Academic literature on the topic 'Hyaline cartilage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyaline cartilage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hyaline cartilage"
Kheir, Ehab, and David Shaw. "Hyaline articular cartilage." Orthopaedics and Trauma 23, no. 6 (December 2009): 450–55. http://dx.doi.org/10.1016/j.mporth.2009.01.003.
Full textJeffrey, D. R., and I. Watt. "Imaging hyaline cartilage." British Journal of Radiology 76, no. 911 (November 2003): 777–87. http://dx.doi.org/10.1259/bjr/51504520.
Full textEngfeldt, BENGT, KJELL Hultenby, and MARTIN MÜLler. "ULTRASTRUCTURE OF HYALINE CARTILAGE." Acta Pathologica Microbiologica Scandinavica Series A :Pathology 94A, no. 1-6 (August 15, 2009): 313–23. http://dx.doi.org/10.1111/j.1699-0463.1986.tb03000.x.
Full textENGFELDT, BENGT, BRUCE CATERSON, OLE EKLÖF, KJELL HULTENBY, and MARTIN MÜLLER. "ULTRASTRUCTURE OF HYALINE CARTILAGE." Acta Pathologica Microbiologica Scandinavica Series A :Pathology 95A, no. 1-6 (August 19, 2009): 371–76. http://dx.doi.org/10.1111/j.1699-0463.1987.tb00054_95a.x.
Full textAL-Mhanna, H. K. N. "Morphological study of the Larynx of the indigenous adult Male Pigeon (Columba domestica)." Al-Qadisiyah Journal of Veterinary Medicine Sciences 12, no. 1 (June 30, 2013): 52. http://dx.doi.org/10.29079/vol12iss1art230.
Full textHodler, Juerg, Marie-Josée Berthiaume, Mark E. Schweitzer, and Donald Resnick. "Knee Joint Hyaline Cartilage Defects." Journal of Computer Assisted Tomography 16, no. 4 (July 1992): 597–603. http://dx.doi.org/10.1097/00004728-199207000-00020.
Full textJonsson, K., K. Buckwalter, M. Helvie, L. Niklason, and W. Martel. "Precision of Hyaline Cartilage Thickness Measurements." Acta Radiologica 33, no. 3 (May 1992): 234–39. http://dx.doi.org/10.1177/028418519203300308.
Full textFodor, Pal, Arpad Solyon, Raluca Fodor, Cornel Catoi, Flaviu Tabaran, Radu Lacatus, Cristian Trambitas, and Tiberiu Bataga. "Role of the Biomimetic Scaffolds in the Regeneration of Articular Tissue in Deep Osteochondral Defects in a Rabbit Model." Revista de Chimie 69, no. 1 (February 15, 2018): 201–7. http://dx.doi.org/10.37358/rc.18.1.6074.
Full textAlcaide-Ruggiero, Lourdes, Verónica Molina-Hernández, María M. Granados, and Juan M. Domínguez. "Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects." International Journal of Molecular Sciences 22, no. 24 (December 11, 2021): 13329. http://dx.doi.org/10.3390/ijms222413329.
Full textSchroeder, Walter A., Margaret H. Cooper, and William H. Friedman. "The Histologic Effect of Hypervitaminosis A on Laryngeal Cartilages." Otolaryngology–Head and Neck Surgery 96, no. 6 (June 1987): 533–37. http://dx.doi.org/10.1177/019459988709600602.
Full textDissertations / Theses on the topic "Hyaline cartilage"
Padalkar, Mugdha Vijay. "Spectroscopic Evaluation of Water in Hyaline Cartilage." Master's thesis, Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/124170.
Full textM.S.E.
