Academic literature on the topic 'Hybrid fluid bearings'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid fluid bearings.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hybrid fluid bearings"

1

Polyakov, Roman, Leonid Savin, and Denis Shutin. "Reliability Improvement of Rotor Supports by Combining Rolling-Element Bearings and Fluid-Film Bearings." Applied Mechanics and Materials 630 (September 2014): 188–98. http://dx.doi.org/10.4028/www.scientific.net/amm.630.188.

Full text
Abstract:
Reliability of rotating machinery is determined to a considerable degree by the bearing units. For several applications the requirements in rotation speed, bearing load and maximal vibration level are so extreme that neither rolling-element bearings nor fluid-film bearings could provide necessary performance characteristics during all regimes of operation. Hybrid bearings, which are a combination of rolling-element and fluid-film bearings, can improve performance characteristics and reliability of the rotor-bearing systems. The aim of this work is to analyze the advantages and disadvantages of
APA, Harvard, Vancouver, ISO, and other styles
2

Polyakov, Roman, Leonid Savin, and Alex Fetisov. "Analysis of the conditions for the occurrence of the effect of a minimum of friction in hybrid bearings based on the load separation principle." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, no. 2 (2018): 271–80. http://dx.doi.org/10.1177/1350650118777143.

Full text
Abstract:
Reliability of rotating machinery is determined to a considerable degree by the bearing units. For several applications the requirements in rotational speed, bearing load and maximal vibration level are so extreme that neither rolling-element bearings nor fluid-film bearings could provide necessary operating characteristics during all regimes of operation. Hybrid bearings, which are a combination of rolling-element and fluid-film bearings, can improve performance characteristics and reliability of the rotor-bearing systems. A hybrid bearing, where a rolling-element bearing and a fluid-film bea
APA, Harvard, Vancouver, ISO, and other styles
3

San Andre´s, Luis. "Turbulent Hybrid Bearings With Fluid Inertia Effects." Journal of Tribology 112, no. 4 (1990): 699–707. http://dx.doi.org/10.1115/1.2920318.

Full text
Abstract:
High speed hybrid bearings for cryogenic applications demand large levels of external pressurization to provide substantial load capacity. These conditions give rise to large film Reynolds numbers, and thus, cause the fluid flow within the bearing film to be turbulent and dominated by fluid inertia effects both at the recess edges and at the thin film lands. The analysis includes the effect of recess fluid compressibility and a model for the pressure rise within the recess region. Flow turbulence is simulated by friction factors dependent on the local Reynolds numbers and surface conditions. A
APA, Harvard, Vancouver, ISO, and other styles
4

Fedorynenko, Dmytro, Serhii Sapon, Sergiy Boyko, and Anastasiia Urlina. "Increasing of Energy Efficiency of Spindles with Fluid Bearings." Acta Mechanica et Automatica 11, no. 3 (2017): 204–9. http://dx.doi.org/10.1515/ama-2017-0031.

Full text
Abstract:
AbstractPromising ways of energy efficiency gain of spindles with fluid flow bearings are offered. New design of journal hybrid flow bearing which contains spherical bearing pockets and adjustable valves with relay control system is offered to improve energy efficiency of spindle units of machine tools. To reduce power losses of fluid bearings at high speed special lubrication based on water with integrated system of corrosion protection is offered. Results of theoretical research of energy consumption of grinding machine tool with a new design of spindle hybrid bearings are presented. Power l
APA, Harvard, Vancouver, ISO, and other styles
5

Xiu, Shi Chao, Shi Qiang Gao, and Zhi Li Sun. "Study on Thermal Properties of Hybrid Journal Bearing for Super High Speed Grinding Machine." Advanced Materials Research 126-128 (August 2010): 808–13. http://dx.doi.org/10.4028/www.scientific.net/amr.126-128.808.

Full text
Abstract:
As the high speed bearings, hybrid journal bearings are usually used in high and super high speed grinding machine spindle system. Since the bearing operates under high speed conditions, the excessive temperature rise of bearing is a key factor to lower the accuracy of the spindle system and limit the bearings working speed, so restrict the bearing applications. In this paper, the model of hybrid journal bearing is established to analyze the heat mechanism. In addition, the temperature field distribution for the certain hybrid journal bearing at high speed is studied by ANSYS considering the h
APA, Harvard, Vancouver, ISO, and other styles
6

San Andre´s, Luis. "Bulk-Flow Analysis of Hybrid Thrust Bearings for Process Fluid Applications." Journal of Tribology 122, no. 1 (1999): 170–80. http://dx.doi.org/10.1115/1.555340.

