthrodial joints such as the hip, knee, and phalanges forms an integrated biocomposite with the overlying calcified and hyaline articular cartilage that is optimally organized to transfer mechanical load. During the evolution of the osteoarthritic process both the periarticular bone and cartilage undergo marked changes in their structural and functional properties in response to adverse biomechanical and biological signals. These changes are mediated by bone cells that modify the architecture and properties of the bone through active cellular processes of modelling and remodelling. These same biomechanical and biological factors also affect chondrocytes in the cartilage matrix altering the composition and structure of the cartilage and further disrupting the homeostatic relationship between the cartilage and bone. This chapter reviews the structural alterations and cellular mechanisms involved in the pathogenesis of osteoarthritis bone pathology and discusses potential approaches for targeting bone remodelling to attenuate the progression of the osteoarthritic process.
APA, Harvard, Vancouver, ISO, and other styles
6

Colaco, Henry, Fares Haddad, and Cathy Speed. Knee injuries. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199533909.003.0031.

Full text
Abstract:
The knee is a synovial hinge joint which achieves a range of movement of 0°–150° flexion with a complex combination of sliding, gliding, and rolling movements. The three components involved are the medial and lateral compartments of the tibiofemoral joint and the patellofemoral joint. The joint is lined with hyaline articular cartilage and stability is primarily provided by the joint capsule, menisci, ligaments, and muscles....
APA, Harvard, Vancouver, ISO, and other styles
7

Doherty, Michael. Osteoarthritis. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0266.

Full text
Abstract:
Osteoarthritis (OA) is a disorder of synovial joints and is characterized by the combination of focal hyaline cartilage loss and accompanying subchondral bone remodelling and marginal new bone formation (osteophyte). It has genetic, constitutional, and environmental risk factors and presents a spectrum of clinical phenotypes and outcomes. OA commonly affects just one region (e.g. knee OA, hip OA). However, multiple hand interphalangeal joint OA, usually accompanied by posterolateral firm swellings (nodes), is a marker for a tendency towards polyarticular ‘generalized nodal OA’.
APA, Harvard, Vancouver, ISO, and other styles
8

Wyatt, Laura A., and Michael Doherty. Morphological aspects of pathology. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0003.

Full text
Abstract:
Osteoarthritis (OA) is the commonest condition to affect synovial joints, but although any synovial joint can be affected, most studies of pathology relate to large joints (knees and hips). OA involves the whole joint and pathological alterations typically occur in all joint tissues. Established OA is characterized by a mixture of tissue loss and new tissue production resulting in focal loss of articular hyaline cartilage together with bone remodelling and osteophyte formation. Articular cartilage may show increased thickness in the earliest stages of OA with increased numbers of hypertrophic chondrocytes, followed by progressive decline in matrix components, thickness, and chondrocyte number. Surface fibrillation and vertical clefts become evident in mid- to end-stage OA and eventual complete loss of cartilage can occur, predominantly in maximum load-bearing regions, with subsequent eburnation and furrowing of bone. Bone remodelling may lead to alteration of bone shape and variable trabecular thickness in subchondral bone, whilst subchondral microfractures may result in localized osteonecrosis, fibrosis, and ‘cysts’. Endochondral ossification of new fibrocartilage produced predominantly at the joint margin produces characteristic bony osteophytes. The synovium shows areas of hyperplasia with varying amounts of lymphocyte aggregates and inclusion of osteochondral ‘loose’ bodies, and the outer fibrous capsule thickens to help stabilize the compromised joint. Synovial fluid increases in volume but decreases in viscosity. Periarticular changes include type II muscle atrophy and enthesophytes.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hyaline cartilage"