Articular cartilage is hypocellular, aneural, alymphatic, and avascular. In diseased conditions such as osteoarthritis, there is an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. The most explored method for the assessment of water content in cartilage is MRI, but it cannot detect small changes in water content. Other methods such as dry/wet analysis and Karl Fischer titration are destructive. Infrared spectroscopy is extremely sensitive to the chemical composition and molecular structure of the sample. The technique of near infrared spectroscopy (NIRS) has been used for analyses of water in food, pharmaceuticals and skin. The hypothesis that NIR spectra can be used to assess water content in cartilage was investigated here. A model system using bovine nasal cartilage (BNC) to assess water content in hyaline cartilage was developed. The water content was initially determined by finding the integrated areas under the absorbance bands attributable to water centered at 5190 cm-1 and 6890 cm-1, and compared to the gold standard method for water measurement, gravimetric analysis of wet and dry weights.. The integrated areas of the absorbance bands at 5190 cm-1 and 6890 cm-1 , reflective of a combination of bound plus free water, and free water, in the tissues, respectively, were found to correlate with the absolute water content of the tissue. A model system of gelatin with varying amounts of water, representing the primary components of cartilage, collagen and water, was also developed. Regression analysis and partial least square (PLS) models using data from BNC tissues were successfully developed, and demonstrate that NIR spectroscopy can be utilized to quantitatively determine water content in articular cartilage.
Temple University--Theses
Middleton, J. F. S. "Ionic and morphological studies of mammalian hyaline cartilage." Thesis, Lancaster University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370234.
Full textShahin, Kifah Biotechnology & Biomolecular Sciences Faculty of Science UNSW. "In vitro production of human hyaline cartilage using tissue engineering." Publisher:University of New South Wales. Biotechnology & Biomolecular Sciences, 2008. http://handle.unsw.edu.au/1959.4/42945.
Full textMännicke, Nils Stefan [Verfasser]. "High-frequency ultrasound backscatter analysis of hyaline cartilage / Nils Stefan Männicke." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2018. http://d-nb.info/1160515190/34.
Full textMalik, Simon Christopher. "Glycoconjugates and protein components of human synovial fluid and hyaline cartilage." Thesis, University of Newcastle Upon Tyne, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.352907.
Full textNelson, Larissa. "Evaluation of the potential for repair of degenerate hyaline cartilage in the osteoarthritic knee by cartilage stem cells." Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/42362/.
Full textFilidoro, Lucianna. "Ultra-high field magnetic resonance diffusion tensor imaging of the hyaline articular cartilage." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-138325.
Full textMas, Vinyals Anna. "New design proposal to mimic the joint structure between bone and hyaline cartilage." Doctoral thesis, Universitat Ramon Llull, 2018. http://hdl.handle.net/10803/664480.
Full textEn el diseño de dispositivos médicos existen numerosos casos en los que es necesaria la utilización de superficies bioactivas para lograr la integración óptima de un implante con el tejido que le rodea. La ingeniería de superficies propone diferentes soluciones, sin embargo, en determinadas aplicaciones, la obtención de una unión íntima entre el tejido y el implante aún es un reto clínico. En el presente trabajo, presentamos una técnica que permite la obtención de superficies biomiméticas en cualquier sustrato que pueda ser sometido a modificación por plasma. Como prueba de concepto, hemos aplicado la tecnología desarrollada en la obtención de un scaffold heterogéneo para la regeneración del tejido osteocondral, con un gran potencial para ser usado como terapia regenerativa. Uno de los grandes retos en la regeneración osteocondral, es lograr un grado elevado de semejanza con la estructura articular, desde el hueso subcondral hasta la superficie articular. Nuestra metodología permite la inmovilización de un hidrogel que imita el tejido cartilaginoso en la superficie de una plataforma bioceràmica, la cual reproduce el hueso. Ésta última, actuará como soporte mecánico y punto de anclaje al hueso subcondral, a la vez que proporcionará un reservorio de iones de calcio y fosfato que ayudarán en la creación del gradiente de dureza presente en las articulaciones. Así pues, en esta tesis hemos trabajado en el diseño de las diferentes partes que conformaran el scaffold. En primer lugar, para profundizar en la creación del gradiente de dureza, hemos estudiado la bioactividad de diferentes sustitutos óseos biocerámicos comerciales, los cuales son candidatos potenciales para ser utilizados en la construcción del scaffold. A continuación, hemos validado la viabilidad del recubrimiento polimérico obtenido por PECVD en sustratos biocerámicos y hemos demostrado como no compromete su bioactividad. Además, hemos demostrado como la modificación superficial permite la obtención de una interfaz estable, que no se altera por cambios fisiológicos, la cual permite el autoensamblaje del hidrogel. Los estudios in vitro realizados demuestran que la tecnología de inmovilización preserva la viabilidad celular, y que la formulación permite la migración celular además de proporcionar un entorno adecuado para la diferenciación condrogénica y osteogénica de células madre mesenquimales.