Full text
Abstract:
Advanced cryogenic fluid turbopumps are very compact, operate at extremely high shaft speeds, and require hybrid (hydrostatic/hydrodynamic) radial and thrust fluid film bearings for accurate rotor positioning. Sound design and reliable operation of fluid film thrust bearings also allows for unshrouded impellers with a significant increase in the turbopump mechanical efficiency. A bulk-flow analysis for prediction of the static load performance and dynamic force coefficients of high speed, angled injection orifice-compensated, hybrid (hydrostatic/hydrodynamic) thrust bearings is presented. The
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jian, Jing Feng Shen, and Ya Wen Fan. "Static characteristics analysis of spherical hybrid sliding bearings." Industrial Lubrication and Tribology 72, no. 1 (2019): 93–100. http://dx.doi.org/10.1108/ilt-06-2019-0213.

Full text
Abstract:
Purpose The spherical hybrid sliding bearings (SHSBs) can be used in ultra-precision and heavy-duty machine tools. However, there is little related research for these bearings. The purpose of this study is to investigate the static characteristics and effect factors affecting SHSBs by fluid lubrication. Design/methodology/approach Based on the theories of fluid lubrication, the Reynolds equation of general Newtonian fluid is derived to obtain the steady-state lubrication equation. The system is solved by the finite difference method and the relaxation iterative method on the staggered grid to
APA, Harvard, Vancouver, ISO, and other styles
8

San Andre´s, Luis. "Effects of Misalignment on Turbulent Flow Hybrid Thrust Bearings." Journal of Tribology 124, no. 1 (2001): 212–19. http://dx.doi.org/10.1115/1.1400997.

Full text
Abstract:
An extended computational bulk-flow analysis for prediction of performance in angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings is presented. The fluid motion within the thin film lands is governed by mass conservation and momentum transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. A perturbation analysis for small amplitude shaft axial motions and angulations leads to zeroth and first-order equations describing the equilibrium and perturbed fluid flows. The computati
APA, Harvard, Vancouver, ISO, and other styles
9

Xiu, Shi Chao, Shi Qiang Gao, and Zhi Li Sun. "Analysis of Thermal Properties of Super-High Speed Hybrid Journal Bearing Based on ANSYS." Advanced Materials Research 118-120 (June 2010): 753–57. http://dx.doi.org/10.4028/www.scientific.net/amr.118-120.753.

Full text
Abstract:
Hybrid journal bearings are used in the high and super high speed cases mainly, such as the super-high speed spindle system. Since the bearing operates under high speed conditions, the excessive temperature rise of the bearing is a major reason to lower the accuracy of the main shaft system and limit the bearings working speed higher, as a result, restrict the bearing applications. In this paper, the thermal properties and the heat mechanism of such bearings are analyzed. The mathematical model of hybrid journal bearing is established to analyze the mechanism of generating heat. In addition, t
APA, Harvard, Vancouver, ISO, and other styles
10

Laurant, Franck, and Dara W. Childs. "Rotordynamic Evaluation of a Near-Tangential-lnjection Hybrid Bearing." Journal of Tribology 121, no. 4 (1999): 886–91. http://dx.doi.org/10.1115/1.2834151.

Full text
Abstract:
Given the inherent DN and assembly limitations of rolling-element bearings, research is underway to develop hybrid bearings (combining hydrostatic and hydrodynamic effects) for their replacement. Hybrid bearings develop cross-coupled stiffness coefficients due to fluid rotation, leading to predictions of onset speeds of instability and potential limitations in their range of application. Injecting fluid into a bearing recess against rotation, versus the customary radial injection, can reduce the circumferential flow and the cross-coupled-stiffness coefficients, and increase the margin of stabi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hybrid fluid bearings"

1

Elliott, Tony William. "Highly loaded hybrid journal bearings." Thesis, Liverpool John Moores University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hassini, Mohamed Amine. "Contribution à l'analyse des paliers fluides et des joints d'étanchéité utilisés dans lesturbopompes spatiales." Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2285/document.

