Academic literature on the topic 'Hybrid deep learning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid deep learning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hybrid deep learning"

1

Yang, Mu, Zheng-Hao Liu, Ze-Di Cheng, Jin-Shi Xu, Chuan-Feng Li, and Guang-Can Guo. "Deep hybrid scattering image learning." Journal of Physics D: Applied Physics 52, no. 11 (2019): 115105. http://dx.doi.org/10.1088/1361-6463/aafa3c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhihua Chen, Zhihua Chen, Xiaolin Ju Zhihua Chen, Haochen Wang Xiaolin Ju, and Xiang Chen Haochen Wang. "Hybrid Multiple Deep Learning Models to Boost Blocking Bug Prediction." 網際網路技術學刊 23, no. 5 (2022): 1099–107. http://dx.doi.org/10.53106/160792642022092305018.

Full text
Abstract:
<p>A blocking bug (BB) is a severe bug that could prevent other bugs from being fixed in time and cost more effort to repair itself in software maintenance. Hence, early detection of BBs is essential to save time and labor costs. However, BBs only occupy a small proportion of all bugs during software life cycle, making it difficult for developers to identify these blocking relationships. This study proposes a novel blocking bug prediction approach based on the hybrid deep learning model, a combination of Bi-directional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN). Our approach first extracts summaries and descriptions from bug reports to construct two classifiers, respectively. Second, our approach combines two classifiers into a hybrid model to predict the blocking relationship of each blocking bug pair. Finally, our approach produces a report of identified blocking bugs for developers. To investigate the effectiveness of proposed approach, we conducted an empirical study on bug reports of seven large-scale projects. The final experimental results illustrate that our approach can perform better than the recent state-of-the-art baselines. Precisely, the hybrid model can predict BB better with an average accuracy of 57.20%, and an improvement of 73.53% in terms of the F1-measure when compared to ELBlocker. Moreover, according to the bug report’s description, BB can be predicted well with an average accuracy of 49.16%.</p> <p> </p>
APA, Harvard, Vancouver, ISO, and other styles
3

Pravallika, V., V. Uday Kiran, B. Rahul, N. Neelima, G. Rishi Patnaik, and DR Sreejyothshna Ankam. "Deep Learning-Based Image Captioning: A Hybrid CNN-LSTM Approach." International Journal of Research Publication and Reviews 6, no. 4 (2025): 2459–63. https://doi.org/10.55248/gengpi.6.0425.1392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Chong. "A Credit Risk Predicting Hybrid Model Based on Deep Learning Technology." International Journal of Machine Learning and Computing 11, no. 3 (2021): 182–87. http://dx.doi.org/10.18178/ijmlc.2021.11.3.1033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

K, Mr Pragash, Deepak R, Gopinath R, Shasteeswaran Shasteeswaran, Ravianand Tharmiya, and Rohit S.K. "Emotion Detection In Facial Expressions And Speech Using Deep Hybrid Learning." International Journal of Research Publication and Reviews 5, no. 12 (2024): 1711–19. https://doi.org/10.55248/gengpi.5.1224.3508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nehal, Mohamed Ali, Mostafa Abd El Hamid Marwa, and Youssif Aliaa. "Sentiment Analysis for Movies Reviews Dataset Using Deep Learning Models." International Journal of Data Mining & Knowledge Management Process (IJDKP) 9, no. 2/3 (2019): 19–27. https://doi.org/10.5281/zenodo.3340668.

Full text
Abstract:
Due to the enormous amount of data and opinions being produced, shared and transferred everyday across the internet and other media, Sentiment analysis has become vital for developing opinion mining systems. This paper introduces a developed classification sentiment analysis using deep learning networks and introduces comparative results of different deep learning networks. Multilayer Perceptron (MLP) was developed as a baseline for other networks results. Long short-term memory (LSTM) recurrent neural network, Convolutional Neural Network (CNN) in addition to a hybrid model of LSTM and CNN were developed and applied on IMDB dataset consists of 50K movies reviews files. Dataset was divided to 50% positive reviews and 50% negative reviews. The data was initially pre-processed using Word2Vec and word embedding was applied accordingly. The results have shown that, the hybrid CNN_LSTM model have outperformed the MLP and singular CNN and LSTM networks. 
APA, Harvard, Vancouver, ISO, and other styles
7

Anagnostara, Ioanna Marina, Emmanouil Tsardoulias, and Andreas L. Symeonidis. "Deep Reinforcement Learning and Imitation Learning for Autonomous Parking Simulation." Electronics 14, no. 10 (2025): 1992. https://doi.org/10.3390/electronics14101992.

Full text
Abstract:
In recent years, system intelligence has revolutionized various domains, including the automotive industry, which has fully incorporated intelligence through the emergence of Advanced Driver Assistance Systems (ADAS). Within this transformative context, Autonomous Parking Systems (APS) have emerged as a foundational component, revolutionizing the way vehicles navigate and park with precision and efficiency. This paper presents a comprehensive approach to autonomous parallel parking, leveraging advancements in Artificial Intelligence (AI). Three state-of-the-practice approaches—Imitation Learning (IL), deep Reinforcement Learning (deep RL), and a hybrid deep RL-IL method—are employed and evaluated through extensive experiments in the CARLA Simulator using randomly generated parallel parking scenarios. Results demonstrate that the hybrid deep RL-IL approach achieves a remarkable success rate of 98% in parking attempts, surpassing the individual IL and deep RL methods. Furthermore, the proposed hybrid model exhibits superior maneuvering efficiency and higher overall reward accumulation. These findings underscore the advantages of combining deep RL and IL, representing a significant advancement in APS technology.
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Fengjuan, Yu Wang, Lingyun Situ, and Linzhang Wang. "Deep Learning-Based Hybrid Fuzz Testing." International Journal of Software and Informatics 11, no. 3 (2021): 335–55. http://dx.doi.org/10.21655/ijsi.1673-7288.00261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Yi, Xiaogang Wang, and Xiaoou Tang. "Hybrid Deep Learning for Face Verification." IEEE Transactions on Pattern Analysis and Machine Intelligence 38, no. 10 (2016): 1997–2009. http://dx.doi.org/10.1109/tpami.2015.2505293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Sungjun, and Kisung Seo. "Hybrid Pruning of Deep Learning System." Transactions of The Korean Institute of Electrical Engineers 69, no. 11 (2020): 1750–54. http://dx.doi.org/10.5370/kiee.2020.69.11.1750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hybrid deep learning"

1

Singh, Amarjot. "ScatterNet hybrid frameworks for deep learning." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285997.