In medical device engineering, there are several cases where there is an imperative need of obtaining bioresponsive surfaces to achieve an optimal integration of a certain biomaterial with the surrounding tissue. Surface engineering has provided different approaches, however for certain applications obtaining an intimate bonding between the tissue and the implant remains a clinical challenge. In this work, we present a newly developed technique that allows the obtention of biomimetic surfaces onto any substrate that can be subject to plasma modification. As a proof of concept, we have applied the technology to obtain a heterogeneous scaffold for osteochondral repair, which has a great potential to be used as regenerative therapy. One of the great challenges in osteochondral repair is achieving a high degree of mimicry of the whole joint structure, from the subchondral bone to the surface of hyaline cartilage. Our methodology allows the immobilization of a cartilage-like hydrogel onto a bone-like bioceramic platform by means of a polymeric coating. The bioceramic acts not only as mechanical support and anchoring point to the subchondral bone, but also it acts as a reservoir of calcium and phosphate ions, which through diffusion help in the creation of the stiffness gradient present in joints. Thus, in the present thesis, we have worked on the design of the different parts that will form the osteochondral heterogeneous scaffold. First, to gain insight into the stiffness gradient creation, we have studied the bioactivity of different commercially available bioceramic bone substitutes, which are potential candidates to be used as bone-like platform. Next, we have validated the viability of the polymeric coating obtained through PECVD in this type of biomaterials and shown how it does not compromise their bioactive properties. Moreover, we have demonstrated how the designed surface modification allows the obtention of a stable interface, which is not disrupted by physiological changes, that enables the subsequent self-assembly of a cartilage-like hydrogel. In vitro studies show how our immobilizing technology preserves cell viability, and that our hydrogel formulation enables cell migration as well as it provides a suitable environment for both chondrogenic and osteogenic differentiation of mesenchymal stem cells.
Weaver, Paul Martin. "An investigation of fibrocartilage, hyaline cartilage, flexor tendon and bone density in equine navicular disease." Thesis, Royal Veterinary College (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271620.
Full textVaca, González Juan Jairo. "The effect of electric fields on hyaline cartilage: an in vitro and in silico study." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/120023.
Full text[CAT] El cartílag hialí és un teixit connectiu dens amb poca capacitat d'auto regeneració quan es veu afectat per patologies degeneratives. Per tant, l'estimulació elèctrica s'ha proposat com una teràpia alternativa no invasiva per millorar la reparació del cartílag articular. D'acord amb això, aquest treball presenta un enfoc computacional i experimental combinat per entendre millor la biologia del cartílag hialí i la seva resposta a l'estimulació elèctrica usant diferents models in vitro. En primer lloc, s'ha desenvolupat un model mecanobiològic per simular el procés d'ossificació endocondral. D'altra banda, s'ha avaluat l'efecte de l'estimulació elèctrica sobre el cartílag hialí en tres escenaris diferents. Inicialment s'ha analitzat la proliferació cel·lular i la síntesi de glicosaminoglicans de condròcits cultivats en monocapa i estimulats amb camps elèctrics. Després, s'ha realitzat una anàlisi histomorfomètrica a explants de condroepífisis que van ser estimulats elèctricament. Finalment, s'ha avaluat l'efecte dels camps elèctrics sobre la diferenciació condrogénica de cèl·lules mare mesenquimals cultivades en hidrogels. Els resultats indiquen que l'estimulació elèctrica és un estímul biofîsic prometedor, ja que aquest tipus d'estimulació millora la viabilitat i la proliferació cel·lular, indueix canvis morfològics en els condròcits, i estimula la síntesi de les principals molècules que componen el cartílag hialí, com ara SOX-9, glicosaminoglicans i agrecan. A més, aquest projecte és el primer pas cap a la implementació d'un estímul biofísic alternatiu que modifica la dinàmica cel·lular dels condròcits de la placa de creixement en condicions ex vivo. Addicionalment, aquest estudi ressalta l'efecte potencial dels camps elèctrics per induir el procés de condrogènesi de cèl·lules mare mesenquimals cultivades en condicions basals. En general, l'avaluació de l'estimulació elèctrica sobre condròcits, teixits i scaffolds és una eina útil que pot contribuir al coneixement actual de les teràpies regeneratives enfocades a la regeneració del cartílag hialí.
[EN] Hyaline cartilage is a dense connective tissue with low self-healing capacity when is affected by degenerative pathologies. Therefore, electrical stimulation has been proposed as a possible non-invasive alternative therapy to enhance the restoration of the cartilaginous tissue. Accordingly, this work presents a combined computational and experimental approach to understand better the hyaline cartilage biology and its response to electrical stimulation using different in vitro models. On the one hand, a mechanobiological model was developed to simulate the endochondral ossification process. On the other hand, the electrical stimulation on hyaline cartilage was evaluated in three different scenarios. Initially, cell proliferation and glycosaminoglycans synthesis of chondrocytes, cultured in monolayer and stimulated with electric fields, was analyzed. Then, a histomorphometric analysis was performed to chondroepiphysis explants that were electrically stimulated. Finally, the effects of the electric fields on chondrogenic differentiation of mesenchymal stem cells cultured in hydrogels was assessed. The results indicated that electrical stimulation is a promising biophysical stimulus, due to the fact that this type of stimulation enhances the viability and the proliferation of cells, induces morphological changes in the chondrocytes, and stimulates the synthesis of the main molecules that compose the hyaline cartilage, such as SOX-9, glycosaminoglycans and aggrecan. Moreover, this project is the first step towards the implementation of an alternative biophysical stimulus that modifies the cellular dynamics of growth plate chondrocytes in ex vivo conditions. Additionally, this study highlights the potential effect of electric fields to induce the chondrogenesis process of mesenchymal stem cells cultured in basal conditions. Overall, the assessment of electrical stimulation on chondrocytes, tissues and scaffolds is a useful tool that may contribute to the current knowledge of regenerative therapies focused on hyaline cartilage healing.
To the financial support from COLCIENCIAS – COLFUTURO through the fellowship No. 647 for national doctorates. To the financial support from COLCIENCIAS through the research grant 712-2015 No. 50457. To the financial support from the Spanish Ministry of Economy and Competitiveness through the MAT2016-76039-C4-1-R project.
Vaca González, JJ. (2019). The effect of electric fields on hyaline cartilage: an in vitro and in silico study [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/120023
TESIS
Books on the topic "Hyaline cartilage"
Malinin, George I. Microscopic and histochemical manifestations of hyaline cartilage dynamics. Jena, Germany: Urban & Fischer, 1999.
Find full textRoberts, Simon. Articular cartilage. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199533909.003.0005.
Full textP, Jobanputra, and National Co-ordinating Centre for HTA (Great Britain), eds. Effectiveness of autologous chondrocyte transplantation for hyaline cartilage defects in knees: A rapid and systematic review. Alton: Core Research on behalf of the NCCHTA, 2001.
Find full textGrassi, Walter, Tadashi Okano, and Emilio Filippucci. Ultrasound in osteoarthritis and crystal-related arthropathies. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0017.
Full textGoldring, Steven R. Pathophysiology of periarticular bone changes in osteoarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0005.
Full textColaco, Henry, Fares Haddad, and Cathy Speed. Knee injuries. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199533909.003.0031.
Full textDoherty, Michael. Osteoarthritis. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0266.
Full textWyatt, Laura A., and Michael Doherty. Morphological aspects of pathology. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0003.
Full textBook chapters on the topic "Hyaline cartilage"
Grässel, Susanne. "Collagens in Hyaline Cartilage." In Cartilage, 23–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29568-8_2.
Full textKrstić, Radivoj V. "Cartilaginous Tissue. Histogenesis of Hyaline Cartilage." In General Histology of the Mammal, 170–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_83.
Full textMonzavi, Seyed Mostafa, Abdol-Mohammad Kajbafzadeh, Shabnam Sabetkish, and Alexander Seifalian. "Extracellular Matrix Scaffold Using Decellularized Cartilage for Hyaline Cartilage Regeneration." In Advances in Experimental Medicine and Biology, 209–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82735-9_17.
Full textKrstić, Radivoj V. "Cartilaginous Tissue. Hyaline Cartilage of the Trachea." In General Histology of the Mammal, 172–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_84.
Full textKrstić, Radivoj V. "Cartilaginous Tissue. Hyaline Cartilage. Continuation of Plate 84." In General Histology of the Mammal, 174–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_85.
Full textKrstić, Radivoj V. "Cartilaginous Tissue. Chondrocyte of Hyaline or Elastic Cartilage." In General Histology of the Mammal, 180–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_88.
Full textLau, Ting Ting, Wenyan Leong, Yvonne Peck, Kai Su, and Dong-An Wang. "Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft." In Cartilage Tissue Engineering, 153–60. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2938-2_10.
Full textOláh, Tamás, Tunku Kamarul, Henning Madry, and Malliga Raman Murali. "The Illustrative Anatomy and the Histology of the Healthy Hyaline Cartilage." In The Illustrative Book of Cartilage Repair, 5–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47154-5_2.
Full textOláh, Tamás, Deepak Rajkumar Goyal, and Henning Madry. "The Illustrative Anatomy and the Histology of the Degenerative Hyaline Cartilage." In The Illustrative Book of Cartilage Repair, 11–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47154-5_3.
Full textWortmann, Robert L., Majeedul Chowdhury, and John W. Rachow. "ATP-Dependent Mineralization of Hyaline Articular Cartilage Matrix Vesicles." In Advances in Experimental Medicine and Biology, 81–85. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5673-8_12.
Full textConference papers on the topic "Hyaline cartilage"
Blum, Michelle M., and Timothy C. Ovaert. "Synthesis and Characterization of Boundary Lubricant-Functionalized PVA Gels for Biotribological Applications." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19281.
Full textPalomares, Kristy T. S., Thomas A. Einhorn, Louis C. Gerstenfeld, and Elise F. Morgan. "Hyaline Characteristics of Mechanically Induced Cartilaginous Tissues." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176519.
Full textMurphy, Colm, Denis Kelliher, and John Davenport. "A Nonlinear Finite Element Inverse Approach to Characterize the Material Properties of Tracheal Cartilage: Preliminary Study." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19538.
Full textIhnatouski, Mikhail, Dmitriy Karev, Boris Karev, Jolanta Pauk, and Kristina Daunoravičienė. "AFM investigation of hyaline cartilage’s surface destruction." In Biomdlore. VGTU Technika, 2016. http://dx.doi.org/10.3846/biomdlore.2016.15.
Full textPadalkar, M., R. Spencer, and N. Pleshko. "Near infrared spectroscopic evaluation of water in hyaline cartilage." In 2012 38th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2012. http://dx.doi.org/10.1109/nebc.2012.6207118.
Full textMeyer, Eric G., Conor T. Buckley, and Daniel J. Kelly. "The Effect of Cyclic Hydrostatic Pressure on the Functional Development of Cartilaginous Tissues Engineered Using Bone Marrow Derived Mesenchymal Stem Cells." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53634.
Full textPak, Rebecca, Sara E. Campbell, Rachel C. Paietta, and Virginia L. Ferguson. "Distribution of Nanomechanical Properties and Mineralization of the Osteochondral Interface in the Femoral Head." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53345.
Full textCipolletta, Edoardo, Emilio Filippucci, Andrea DI Matteo, Marco DI Carlo, and Walter Grassi. "AB1130 RELIABILITY OF ULTRASOUND MEASUREMENT OF HYALINE CARTILAGE THICKNESS IN RHEUAMTOID ARTHRITIS." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.250.
Full textLiu, Chih-Hao, Manmohan Singh, Jiasong Li, Zhaolong Han, Chen Wu, Shang Wang, Rita Idugboe, et al. "Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography." In SPIE BiOS, edited by Valery V. Tuchin, Kirill V. Larin, Martin J. Leahy, and Ruikang K. Wang. SPIE, 2015. http://dx.doi.org/10.1117/12.2079854.
Full textTimchenko, Elena V., Pavel E. Timchenko, Larisa T. Volova, Dmitry A. Dolgyshkin, Anna S. Tyumchenkova, Maria D. Markova, and V. A. Lazarev. "Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy." In Ultrafast Nonlinear Imaging and Spectroscopy V, edited by Zhiwen Liu. SPIE, 2017. http://dx.doi.org/10.1117/12.2272335.
Full text