Full text
Abstract:
La conception des turbomachines à haute densité énergétique nécessite de plus en plus la maîtrise d'un plus grand nombre de paramètres fonctionnels. La moindre défaillance d'un composant conduit quasi immédiatement la machine à la rupture. C'est en particulier le cas pour le comportement des composants à films minces.L'appellation "film mince" correspond à tout espace de très faible épaisseur situé entre le rotor et le stator de la turbomachine. Leur but est soit de limiter les fuites de manière à optimiser les performances intrinsèques de la machine, soit alors à supporter et stabiliser le ro
APA, Harvard, Vancouver, ISO, and other styles
3

Lawrence, Tom Marquis. "Characterization and Measurement of Hybrid Gas Journal Bearings." 2012. http://hdl.handle.net/1805/2926.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)<br>This thesis concentrates on the study of hybrid gas journal bearings (bearings with externally pressurized mass addition). It differs from most work in that it goes back to “basics” to explore the hydrodynamic phenomena in the bearing gap. The thesis compares geometrically identical bearings with 2 configurations of external pressurization, porous liners where mass-addition compensation is varied by varying the liner’s permeability, and bushings with 2 rows of 6 feedholes where the mass-addition compensation is varied by the feedho
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hybrid fluid bearings"

1

Hydrostatic Aerostatic And Hybrid Bearing Design. Butterworth-Heinemann, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

P, Hannum Ned, Meyer Scott D, and United States. National Aeronautics and Space Administration., eds. Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application. National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hybrid fluid bearings"

1

San Andrés, Luis. "Cryogenic Hybrid Fluid Film Bearings." In Encyclopedia of Tribology. Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hybrid fluid bearings"

1

Litwin, Wojciech. "Water Lubricated Hybrid Propeller Shaft Bearings With Polymer Bearing Bush." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63072.

Full text
Abstract:
The article deals with water lubricated hybrid marine propeller shaft bearing which was designed and built at the Faculty of Ocean Engineering and Ship Technology of the Gdansk (Poland) University of Technology. The article contains the following parts: • Description of the test stand, the simulated working conditions, and tested bearings’ specifications. • Results of the conducted measurements. The results of the experimental work include: graphs of friction coefficient, pressures in the water hydrodynamic film and shaft trajectory. • Comparison of hybrid bearing with two others bearings. Typ
APA, Harvard, Vancouver, ISO, and other styles
2

Heshmat, Hooshang, H. Ming Chen, and James F. Walton. "On the Performance of Hybrid Foil-Magnetic Bearings." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-376.

Full text
Abstract:
Recent technological advancements make hybridization of the magnetic and foil bearings both possible and extremely attractive. Operation of the foil/magnetic bearing takes advantage of the strengths of each individual bearing while minimizing each others weaknesses. In this paper one possible hybrid foil and magnetic bearing arrangement is investigated and sample design and operating parameters are presented. One of the weaknesses of the foil bearings, like any hydrodynamic bearing, is that contact between the foil bearing and the shaft occurs at rest or at very low speeds and it has low load
APA, Harvard, Vancouver, ISO, and other styles
3

Weaver, Brian K., Gen Fu, Andres F. Clarens, and Alexandrina Untaroiu. "Performance Analysis of Gas-Expanded Lubricants in a Hybrid Bearing Using Computational Fluid Dynamics." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53735.

Full text
Abstract:
Gas-expanded lubricants (GELs), tunable mixtures of synthetic oil and dissolved carbon dioxide, have been previously shown to potentially increase bearing efficiency, rotordynamic control, and long-term reliability in flooded journal bearings by controlling the properties of the lubricant in real time. Previous experimental work has established the properties of these mixtures and multiple numerical studies have predicted that GELs stand to increase the performance of flooded bearings by reducing bearing power losses and operating temperatures while also providing control over bearing stiffnes
APA, Harvard, Vancouver, ISO, and other styles
4

Estupinan, Edgar A., and Ilmar F. Santos. "Controllable Radial Oil Injection Applied to Main Engine Bearings: Hybrid Bearing Configurations and Control Pressure Rules." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41170.

Full text
Abstract:
In order to reduce friction losses and vibrations in main engine bearings, fluid film lubrication is combined to controllable radial oil injection. This work evaluates different geometric hybrid bearing configurations and control pressure rules for applying radial oil injection in main engine bearings of internal combustion engines. The conventional hydrodynamic lubrication (CHL) is combined with hydrostatic lubrication which is actively modified by radially injecting oil at controllable pressures, through orifices circumferentially located around the bearing surface. The behaviour of a main b
APA, Harvard, Vancouver, ISO, and other styles
5

San Andrés, Luis, Stephen Phillips, and Dara Childs. "A Water Lubricated Hybrid Thrust Bearing: Measurements and Predictions of Static Load Performance." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56349.