Full text
Abstract:
Image understanding is the task of interpreting images by effectively solving the individual tasks of object recognition and semantic image segmentation. An image understanding system must have the capacity to distinguish between similar looking image regions while being invariant in its response to regions that have been altered by the appearance-altering transformation. The fundamental challenge for any such system lies within this simultaneous requirement for both invariance and specificity. Many image understanding systems have been proposed that capture geometric properties such as shapes, textures, motion and 3D perspective projections using filtering, non-linear modulus, and pooling operations. Deep learning networks ignore these geometric considerations and compute descriptors having suitable invariance and stability to geometric transformations using (end-to-end) learned multi-layered network filters. These deep learning networks in recent years have come to dominate the previously separate fields of research in machine learning, computer vision, natural language understanding and speech recognition. Despite the success of these deep networks, there remains a fundamental lack of understanding in the design and optimization of these networks which makes it difficult to develop them. Also, training of these networks requires large labeled datasets which in numerous applications may not be available. In this dissertation, we propose the ScatterNet Hybrid Framework for Deep Learning that is inspired by the circuitry of the visual cortex. The framework uses a hand-crafted front-end, an unsupervised learning based middle-section, and a supervised back-end to rapidly learn hierarchical features from unlabelled data. Each layer in the proposed framework is automatically optimized to produce the desired computationally efficient architecture. The term `Hybrid' is coined because the framework uses both unsupervised as well as supervised learning. We propose two hand-crafted front-ends that can extract locally invariant features from the input signals. Next, two ScatterNet Hybrid Deep Learning (SHDL) networks (a generative and a deterministic) were introduced by combining the proposed front-ends with two unsupervised learning modules which learn hierarchical features. These hierarchical features were finally used by a supervised learning module to solve the task of either object recognition or semantic image segmentation. The proposed front-ends have also been shown to improve the performance and learning of current Deep Supervised Learning Networks (VGG, NIN, ResNet) with reduced computing overhead.
APA, Harvard, Vancouver, ISO, and other styles
2

Yin, Yuan. "Physics-Aware Deep Learning and Dynamical Systems : Hybrid Modeling and Generalization." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS161.

Full text
Abstract:
L'apprentissage profond a fait des progrès dans divers domaines et est devenu un outil prometteur pour modéliser les phénomènes dynamiques physiques présentant des relations hautement non linéaires. Cependant, les approches existantes sont limitées dans leur capacité à faire des prédictions physiquement fiables en raison du manque de connaissances préalables et à gérer les scénarios du monde réel où les données proviennent de dynamiques multiples ou sont irrégulièrement distribuées dans le temps et l'espace. Cette thèse vise à surmonter ces limitations dans les directions suivantes: améliorer la modélisation de la dynamique basée sur les réseaux neuronaux en exploitant des modèles physiques grâce à la modélisation hybride ; étendre le pouvoir de généralisation des modèles de dynamique en apprenant les similitudes à partir de données de différentes dynamiques pour extrapoler vers des systèmes invisibles ; et gérer les données de forme libre et prédire continuellement les phénomènes dans le temps et l'espace grâce à la modélisation continue. Nous soulignons la polyvalence des techniques d'apprentissage profond, et les directions proposées montrent des promesses pour améliorer leur précision et leur puissance de généralisation, ouvrant la voie à des recherches futures dans de nouvelles applications<br>Deep learning has made significant progress in various fields and has emerged as a promising tool for modeling physical dynamical phenomena that exhibit highly nonlinear relationships. However, existing approaches are limited in their ability to make physically sound predictions due to the lack of prior knowledge and to handle real-world scenarios where data comes from multiple dynamics or is irregularly distributed in time and space. This thesis aims to overcome these limitations in the following directions: improving neural network-based dynamics modeling by leveraging physical models through hybrid modeling; extending the generalization power of dynamics models by learning commonalities from data of different dynamics to extrapolate to unseen systems; and handling free-form data and continuously predicting phenomena in time and space through continuous modeling. We highlight the versatility of deep learning techniques, and the proposed directions show promise for improving their accuracy and generalization power, paving the way for future research in new applications
APA, Harvard, Vancouver, ISO, and other styles
3

Kabore, Raogo. "Hybrid deep neural network anomaly detection system for SCADA networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0190.

Full text
Abstract:
Les systèmes SCADA sont de plus en plus ciblés par les cyberattaques en raison de nombreuses vulnérabilités dans le matériel, les logiciels, les protocoles et la pile de communication. Ces systèmes utilisent aujourd'hui du matériel, des logiciels, des systèmes d'exploitation et des protocoles standard. De plus, les systèmes SCADA qui étaient auparavant isolés sont désormais interconnectés aux réseaux d'entreprise et à Internet, élargissant ainsi la surface d'attaque. Dans cette thèse, nous utilisons une approche deep learning pour proposer un réseau de neurones profonds hybride efficace pour la détection d'anomalies dans les systèmes SCADA. Les principales caractéristiques des données SCADA sont apprises de manière automatique et non supervisée, puis transmises à un classificateur supervisé afin de déterminer si ces données sont normales ou anormales, c'est-à-dire s'il y a une cyber-attaque ou non. Par la suite, en réponse au défi dû au temps d’entraînement élevé des modèles deep learning, nous avons proposé une approche distribuée de notre système de détection d'anomalies afin de réduire le temps d’entraînement de notre modèle<br>SCADA systems are more and more targeted by cyber-attacks because of many vulnerabilities inhardware, software, protocols and the communication stack. Those systems nowadays use standard hardware, software, operating systems and protocols. Furthermore, SCADA systems which used to be air-gaped are now interconnected to corporate networks and to the Internet, widening the attack surface.In this thesis, we are using a deep learning approach to propose an efficient hybrid deep neural network for anomaly detection in SCADA systems. The salient features of SCADA data are automatically and unsupervisingly learnt, and then fed to a supervised classifier in order to dertermine if those data are normal or abnormal, i.e if there is a cyber-attack or not. Afterwards, as a response to the challenge caused by high training time of deep learning models, we proposed a distributed approach of our anomaly detection system in order lo lessen the training time of our model
APA, Harvard, Vancouver, ISO, and other styles
4

ISAKSSON, LARS JOHANNES. "HYBRID DEEP LEARNING AND RADIOMICS MODELS FOR ASSESSMENT OF CLINICALLY RELEVANT PROSTATE CANCER." Doctoral thesis, Università degli Studi di Milano, 2022. https://hdl.handle.net/2434/946529.

Full text
Abstract:
Precision medicine holds the potential to revolutionize healthcare by providing every patient with personalized treatments and decisions tailored to his or her individual needs. This might be enabled by the large influx of potentially diagnostic information from new sources such as genetics and modern imaging techniques, provided the relevant information can be extracted. One such framework that has started to demonstrate promise in radiology, especially in the assessment of cancer, is radiomics; the practice of characterizing images by extracting a substantial amount of quantitative mathematical descriptors. This success has largely been enabled by artificial intelligence (AI) and machine learning developments that are capable of handling the big data arrays. Using radiomics, researchers have been able to build prediction models capable of assisting and informing doctors in important decisions such as risk assessment or the choice of treatment. But even though radiomics has shown promise in preliminary studies, there is still a long way to go before radiomics and related AI applications can become routine tools in clinics. The road from patient admission to release is long, and all its intricate steps need to be studied in detail to establish the AI models' benefits and safety. Deep learning is an incredibly powerful AI technique that has revolutionized many areas of science and industry such as recommender systems and protein folding. The technique has demonstrated particular capabilities in image analysis, such as the ability to drive cars autonomously and generate realistic-looking images from scratch. However, the recent advances in deep learning have largely been segregated from the radiomics domain, even though they can synergize with radiomics by performing complementary tasks such as image segmentation and denoising. There is considerable potential for DL and radiomics to cooperatively reinforce each other that so far has been majorly unexplored. This thesis investigates the application of radiomics and deep learning in the context of prostate cancer. It focuses on the clinical perspective of where machine learning implementations are most likely to have a beneficial real-world impact. A key contribution is the deployment aspect: the models are not simply proofs of concept but are conceived and applied in a practical scenario, from patient admission to treatment decision. The specific areas studied include automatic organ segmentation in medical images, automatic quality assurance of segmentations, image processing, and radiomic feature analysis. Finally, a comprehensive study is performed on predicting essential pathological variables with AI, which so far has not been studied previously. Taken together, the methods outlined in this thesis constitute a concrete pathway of how AI can be used to bolster the steps along the patient's clinical trajectory. Successful applications of these methods hold the potential to reduce the workload of clinicians and improve patient outcomes.
APA, Harvard, Vancouver, ISO, and other styles
5

Déchelle-Marquet, Marie. "Deep learning based physical-statistics modeling of ocean dynamics." Electronic Thesis or Diss., Sorbonne université, 2023. https://theses.hal.science/tel-04166816.

Full text
Abstract:
La modélisation des phénomènes dynamiques en géophysique repose sur une compréhension de la physique sous-jacente, décrite sous la forme d'EDP, et sur leur résolution par des modèles numériques. Le nombre croissant d'observations de systèmes physiques, l'essor récent de l'apprentissage profond et l'énorme puissance de calcul requise par les solveurs numériques, qui entrave la résolution des modèles existants, suggèrent que l'avenir des modèles physiques pourrait être orienté données. Mais pour cela, l'apprentissage profond doit relever plusieurs défis, tels que l'interprétabilité et la cohérence physique des modèles, qui sont encore largement sous-estimés par la communauté de l'apprentissage profond. Dans cette thèse, nous étudions la prédiction de la température de surface de la mer (SST) à l'aide de modèles hybrides, combinant un modèle physique et un modèle orienté données (un réseau de neurones). Assurer la plausibilité physique des modèles hybrides nécessite de bien poser leur apprentissage : sinon, la grande versatilité des réseaux neuronaux peut conduire la partie orientée données à contourner le modèle physique. Notre étude est divisée en deux parties : une étude théorique sur les modèles hybrides et une confrontation pratique de notre modèle à des simulations de données réelles. Tout d'abord, nous proposons un nouveau cadre générique d'apprentissage bien posé basé sur l'optimisation d'une borne supérieure de l'erreur de prédiction. Deuxièmement, nous étudions des observations océaniques réelles de la SST et des champs de vitesse du courant Gulf Stream dans l'Atlantique Nord (à partir du modèle NATL60). Cette application met en évidence les défis posés par la confrontation de l'apprentissage automatique de phénomènes physiques à la complexité de la physique du monde réel<br>The modeling of dynamical phenomena in geophysics and climate is based on a deep understanding of the underlying physics, described in the form of PDEs, and on their resolution by numerical models. The ever-increasing number of observations of physical systems, the recent rise of deep learning and the huge computational power required by numerical solvers, which hinders the resolution of existing models, suggest that the future of physical models could be data-driven. But for this prognosis to come true, deep learning must tackle several challenges, such as the interpretability and physical consistency of deep models, still largely under-addressed by the deep learning community.In this thesis, we address both challenges: we study the prediction of sea surface temperature (SST) using hybrid models combining a data-driven and a physical model. Ensuring the physical plausibility of hybrid models necessitates well-posing their learning: otherwise, the high versatility of neural networks may lead the data-driven part to bypass the physical part.Our study is divided into two parts: a theoretical study on hybrid models, and a practical confrontation of our model on simulations of real data. First, we propose a new generic well- posed learning framework based on the optimization of an upper-bound of a prediction error. Second, we study real-like ocean observations of SST and velocity fields from the Gulf Stream current in the North Atlantic (from the NATL60 model). This application highlights the challenges raised by confronting physics aware learning to the complexity of real-world physics. It also raises issues such as model generalization, which we discuss as a possible perspective
APA, Harvard, Vancouver, ISO, and other styles
6

Theobald, Claire. "Bayesian Deep Learning for Mining and Analyzing Astronomical Data." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0081.

Full text
Abstract:
Dans cette thèse, nous abordons le problème de la confiance que nous pouvons avoir en des systèmes prédictifs de type réseaux profonds selon deux directions de recherche complémentaires. Le premier axe s'intéresse à la capacité d'une IA à estimer de la façon la plus juste possible son degré d'incertitude liée à sa prise de décision. Le second axe quant à lui se concentre sur l'explicabilité de ces systèmes, c'est-à-dire leur capacité à convaincre l'utilisateur humain du bien fondé de ses prédictions. Le problème de l'estimation des incertitudes est traité à l'aide de l'apprentissage profond bayésien. Les réseaux de neurones bayésiens admettent une distribution de probabilité sur leurs paramètres, qui leur permettent d'estimer différents types d'incertitudes. Tout d'abord, l'incertitude aléatoire qui est liée aux données, mais également l'incertitude épistémique qui quantifie le manque de connaissance que le modèle possède sur la distribution des données. Plus précisément, cette thèse propose un modèle de réseau de neurones bayésien capable d'estimer ces incertitudes dans le cadre d'un problème de régression multivarié. Ce modèle est appliqué dans le contexte du projet ANR "AstroDeep'' à la régression des ellipticités complexes sur des images de galaxies. Ces dernières peuvent être corrompues par différences sources de perturbation et de bruit qui peuvent être estimées de manière fiable par les différentes incertitudes. L'exploitation de ces incertitudes est ensuite étendue à la cartographie de galaxies, puis au "coaching'' du réseau de neurones bayésien. Cette dernière technique consiste à générer des données de plus en plus complexes durant l'apprentissage du modèle afin d'en améliorer les performances. Le problème de l'explicabilité est quant à lui abordé via la recherche d'explications contrefactuelles. Ces explications consistent à identifier quels changements sur les paramètres en entrée auraient conduit à une prédiction différente. Notre contribution dans ce domaine s'appuie sur la génération d'explications contrefactuelles basées sur un autoencodeur variationnel (VAE) et sur un ensemble de prédicteurs entrainés sur l'espace latent généré par le VAE. Cette méthode est plus particulièrement adaptée aux données en haute dimension, telles que les images. Dans ce cas précis, nous parlerons d'explications contrefactuelles visuelles. En exploitant à la fois l'espace latent et l'ensemble de prédicteurs, nous arrivons à produire efficacement des explications contrefactuelles visuelles atteignant un degré de réalisme supérieur à plusieurs méthodes de l'état de l'art<br>In this thesis, we address the issue of trust in deep learning predictive systems in two complementary research directions. The first line of research focuses on the ability of AI to estimate its level of uncertainty in its decision-making as accurately as possible. The second line, on the other hand, focuses on the explainability of these systems, that is, their ability to convince human users of the soundness of their predictions.The problem of estimating the uncertainties is addressed from the perspective of Bayesian Deep Learning. Bayesian Neural Networks assume a probability distribution over their parameters, which allows them to estimate different types of uncertainties. First, aleatoric uncertainty which is related to the data, but also epistemic uncertainty which quantifies the lack of knowledge the model has on the data distribution. More specifically, this thesis proposes a Bayesian neural network can estimate these uncertainties in the context of a multivariate regression task. This model is applied to the regression of complex ellipticities on galaxy images as part of the ANR project "AstroDeep''. These images can be corrupted by different sources of perturbation and noise which can be reliably estimated by the different uncertainties. The exploitation of these uncertainties is then extended to galaxy mapping and then to "coaching'' the Bayesian neural network. This last technique consists of generating increasingly complex data during the model's training process to improve its performance.On the other hand, the problem of explainability is approached from the perspective of counterfactual explanations. These explanations consist of identifying what changes to the input parameters would have led to a different prediction. Our contribution in this field is based on the generation of counterfactual explanations relying on a variational autoencoder (VAE) and an ensemble of predictors trained on the latent space generated by the VAE. This method is particularly adapted to high-dimensional data, such as images. In this case, they are referred as counterfactual visual explanations. By exploiting both the latent space and the ensemble of classifiers, we can efficiently produce visual counterfactual explanations that reach a higher degree of realism than several state-of-the-art methods
APA, Harvard, Vancouver, ISO, and other styles
7

Buvari, Sebastian, and Kalle Pettersson. "A Comparison on Image, Numerical and Hybrid based Deep Learning for Computer-aided AD Diagnostics." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279977.

Full text
Abstract:
Alzheimer’s disease (AD) is the most common form of dementia making up 60- 70% of the 50 million active cases worldwide and is a degenerative disease which causes irreversible damage to the parts of the brain associated with the ability of thinking and memorizing. A lot of time and effort has been put towards diagnosing and detecting AD in its early stages and a field showing great promise in aiding with early stage detection is deep learning. The main issues with deep learning in the field of AD detection is the lack of relatively big datasets that are typically needed in order to train an accurate deep learning network. This paper aims to examine whether combining both image based and numerical data from MRI scans can increase the accuracy of the network. Three different deep learning neural network models were constructed with the TensorFlow framework to be used as AD classifiers using numerical, image and hybrid based input data gathered from the OASIS-3 dataset. The results of the study showed that the hybrid model had a slight increase in accuracy compared to the image and numerical based models. The report concluded that a hybrid based AD classifier shows promising results to being a more accurate and stable model but the results were not conclusive enough to give a definitive answer.<br>Alzheimer’s sjukdom (AD) är den vanligaste formen av demens och utgör 60-70% av dem 50 miljoner personer som lider av demens runtom i världen. Alzheimer’s är en degenerativ sjukdom som gör irreversibel skada till de delar av hjärnan som är associerade med minne och kognitiv förmåga. Mycket tid och resurser har gått till att utveckla metoder för att upptäcka och diagnostisera AD i dess tidiga stadier och ett forskningsområde som visar stor potential är djupinlärning. Det främsta problemet med djupinlärning inom AD diagnostik är bristen på relativt stora dataset som oftast är nödvändiga för att ett nätverk ska lära sig göra bra evalueringar. Målet med det här pappret är att utforska ifall en kombination av bildbaserad och numerisk data från MRI scanningar kan öka noggrannheten i ett nätverk. Tre olika djupinlärnings neurala nätverksmodeller konstruerades med TensorFlow ramverket för att användas som AD klassificerare med numerisk-, bild- och hybridbaserad indata samlade från OASIS-3 datasetet. Rapportens resultat visade att hybrid modellen hade en liten noggrannhets ökning i jämförelse med de bildbaserade och numeriska nätverken. Slutsatsen av den här studien visar att ett hybrid baserat nätverk visar lovande resultat som metod för att öka noggrannheten i ett nätverk ämnat för att diagnostisera AD. Dock är resultaten inte tillräckligt avgörande för att ge ett slutgiltigt svar.
APA, Harvard, Vancouver, ISO, and other styles
8

Benkirane, Fatima Ezzahra. "Integration of contextual knowledge in deep Learning modeling for vision-based scene analysis." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCA002.