1

Grässel, Susanne. "Collagens in Hyaline Cartilage." In Cartilage, 23–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29568-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krstić, Radivoj V. "Cartilaginous Tissue. Histogenesis of Hyaline Cartilage." In General Histology of the Mammal, 170–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Monzavi, Seyed Mostafa, Abdol-Mohammad Kajbafzadeh, Shabnam Sabetkish, and Alexander Seifalian. "Extracellular Matrix Scaffold Using Decellularized Cartilage for Hyaline Cartilage Regeneration." In Advances in Experimental Medicine and Biology, 209–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82735-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krstić, Radivoj V. "Cartilaginous Tissue. Hyaline Cartilage of the Trachea." In General Histology of the Mammal, 172–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krstić, Radivoj V. "Cartilaginous Tissue. Hyaline Cartilage. Continuation of Plate 84." In General Histology of the Mammal, 174–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krstić, Radivoj V. "Cartilaginous Tissue. Chondrocyte of Hyaline or Elastic Cartilage." In General Histology of the Mammal, 180–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lau, Ting Ting, Wenyan Leong, Yvonne Peck, Kai Su, and Dong-An Wang. "Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft." In Cartilage Tissue Engineering, 153–60. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2938-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oláh, Tamás, Tunku Kamarul, Henning Madry, and Malliga Raman Murali. "The Illustrative Anatomy and the Histology of the Healthy Hyaline Cartilage." In The Illustrative Book of Cartilage Repair, 5–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47154-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oláh, Tamás, Deepak Rajkumar Goyal, and Henning Madry. "The Illustrative Anatomy and the Histology of the Degenerative Hyaline Cartilage." In The Illustrative Book of Cartilage Repair, 11–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47154-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wortmann, Robert L., Majeedul Chowdhury, and John W. Rachow. "ATP-Dependent Mineralization of Hyaline Articular Cartilage Matrix Vesicles." In Advances in Experimental Medicine and Biology, 81–85. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5673-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hyaline cartilage"

1

Blum, Michelle M., and Timothy C. Ovaert. "Synthesis and Characterization of Boundary Lubricant-Functionalized PVA Gels for Biotribological Applications." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19281.

Full text
Abstract:
Hyaline cartilage is a material which exhibits ideal tribological properties by maintaining naturally low friction, leading to high wear resistance in articulating joints. When damage to hyaline cartilage occurs, due to diseases such as osteoarthritis or traumatic tissue injuries, tissue regeneration is limited due to cartilage’s avascular and aneural nature. The resulting bone-on-bone contact causes serious pain and limited mobility. Current treatment options are limited to total or partial joint replacements, which are not ideal procedures due to long term failure of components and osteolysis. A vastly improved material is desirable, which better mimics the structure and excellent tribological behavior of natural cartilage.
APA, Harvard, Vancouver, ISO, and other styles
2

Palomares, Kristy T. S., Thomas A. Einhorn, Louis C. Gerstenfeld, and Elise F. Morgan. "Hyaline Characteristics of Mechanically Induced Cartilaginous Tissues." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176519.

Full text
Abstract:
The mechanical properties of hyaline cartilage depend heavily on tissue structure and biochemical composition. Glycosaminoglycans (GAGs) and collagen fibrils are the key extracellular matrix components of hyaline cartilage that bestow compressive and tensile stiffness, respectively.[1–2] In articular cartilage, a decline in GAG content and collagen organization with injury or with diseases such as osteoarthritis is intimately linked with a decline in mechanical function.[3] In tissue-engineered cartilage and articular cartilage explants, mechanical loading in vitro results in increased aggrecan mRNA expression, GAG content, and increased stiffness.[4–6] These findings suggest that mechanical loading could be applied in vivo to promote cartilage repair via modulation of gene expression, tissue structure, and tissue composition. We have previously developed an in vivo model of skeletal repair in which application of a controlled bending motion to a healing osteotomy gap results in formation of cartilage within the gap.[6] Using this model, we sought to characterize the biochemical composition and collagen structure of the mechanically induced cartilaginous tissue. The objectives of this study were: 1) to quantify the total GAG content and aggrecan mRNA expression; and 2) to characterize the collagen fiber orientation.
APA, Harvard, Vancouver, ISO, and other styles
3

Murphy, Colm, Denis Kelliher, and John Davenport. "A Nonlinear Finite Element Inverse Approach to Characterize the Material Properties of Tracheal Cartilage: Preliminary Study." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19538.

Full text
Abstract:
Tracheal cartilage is a form of hyaline cartilage. Mature hyaline cartilage is classified by miniature aggregations of chondrocytes implanted in an amorphous matrix of ground substance reinforced by collagen fibres designated as collagen type II. The adjacent layer, the perichondrium, consists of collagen fibers and spindle-shaped cells which are similar to fibroblasts. It has been determined that collagen is a nonlinear material[1], and consequently, tracheal cartilage is also nonlinear. Previous research on tracheal cartilage has treated the material as both linear and nonlinear[2].
APA, Harvard, Vancouver, ISO, and other styles
4

Ihnatouski, Mikhail, Dmitriy Karev, Boris Karev, Jolanta Pauk, and Kristina Daunoravičienė. "AFM investigation of hyaline cartilage’s surface destruction." In Biomdlore. VGTU Technika, 2016. http://dx.doi.org/10.3846/biomdlore.2016.15.