Full text
Abstract:
Process fluid lubricated thrust bearings (TBs) in a turbomachine control rotor placement due to axial loads arising from pressure fields on the front shroud and back surface of impellers. To date, prediction of aerodynamic induced thrust loads is still largely empirical. Thus needs persist to design and operate proven thrust bearings and to validate predictions of performance derived from often too restrictive computational tools. This paper describes a test rig for measurement of the load performance of water lubricated hydrostatic/hydrodynamic thrust bearings operating under conditions typic
APA, Harvard, Vancouver, ISO, and other styles
6

Ertas, Bugra H. "Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50984.

Full text
Abstract:
The following work presents a new type of hybrid journal bearing developed for enabling oil-free operation of high performance turbomachinery. The new design integrates compliant hydrostatic-hydrodynamic partitioned bearing pads with two flexibly mounted integral wire mesh dampers (IWMD). The primary aim of the new bearing configuration was to maximize the load carrying capacity and effective damping levels while maintaining adequate compliance to misalignment and variations in rotor geometry. The concept of operation is discussed along with the description of the bearing design. Several exper
APA, Harvard, Vancouver, ISO, and other styles
7

Childs, Dara W., and Paul Esser. "Measurements Versus Predictions for a Hybrid (Hydrostatic Plus Hydrodynamic) Thrust Bearing for a Range of Orifice Diameters." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56213.

Full text
Abstract:
A fixed-geometry hybrid thrust bearing is investigated with three different supply-orifice diameters, (1.63, 1.80, and 1.93 mm). The test rig uses a face-to-face thrust bearing design, with the test bearing acting as the rotor loading mechanism. A hydraulic shaker applies the static axial load, which is reacted by a second (slave) thrust bearing. The rotor is supported radially by two water-lubricated fluid film journal bearings and is attached to a 30,600 rpm motor via a high speed coupling with very low axial stiffness. Thrust bearings are tested for a range of supply pressures (5.17, 10.34,
APA, Harvard, Vancouver, ISO, and other styles
8

Gary, Keith, Bugra Ertas, and Adolfo Delgado. "A General-Purpose Test Facility for Evaluating Gas Lubricated Thrust Bearings." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15520.

Full text
Abstract:
Abstract The design, construction, operational capabilities, and proof of concept results are presented for a test rig used to evaluate gas-lubricated thrust bearings. The following work is motivated by a desire to utilize the working fluid of high-performance turbomachinery, such as gas turbines, for bearing lubricant. Auxiliary equipment required to cool, pump, and clean oil for a typical thrust bearing is eliminated by taking advantage of the turbomachinery’s working fluid as bearing lubricant. The benefit of removing such auxiliary equipment is obvious when considering cost and weight of t
APA, Harvard, Vancouver, ISO, and other styles
9

Bently, Donald E., John W. Grant, and Phillip C. Hanifan. "Active Controlled Hydrostatic Bearings for a New Generation of Machines." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0354.

Full text
Abstract:
This paper presents a revolutionary approach of using a fluid-lubricated bearing for both traditional functions (load support, damping, and heat removal) and to actively control the rotor dynamics of rotating machinery. We will discuss how its use in the design of next generation turbomachinery can yield dramatic benefits. This includes an increase in efficiency, operational life, fault diagnostic, and reductions in machine size, weight, and cost. With the use of hydrostatic instead of hydrodynamic lubrication, traditional lubricants can be replaced by fluids more friendly to the process and e
APA, Harvard, Vancouver, ISO, and other styles
10

Childs, Dara W., and David Mertz. "Comparative Lift-Off Performance in Flexure Pivot Pad and Hybrid (Hydrostatic and Hydrodynamic) Bearings With Water as the Test Fluid." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56212.

Full text
Abstract:
Three nominally-identical, 4-pad flexure-pivot-pad bearings (FPBs) were manufactured, varying only in their (dimensionless) pad preloads, namely, 0.264, 0.511, and 0.695. A hybrid hydrostatic bearing (HBB) was also manufactured with the same nominal length, diameter, and clearances. Water was used as the test fluid. The FPBs were tested at the following three constant supply pressures (Ps): 0.689, 2.76, and 5.52 bar. The HBB was tested with a supply pressure that increased linearly to these same three terminal pressures. A magnetic bearing was used to load all bearings with an applied unit-loa
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!