Full text
Abstract:
La vision par ordinateur a connu une évolution importante, passant des méthodes traditionnelles aux modèles d'apprentissage profond. L’un des principaux objectifs des tâches de vision par ordinateur est d’émuler la perception humaine. En effet, le processus classique effectué par les modèles d’apprentissage profond dépend entièrement des caractéristiques visuelles, reflétant simplement la manière dont les humains perçoivent visuellement leur environnement. Cependant, pour que les humains comprennent l’environnement qui les entoure, leur raisonnement dépend non seulement de leurs capacités visuelles, mais aussi de leurs connaissances pré-acquises. Combler cette différence entre la perception humaine et celle des machines est essentielle afin de parvenir à un raisonnement similaire à celui des humains. Dans cette thèse, nous proposons de nouvelles approches pour améliorer les performances des modèles d’apprentissage profond en intégrant les systèmes basés sur les connaissances dans les réseaux de neuronaux profonds. L'objectif est d’aider ces réseaux à prendre les bonnes décisions en exploitant à la fois les caractéristiques visuelles et les connaissances pour émuler l’analyse visuelle de l’être humain. Ces méthodologies impliquent deux axes principaux. Premièrement, définir la représentation des connaissances pour incorporer des informations utiles à une tâche spécifique de vision. Deuxièmement, examiner comment intégrer ces connaissances dans les réseaux de neurones pour améliorer leurs performances. La première contribution porte sur l'estimation de la profondeur monoculaire. En effet, les humains sont capables d'estimer leur distance par rapport aux objets perçus, même en n’utilisant qu’un seul œil, et ceci en se basant sur les indices monoculaires. Nous proposons d'intégrer ces indices au sein des réseaux de neurones comme un raisonnement similaire à celui des humains pour l'estimation de la profondeur. À cette fin, nous suggérons d'exploiter un modèle ontologique pour représenter l'environnement comme un ensemble de concepts liés par des relations sémantiques. Les informations sur les indices monoculaires sont extraites grâce à un raisonnement effectué sur l'ontologie proposée et sont transférées dans les réseaux de neurones. Le deuxième travail porte sur la tâche de segmentation panoptique qui vise à identifier toutes les instances d’objets capturées dans une image. Nous proposons une approche qui combine les avantages des réseaux de neurones avec des connaissances sur les relations spatiales entre les objets. Nous avons choisi ce type de connaissances car elles peuvent fournir des indices utiles pour résoudre les ambiguïtés et distinguer entre les instances d'objets similaires. Plus précisément, nous proposons une stratégie d'entraînement qui intègre les connaissances dans le processus d'optimisation des réseaux de neurones. L’approche comprend un processus d'extraction et de représentation des connaissances sur les relations spatiales, qui sont incorporées dans l’entraînement sous forme d'une fonction de perte. Afin de valider l'efficacité des approches proposées, nous avons choisi l'environnement urbain et les véhicules autonomes comme principale cas d’application. Ce domaine est particulièrement intéressant car il s'agit d'un axe de recherche novateur en développement continu, avec des implications significatives pour la sécurité et la mobilité des humains. En conclusion, nous avons étudié diverses approches pour représenter les connaissances et les intégrer aux réseaux de neurones. Ces approches valident que l’utilisation combinée de méthodes basées sur les connaissances et celles basées sur les données conduit de manière constante à des résultats améliorés. Le défi principal réside toujours dans le choix des connaissances pertinentes pour chaque tâche, leur représentation et leur intégration de la manière la plus optimale dans l'architecture des réseaus de neurones profonds<br>Computer vision has made an important evolution starting from traditional methods to advanced Deep Learning (DL) models. One of the goals of computer vision tasks is to effectively emulate human perception. The classical process of DL models is completely dependent on visual features, which only reflects how humans visually perceive their surroundings. However, for humans to comprehensively understand their environment, their reasoning not only depends on what they see but also on their pre-acquired knowledge. Addressing this gap is essential as achieving human-like reasoning requires a seamless combination of data-driven and knowledge-driven methods. In this thesis, we propose new approaches to improve the performance of DL models by integrating Knowledge-Based Systems (KBS) within Deep Neural Networks (DNNs). The goal is to empower these networks to make informed decisions by leveraging both visual features and knowledge to emulate human-like visual analysis. These methodologies involve two main axes. First, define the representation of KBS to incorporate useful information for a specific computer vision task. Second, investigate how to integrate this knowledge into DNNs to enhance their performance. To do so, we worked on two main contributions. The first work focuses on monocular depth estimation. Considering humans as an example, they can estimate their distance with respect to seen objects, even using just one eye, based on what is called monocular cues. Our contribution involves integrating these monocular cues as human-like reasoning for monocular depth estimation within DNNs. For this purpose, we investigate the possibility of directly integrating geometric and semantic information into the monocular depth estimation process. We suggest using an ontology model in a DL context to represent the environment as a structured set of concepts linked with semantic relationships. Monocular cues information is extracted through reasoning performed on the proposed ontology and is fed together with the RGB image in a multi-stream way into the DNNs. Our approach is validated and evaluated on widespread benchmark datasets. The second work focuses on panoptic segmentation task that aims to identify and analyze all objects captured in an image. More precisely, we propose a new informed deep learning approach that combines the strengths of DNNs with some additional knowledge about spatial relationships between objects. We have chosen spatial relationships knowledge for this task because it can provide useful cues for resolving ambiguities, distinguishing between overlapping or similar object instances, and capturing the holistic structure of the scene. More precisely, we propose a novel training methodology that integrates knowledge directly into the DNNs optimization process. Our approach includes a process for extracting and representing spatial relationships knowledge, which is incorporated into the training using a specially designed loss function. The performance of the proposed method was also evaluated on various challenging datasets. To validate the effectiveness of the proposed approaches for combining KBS and DNNs regarding different methodologies, we have chosen the urban environment and autonomous vehicles as our main use case application. This domain is particularly interesting because it is a challenging and novel field in continuous development, with significant implications for the safety, comfort and mobility of humans. As a conclusion, the proposed approaches validate that the integration of knowledge-driven and data-driven methods consistently leads to improved results. Integration improves the learning process for DNNs and enhances results of computer vision tasks, providing more accurate predictions. The challenge always lies in choosing the relevant knowledge for each task, representing it in the best structure to leverage meaningful information, and integrating it most optimally into the DNN architecture
APA, Harvard, Vancouver, ISO, and other styles
9

Chaulagain, Dewan. "Hybrid Analysis of Android Applications for Security Vetting." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1555608766287613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duong, Nam duong. "Hybrid Machine Learning and Geometric Approaches for Single RGB Camera Relocalization." Thesis, CentraleSupélec, 2019. http://www.theses.fr/2019CSUP0008.

Full text
Abstract:
Au cours des dernières années, la relocalisation de la caméra à base d'images est devenue un enjeu important de la vision par ordinateur appliquée à la réalité augmentée, à la robotique ainsi qu'aux véhicules autonomes. La relocalisation de la caméra fait référence à la problématique de l'estimation de la pose de la caméra incluant à la fois la translation 3D et la rotation 3D. Dans les systèmes de localisation, le composant de relocalisation de la caméra est nécessaire pour récupérer la pose de la caméra après le suivi perdu, plutôt que de redémarrer la localisation à partir de zéro.Cette thèse vise à améliorer les performances de la relocalisation de la caméra en termes de temps d'exécution et de précision ainsi qu'à relever les défis de la relocalisation des caméras dans des environnements dynamiques.Nous présentons l'estimation de la pose de la caméra basée sur la combinaison de la régression de pose multi-patch pour surmonter l'incertitude des méthodes d'apprentissage profond de bout en bout. Afin d'équilibrer la précision et le temps de calcul de la relocalisation de la caméra à partir d'une seule image RVB, nous proposons une méthode hybride à caractéristiques éparses. Une meilleure prédiction dans la partie d’apprentissage automatique de nos méthodes conduit à une inférence rapide de la pose de la caméra dans la partie géométrique. Pour relever le défi des environnements dynamiques, nous proposons une forêt de régression adaptative qui s'adapte en temps réel au modèle prédictif. Il évolue en partie au fil du temps sans qu'il soit nécessaire de ré-entrainer le modèle entier à partir de zéro. En appliquant cet algorithme à notre relocalisation de la caméra en temps réel et précise, nous pouvons faire face à des environnements dynamiques, en particulier des objets en mouvement. Les expériences prouvent l'efficacité des méthodes que nous proposons. Notre méthode permet d'obtenir des résultats aussi précis que les meilleures méthodes d’état de l’art. De plus, nous obtenons également une grande précision même sur des scènes dynamiques<br>In the last few years, image-based camera relocalization becomes an important issue of computer vision applied to augmented reality, robotics as well as autonomous vehicles. Camera relocalization refers to the problematic of the camera pose estimation including both 3D translation and 3D rotation. In localization systems, camera relocalization component is necessary to retrieve camera pose after tracking lost, rather than restarting the localization from scratch.This thesis aims at improving the performance of camera relocalization in terms of both runtime and accuracy as well as handling challenges of camera relocalization in dynamic environments. We present camera pose estimation based on combining multi-patch pose regression to overcome the uncertainty of end-to-end deep learning methods. To balance between accuracy and computational time of camera relocalization from a single RGB image, we propose a sparse feature hybrid methods. A better prediction in the machine learning part of our methods leads to a rapid inference of camera pose in the geometric part. To tackle the challenge of dynamic environments, we propose an adaptive regression forest algorithm that adapts itself in real time to predictive model. It evolves by part over time without requirement of re-training the whole model from scratch. When applying this algorithm to our real-time and accurate camera relocalization, we can cope with dynamic environments, especially moving objects. The experiments proves the efficiency of our proposed methods. Our method achieves results as accurate as the best state-of-the-art methods on the rigid scenes dataset. Moreover, we also obtain high accuracy even on the dynamic scenes dataset
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hybrid deep learning"

1

Li, Yuecheng, and Hongwen He. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-79206-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

He, Hongwen, and Li Yeuching. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yeuching, and Hongwen He. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yeuching, Li, and He Hongwen. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yeuching, and Hongwen He. Deep Reinforcement Learning-Based Energy Management for Hybrid Electric Vehicles. Morgan & Claypool Publishers, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boden, Margaret A. 4. Artificial neural networks. Oxford University Press, 2018. http://dx.doi.org/10.1093/actrade/9780199602919.003.0004.

Full text
Abstract:
Artificial neural networks (ANNs) are made up of many interconnected units, each one capable of computing only one thing. ANNs have myriad applications, from playing the stock market and monitoring currency fluctuations to recognizing speech or faces. ANNs are parallel-processing virtual machines implemented on classical computers. They are intriguing partly because they are very different from the virtual machines of symbolic AI. Sequential instructions are replaced by massive parallelism, top-down control by bottom-up processing, and logic by probability. ‘Artificial neural networks’ considers the wider implications of ANNs and discusses parallel distributed processing (PDP), learning in neural networks, back-propagation, deep learning, and hybrid systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Oswald, Laura R. Doing Semiotics. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198822028.001.0001.

Full text
Abstract:
Structural semiotics is a hybrid of communication science and anthropology that accounts for the deep cultural codes that structure communication and sociality, endow things with value, move us through constructed space, and moderate our encounters with change. Doing Semiotics: A Research Guide for Marketers at the Edge of Culture, shows readers how to leverage these codes to solve business problems, foster innovation, and create meaningful experiences for consumers. In addition to the basic principles and methods of applied semiotics, the book introduces the reader to branding basics, strategic decision-making, and cross-cultural marketing management. The guide can be used to supplement my previous books, Marketing Semiotics (2012) and Creating Value (2015), with practical exercises, examples, extended team projects and evaluation criteria. The work guides students through the application of learnings to all phases of semiotics-based projects for communications, brand equity management, design strategy, new product development, and public policy management. In addition to grids and tables for sorting data and mapping cultural dimensions of a market, the book includes useful interview protocols for use in focus groups, in-depth interviews, and ethnographic studies. Each chapter also includes expert case studies and essays from the perspectives of Marcel Danesi, Rachel Lawes, Christian Pinson, Laura Santamaria, and Laura Oswald.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hybrid deep learning"

1

Dubisetty, Vidyanadha Babu, T. Muralikrishna, Lakshmi Prasad Koya, D. Saradha Mani, and S. D. Ruhi Parveen. "Diabetic retinopathy using deep learning." In Hybrid and Advanced Technologies. CRC Press, 2025. https://doi.org/10.1201/9781003559139-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arora, Rashmi, Jayant Dhingra, and Abhinav Sharma. "Face Mask Detection Using Deep Learning." In Hybrid Intelligent Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Madhavi, K. R., G. Madhavi, C. V. Krishnaveni, and Padmavathi Kora. "COVID-19 Detection Using Deep Learning." In Hybrid Intelligent Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Verma, Deepali, Akarsh Verma, Aman Verma, and Hariome Sharan Gupta. "Applications of Deep Learning for Composites Materials." In Hybrid Composite Materials. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2104-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wali, Wafa, and Bilel Gargouri. "Sentence Similarity Computation Based on Deep Learning." In Hybrid Intelligent Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tripathy, B. K., Sudershan Sridhar, and Sharmila Banu K. "Voice recognition system using deep learning." In Hybrid Computational Intelligent Systems. CRC Press, 2023. http://dx.doi.org/10.1201/9781003381167-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Raju, Penmetsa Kanaka, Lakkoju Devika, Kondepati Trishaswi, Koyya Poojitha, and Lanka Mohana Krishna. "Skin cancer classification using deep learning." In Hybrid and Advanced Technologies. CRC Press, 2025. https://doi.org/10.1201/9781003559139-36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thakare, Anuradha D., Shilpa Laddha, and Ambika Pawar. "Deep Learning for Information Retrieval." In Hybrid Intelligent Systems for Information Retrieval. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003187974-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tamilselvi, Mani, Subra Sundra Selvamony Kalaivani, Venkat Sunderasan, Kotapati Sailaja, Dhaarani Gopal, and R. Karthick. "Deep learning for object detection and identification." In Hybrid and Advanced Technologies. CRC Press, 2025. https://doi.org/10.1201/9781003559139-29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elleuch, Mohamed, and Monji Kherallah. "Convolutional Deep Learning Network for Handwritten Arabic Script Recognition." In Hybrid Intelligent Systems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49336-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hybrid deep learning"

1

Chaturvedi, Rajnish Kumar, and Nitin Arvind Shelke. "Music generation using hybrid deep neural model." In 2024 Intelligent Systems and Machine Learning Conference (ISML). IEEE, 2024. https://doi.org/10.1109/isml60050.2024.11007294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kusi, Narayan Prasad, Sung Hwan Ahn, and Dong Ho Kim. "Hybrid ARQ for URLLC Using Deep Learning." In 2024 15th International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2024. https://doi.org/10.1109/ictc62082.2024.10826805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Devi, S. Vijaya Amala, K. Vijayalakshmi, R. Santhana Krishnan, J. Relin Francis Raj, R. Umesh, and N. Soundiraraj. "Hybrid Deep Learning Methods for Enhancing Parkinson's Disease Early Detection." In 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL). IEEE, 2025. https://doi.org/10.1109/icsadl65848.2025.10933259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jihane, Benbrik, Rattal Salma, Ghoumid Kamal, and Ar-Reyouchi El Miloud. "Advancing Healthcare Diagnostics with a Hybrid AI Model." In 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL). IEEE, 2025. https://doi.org/10.1109/icsadl65848.2025.10933484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karthikeyan, P., M. Karthik, R. Sowndarya, S. Sanjeev Gandhi, E. S. Sundaresh, and P. Gowtham. "Design and Development of Hybrid Quadratic Boost Converter." In 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL). IEEE, 2025. https://doi.org/10.1109/icsadl65848.2025.10933245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sundar, Koushik, Bhavani M, Jaeyalakshmi M, and Vijayakumar R. "Document Analysis Using Adaptive Hybrid Deep Learning Techniques." In 2024 International Conference on Electronic Systems and Intelligent Computing (ICESIC). IEEE, 2024. https://doi.org/10.1109/icesic61777.2024.10846280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, B. Ramana, Farhana Bano, M. Sirisha, Mrutyunjaya S. Yalawar, Fathima S.K, and Polu Srinivasa Reddy. "Brain Tumor Detection Using Hybrid Deep Learning Approaches." In 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandira Prabha, S., S. Kaviyadharshini, and A. Annie Micheal. "A Hybrid Deep Learning Model for Violence Detection." In 2025 3rd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT). IEEE, 2025. https://doi.org/10.1109/idciot64235.2025.10914952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Rishabh, and Abhinav Mishra. "Radish Classification by using Hybrid Deep Learning Approach." In 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI). IEEE, 2024. https://doi.org/10.1109/icdici62993.2024.10810964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Win, Aye Mya Mya, and Ah Nge Htwe. "Abnormal Fall Detection by Hybrid Deep Learning Model." In 2025 IEEE Conference on Computer Applications (ICCA). IEEE, 2025. https://doi.org/10.1109/icca65395.2025.11011186.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hybrid deep learning"

1

Pasupuleti, Murali Krishna. Quantum-Enhanced Machine Learning: Harnessing Quantum Computing for Next-Generation AI Systems. National Education Services, 2025. https://doi.org/10.62311/nesx/rrv125.

Full text
Abstract:
Abstract Quantum-enhanced machine learning (QML) represents a paradigm shift in artificial intelligence by integrating quantum computing principles to solve complex computational problems more efficiently than classical methods. By leveraging quantum superposition, entanglement, and parallelism, QML has the potential to accelerate deep learning training, optimize combinatorial problems, and enhance feature selection in high-dimensional spaces. This research explores foundational quantum computing concepts relevant to AI, including quantum circuits, variational quantum algorithms, and quantum kernel methods, while analyzing their impact on neural networks, generative models, and reinforcement learning. Hybrid quantum-classical AI architectures, which combine quantum subroutines with classical deep learning models, are examined for their ability to provide computational advantages in optimization and large-scale data processing. Despite the promise of quantum AI, challenges such as qubit noise, error correction, and hardware scalability remain barriers to full-scale implementation. This study provides an in-depth evaluation of quantum-enhanced AI, highlighting existing applications, ongoing research, and future directions in quantum deep learning, autonomous systems, and scientific computing. The findings contribute to the development of scalable quantum machine learning frameworks, offering novel solutions for next-generation AI systems across finance, healthcare, cybersecurity, and robotics. Keywords Quantum machine learning, quantum computing, artificial intelligence, quantum neural networks, quantum kernel methods, hybrid quantum-classical AI, variational quantum algorithms, quantum generative models, reinforcement learning, quantum optimization, quantum advantage, deep learning, quantum circuits, quantum-enhanced AI, quantum deep learning, error correction, quantum-inspired algorithms, quantum annealing, probabilistic computing.
APA, Harvard, Vancouver, ISO, and other styles
2

Pasupuleti, Murali Krishna. Optimal Control and Reinforcement Learning: Theory, Algorithms, and Robotics Applications. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv225.

Full text
Abstract:
Abstract: Optimal control and reinforcement learning (RL) are foundational techniques for intelligent decision-making in robotics, automation, and AI-driven control systems. This research explores the theoretical principles, computational algorithms, and real-world applications of optimal control and reinforcement learning, emphasizing their convergence for scalable and adaptive robotic automation. Key topics include dynamic programming, Hamilton-Jacobi-Bellman (HJB) equations, policy optimization, model-based RL, actor-critic methods, and deep RL architectures. The study also examines trajectory optimization, model predictive control (MPC), Lyapunov stability, and hierarchical RL for ensuring safe and robust control in complex environments. Through case studies in self-driving vehicles, autonomous drones, robotic manipulation, healthcare robotics, and multi-agent systems, this research highlights the trade-offs between model-based and model-free approaches, as well as the challenges of scalability, sample efficiency, hardware acceleration, and ethical AI deployment. The findings underscore the importance of hybrid RL-control frameworks, real-world RL training, and policy optimization techniques in advancing robotic intelligence and autonomous decision-making. Keywords: Optimal control, reinforcement learning, model-based RL, model-free RL, dynamic programming, policy optimization, Hamilton-Jacobi-Bellman equations, actor-critic methods, deep reinforcement learning, trajectory optimization, model predictive control, Lyapunov stability, hierarchical RL, multi-agent RL, robotics, self-driving cars, autonomous drones, robotic manipulation, AI-driven automation, safety in RL, hardware acceleration, sample efficiency, hybrid RL-control frameworks, scalable AI.
APA, Harvard, Vancouver, ISO, and other styles
3

Pasupuleti, Murali Krishna. Decision Theory and Model-Based AI: Probabilistic Learning, Inference, and Explainability. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv525.

Full text
Abstract:
Abstract Decision theory and model-based AI provide the foundation for probabilistic learning, optimal inference, and explainable decision-making, enabling AI systems to reason under uncertainty, optimize long-term outcomes, and provide interpretable predictions. This research explores Bayesian inference, probabilistic graphical models, reinforcement learning (RL), and causal inference, analyzing their role in AI-driven decision systems across various domains, including healthcare, finance, robotics, and autonomous systems. The study contrasts model-based and model-free approaches in decision-making, emphasizing the trade-offs between sample efficiency, generalization, and computational complexity. Special attention is given to uncertainty quantification, explainability techniques, and ethical AI, ensuring AI models remain transparent, accountable, and risk-aware. By integrating probabilistic reasoning, deep learning, and structured decision models, this research highlights how AI can make reliable, interpretable, and human-aligned decisions in complex, high-stakes environments. The findings underscore the importance of hybrid AI frameworks, explainable probabilistic models, and uncertainty-aware optimization, shaping the future of trustworthy, scalable, and ethically responsible AI-driven decision-making. Keywords Decision theory, model-based AI, probabilistic learning, Bayesian inference, probabilistic graphical models, reinforcement learning, Markov decision processes, uncertainty quantification, explainable AI, causal inference, model-free learning, Monte Carlo methods, variational inference, hybrid AI frameworks, ethical AI, risk-aware decision-making, optimal control, trust in AI, interpretable machine learning, autonomous systems, financial AI, healthcare AI, AI governance, explainability techniques, real-world AI applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Ferdaus, Md Meftahul, Mahdi Abdelguerfi, Elias Ioup, et al. KANICE : Kolmogorov-Arnold networks with interactive convolutional elements. Engineer Research and Development Center (U.S.), 2025. https://doi.org/10.21079/11681/49791.

Full text
Abstract:
We introduce KANICE, a novel neural architecture that combines Convolutional Neural Networks (CNNs) with Kolmogorov-Arnold Network (KAN) principles. KANICE integrates Interactive Convolutional Blocks (ICBs) and KAN linear layers into a CNN framework. This leverages KANs’ universal approximation capabilities and ICBs’ adaptive feature learning. KANICE captures complex, non-linear data relationships while enabling dynamic, context-dependent feature extraction based on the Kolmogorov-Arnold representation theorem. We evaluated KANICE on four datasets: MNIST, Fashion-MNIST, EMNIST, and SVHN, comparing it against standard CNNs, CNN-KAN hybrids, and ICB variants. KANICE consistently outperformed baseline models, achieving 99.35% accuracy on MNIST and 90.05% on the SVHN dataset. Furthermore, we introduce KANICE-mini, a compact variant designed for efficiency. A comprehensive ablation study demonstrates that KANICE-mini achieves comparable performance to KANICE with significantly fewer parameters. KANICE-mini reached 90.00% accuracy on SVHN with 2,337,828 parameters, compared to KAN-ICE’s 25,432,000. This study highlights the potential of KAN-based architectures in balancing performance and computational efficiency in image classification tasks. Our work contributes to research in adaptive neural networks, integrates mathematical theorems into deep learning architectures, and explores the trade-offs between model complexity and performance, advancing computer vision and pattern recognition. The source code for this paper is publicly accessible through our GitHub repository (https://github.com/mferdaus/kanice).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!