Full text
Abstract:
Introduction: Osteoarthritis is a chronic, progressive disease. The aim of this paper is presenting the AFM investigation of cartilage in relation to the assessment of degenerative changes in the surface of hyaline cartilage. It can be useful in choosing the most effective methods of therapy. Methods: Samples were taken from the cartilage surface of the femoral head after its removal during total hip arthroplasty. Images of the surface of the sample were obtained using an optical microscope equipped with a digital video camera, in the reflected light and by atomic force microscopy. Results: The longitudinal orientation of the collagen fibers and sub-fibers beams on the surface, up to a diameter of 50 nm are identified in non-destroyed area sites. Conclusions: Images of the destroyed areas displaying separately passing collagen fibers, strongly exposed to the surface: the size measured and found substructure.
APA, Harvard, Vancouver, ISO, and other styles
5

Padalkar, M., R. Spencer, and N. Pleshko. "Near infrared spectroscopic evaluation of water in hyaline cartilage." In 2012 38th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2012. http://dx.doi.org/10.1109/nebc.2012.6207118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meyer, Eric G., Conor T. Buckley, and Daniel J. Kelly. "The Effect of Cyclic Hydrostatic Pressure on the Functional Development of Cartilaginous Tissues Engineered Using Bone Marrow Derived Mesenchymal Stem Cells." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53634.

Full text
Abstract:
Articular cartilage has a poor capacity for repair. Of the many procedures available to the orthopaedic surgeon, osteochondral grafting is the only technique which reliably produces hyaline cartilage within a defect.1 Bone marrow derived mesenchymal stem cells (MSCs) are an interesting alternative to harvesting cartilage grafts for chondrocytes as they also have the ability to produce cartilaginous tissues in vitro. This suggests that if tissue engineering strategies could be used to develop cartilaginous grafts with mechanical properties approaching that of normal articular cartilage, then hyaline tissue could be regenerated. Of concern with such approaches are reports that the mechanical properties of cartilaginous tissues engineered using MSCs are inferior to that engineered using chondrocytes derived from articular cartilage, although recent studies have demonstrated that adult equine MSCs produce a cartilaginous tissue mechanically superior to that derived using animal-matched adult chondrocytes.2
APA, Harvard, Vancouver, ISO, and other styles
7

Pak, Rebecca, Sara E. Campbell, Rachel C. Paietta, and Virginia L. Ferguson. "Distribution of Nanomechanical Properties and Mineralization of the Osteochondral Interface in the Femoral Head." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53345.

Full text
Abstract:
Stiff vertebral bone and compliant hyaline articular cartilage (HAC) anchor together through a thin (∼100’s of microns) region of articular calcified cartilage (ACC). This bone–cartilage, or osteochondral (OC), interface may play a role in osteoarthritis pathogenesis through increased mineralization, disrupting loading, and damaging neighboring tissues [1,2]. Load transmission through OC regions is poorly understood, thus limiting understanding of disease progression and ability to engineer OC interface-like tissues [3].
APA, Harvard, Vancouver, ISO, and other styles
8

Cipolletta, Edoardo, Emilio Filippucci, Andrea DI Matteo, Marco DI Carlo, and Walter Grassi. "AB1130 RELIABILITY OF ULTRASOUND MEASUREMENT OF HYALINE CARTILAGE THICKNESS IN RHEUAMTOID ARTHRITIS." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Chih-Hao, Manmohan Singh, Jiasong Li, Zhaolong Han, Chen Wu, Shang Wang, Rita Idugboe, et al. "Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography." In SPIE BiOS, edited by Valery V. Tuchin, Kirill V. Larin, Martin J. Leahy, and Ruikang K. Wang. SPIE, 2015. http://dx.doi.org/10.1117/12.2079854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Timchenko, Elena V., Pavel E. Timchenko, Larisa T. Volova, Dmitry A. Dolgyshkin, Anna S. Tyumchenkova, Maria D. Markova, and V. A. Lazarev. "Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy." In Ultrafast Nonlinear Imaging and Spectroscopy V, edited by Zhiwen Liu. SPIE, 2017. http://dx.doi.org/10.1117/12.2272335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography