Academic literature on the topic 'Hybrid geoid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid geoid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hybrid geoid"

1

Borghi, Alessandra, Riccardo Barzaghi, Omar Al-Bayari, and Suhail Al Madani. "Centimeter Precision Geoid Model for Jeddah Region (Saudi Arabia)." Remote Sensing 12, no. 12 (June 26, 2020): 2066. http://dx.doi.org/10.3390/rs12122066.

Full text
Abstract:
In 2014, the Jeddah Municipality made a call for an estimate of a centimetric precision geoid model to be used for engineering and surveying applications, because the regional geoid model available at that time did not reach a sufficient precision. A project was set up to this end and dedicated sets of gravity and Global Positioning System (GPS)/levelling data were acquired in the framework of this project. In this paper, a thorough analysis of these newly acquired data and of the last available Global Gravity Field Models (GGMs) has been done in order to obtain a geoid undulation estimate with the prescribed precision. In the framework of the Remove–Compute–Restore (RCR) approach, the collocation method was used to obtain the height anomaly estimation that was then converted to geoid undulation. The remove and restore steps of the RCR approach were based on GGMs, derived from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and Gravity Recovery and Climate Experiment (GRACE) dedicated gravity satellite missions, which were used to improve the long wavelength components of the Earth’s gravity field. Furthermore, two different quasi-geoid collocation estimates were computed, based on gravity data only and on gravity plus GPS/levelling data (the so-called hybrid estimate). The best solutions were obtained with the hybrid geoid estimate. This was tested by comparison with an independent set of GPS/levelling geoid undulations that were not included in the computed solutions. By these tests, the precision of the hybrid geoid is estimated to be 3.7 cm. This precision proved to be better, by a factor of two, than the corresponding one estimated from the pure gravimetric geoid. This project has been also useful to verify the importance and reliability of GGMs developed from the last satellite gravity missions (GOCE and GRACE) that have significantly improved our knowledge of the long wavelength components of the Earth’s gravity field, especially in areas with poor coverage of terrestrial gravity data. In fact, the geoid models based on satellite-only GGMs proved to have a better performance, despite the lower spatial resolution with respect to high-resolution models (i.e., Earth Gravitational Model 2008 (EGM2008)).
APA, Harvard, Vancouver, ISO, and other styles
2

ARANA, DANIEL, PAULO O. CAMARGO, and GABRIEL N. GUIMARÃES. "Hybrid Geoid Model: Theory and Application in Brazil." Anais da Academia Brasileira de Ciências 89, no. 3 (September 2017): 1943–59. http://dx.doi.org/10.1590/0001-3765201720160802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuroishi, Y., H. Ando, and Y. Fukuda. "A new hybrid geoid model for Japan, GSIGEO2000." Journal of Geodesy 76, no. 8 (November 1, 2002): 428–36. http://dx.doi.org/10.1007/s00190-002-0266-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Su-Kyung, Jihye Park, Daniel Gillins, and Michael Dennis. "On determining orthometric heights from a corrector surface model based on leveling observations, GNSS, and a geoid model." Journal of Applied Geodesy 12, no. 4 (October 25, 2018): 323–33. http://dx.doi.org/10.1515/jag-2018-0014.

Full text
Abstract:
Abstract Leveling is a traditional geodetic surveying technique that has been used to realize a vertical datum. However, this technique is time consuming and prone to accumulate errors, where it relies on starting from one station with a known orthometric height. Establishing orthometric heights using Global Navigation Satellite Systems (GNSS) and a geoid model has been suggested [14], but this approach may involve less precisions than the direct measurements from leveling. In this study, an experimental study is presented to adjust the highly accurate leveling observations along with orthometric heights derived from GNSS observations and a geoid model. For the geoid model, the National Geodetic Survey’s gravimetric geoid model (TxGEOID16B) and hybrid geoid model (GEOID12B) were applied. Uncertainties in the leveled height differences, GNSS derived heights, and the geoid models were modeled, and a combined adjustment was implemented to construct the optimal combination of orthometric, ellipsoidal, and geoid height at each mark. As a result, the discrepancy from the published orthometric heights and the CSM (Corrector Surface Model) based adjusted orthometric heights with GEOID12B showed a mean and RMS of -8.5 mm and 16.6 mm, respectively, while TxGEOID16B had a mean and RMS of 28.9 mm and 34.6 mm, respectively. It should be emphasized that this approach was not influenced by the geodetic distribution of the stations where the correlation coefficients between the distance from the center of the surveying network and the discrepancy from the published heights using TxGEOID16B and GEOID12B are 0.03 and 0.36, respectively.
APA, Harvard, Vancouver, ISO, and other styles
5

Del Rio, Eduardo. "On accurate geoid modeling: derivation of dirichlet problems that govern geoidal undulations and geoid modeling by means of the finite difference method and a hybrid method." Boletim de Ciências Geodésicas 20, no. 2 (June 2014): 334–53. http://dx.doi.org/10.1590/s1982-21702014000200020.

Full text
Abstract:
The geoid is the reference surface used to measure heights (orthometric). These are used to study any mass variability in the Earth system. As the Earth is represented by an oblate spheroid (Ellipsoid), the geoid is determined by geoidal undulations (N) which are the separation between these surfaces. N is determined from gravity data by Stokes's Integral. However, this approach takes a Spherical rather than an Ellipsoidal Earth. Here it is derived a Partial Differential Equation (PDE) that governs N over the Earth by means of a Dirichlet problem and show a method to solve it which precludes the need for a Spherical Earth. Moreover, Stokes's Integral solves a boundary value problem defined over the whole Earth. It was found that the Dirichlet problem derived here is defined only over the region where a geoid model is to be computed, which is advantageous for local geoid modeling. Moreover, the method eliminates several of the sources of uncertainty in Stokes's Integral. However, estimates indicate that the errors due to discretization are very large in this new method which calls for its modification. So, here it is also proposed an optimal combination of techniques by means of a Hybrid method and shown that it alleviates the uncertainty in Finite Difference Method. Moreover, a rigorous error analysis indicates that the Hybrid method proposed here may well outperform Stokes's Integral.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yong-Qi, and Zhicai Luo. "A hybrid method to determine a local geoid model—Case study." Earth, Planets and Space 56, no. 4 (April 2004): 419–27. http://dx.doi.org/10.1186/bf03352495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kadaj, Roman, and Tomasz Świętoń. "Theoretical and Applied Research in the Field of Higher Geodesy Conducted in Rzeszow." Reports on Geodesy and Geoinformatics 100, no. 1 (June 1, 2016): 79–100. http://dx.doi.org/10.1515/rgg-2016-0008.

Full text
Abstract:
Abstract Important qualitative changes were taking place in polish geodesy in last few years. It was related to application of new techniques and technologies and to introduction of European reference frames in Poland. New reference stations network ASG-EUPOS, together with Internet services which helps in precise positioning was created. It allows to fast setting up precise hybrid networks. New, accurate satellite networks became the basis of new definitions in the field of reference systems. Simultaneously arise the need of new software, which enables to execute the geodetic works in new technical conditions. Authors had an opportunity to participate in mentioned undertakings, also under the aegis of GUGiK, by creation of methods, algorithms and necessary software tools. In this way the automatic postprocessing module (APPS) in POZGEO service, a part of ASG-EUPOS system came into being. It is an entirely polish product which works in Trimble environment. Universal software for transformation between PLETRF89, PL-ETRF2000, PULKOWO’42 reference systems as well as defined coordinate systems was created (TRANSPOL v. 2.06) and published as open product. An essential functional element of the program is the quasi-geoid model PL-geoid-2011, which has been elaborated by adjustment (calibration) of the global quasi-geoid model EGM2008 to 570 geodetic points (satellite-leveling points). Those and other studies are briefly described in this paper.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Dong-Ha, Hong-Sik Yun, Hae-Ik Jung, Jae-Myoung Cho, Jung-Ho Cho, Woon-Chul Jung, and Jin-Sang Hwang. "Transformation of Vertical Datum Surface in the Coastal Area using Hybrid Geoid Models." Journal of Coastal Research 165 (January 3, 2013): 1427–32. http://dx.doi.org/10.2112/si65-241.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Dong-Mei, Hou-Ze Xu, and Ming Chen. "Precise Geoid Determination over Hong Kong from Heterogeneous Data Sets using a Hybrid Method." Marine Geodesy 40, no. 2-3 (March 27, 2017): 160–71. http://dx.doi.org/10.1080/01490419.2017.1309330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Morozova, K., R. Jaeger, J. Balodis, and J. Kaminskis. "Software development and its description for Geoid determination based on Spherical-Cap-Harmonics Modelling using digital-zenith camera and gravimetric measurements hybrid data." IOP Conference Series: Materials Science and Engineering 251 (October 2017): 012065. http://dx.doi.org/10.1088/1757-899x/251/1/012065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hybrid geoid"

1

Ulotu, Prosper. "Geoid Model of Tanzania from Sparse and Varying Gravity Data Density by the KTH method." Doctoral thesis, KTH, Geodesi (stängd 20110301), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10270.

Full text
Abstract:
Developed countries are striving to achieve a cm geoid model. Most developing countries/regions think that the situation in their areas does not allow even a few decimetre geoid model. GNSS, which provides us with position, is one of the greatest achievements of the present time. Conversion of ellipsoidal height to orthometric height, which is more useful, requires an accurate geoid model. In spite of the sparse terrestrial gravity data of variable density, distribution and quality (a typical situation in developing countries), this study set out to develop as accurately as possibly achievable, a high quality geoid model of Tanzania. Literature review of three more preferred geoid methods came to a conclusion, that the Royal Institute of Technology of Sweden (KTH) method of least squares modification of Stokes formula (LSMS) with additive corrections (AC) is the most suitable for this research. However, even with a good method, the accuracy and the quality of a geoid model depend much on the quality of the data. In this study, a procedure to create a gravity database (GDB) out of sparse data with varying density, distribution and quality has been developed. This GDB is of high density and full coverage, which ensures presence of high and low gravity frequencies, with medium frequencies ranging between fair and excellent. Also an alternative local/regional Global Gravitational Model (GGM) validation method based on quality terrestrial point surface gravity anomaly has been developed. Validation of a GGM using the new approach of terrestrial point gravity and GPS/Levelling, gave the same results. Once satisfactorily proved, the method has extra advantages. The limits of Tanzania GDB (TGDB) are latitudes 15 ° S to 4 ° N and longitudes 26 ° E to 44 ° E . Cleaning and quality control of the TGDB was based on the cross validation (XV) by the Kriging method and Gaussian distribution of the XV residuals. The data used in the LSMS with AC to develop a new Tanzania gravimetric geoid model 2008, TZG08, are 1′ ×1′ clean and statistically tested surface gravity anomalies. 39,677 point gravity in land and 57,723 in the ocean were utilised. Pure satellite ITGGRACE03S GGM to degree 120 was used to determine modification parameters and long-wavelength component of the geoid model. 3′′ Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM), ITG-GRACE03S to degree 120 and EIGENCG03C to degree 360 combined GGM qualified to patch the data voids in accordance to the method of this research. TZG08 is referred to Geodetic Reference System 1980 (GRS80), and its extents are latitudes 12 ° S to 1 ° N and longitudes 29 ° E to 41 ° E . 19 GPS/levelling points qualified to assess the overall accuracy of TZG08 as 29.7 cm, and upon approximate removal of GPS and orthometric systematic effects, the accuracy of TZG08 is 27.8 cm. A corrector surface (CS) for conversion of GPS height to orthometric height referred to Tanzania National Height Datum (TNHD) has been created for a part of TZG08. Using the CS and TZG08, orthometric height of Mt. Kilimanjaro is re-established as it was in 1952 to be 5,895 m above the TNHD, which is still the official height of the mountain.

QC 20100813

APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hybrid geoid"

1

Puškorius, Vytautas, Eimuntas Paršeliūnas, Petras Petroškevičius, and Romuald Obuchovski. "An Analysis of Choosing Gravity Anomalies for Solving Problems in Geodesy, Geophysics and Environmental Engineering." In 11th International Conference “Environmental Engineering”. VGTU Technika, 2020. http://dx.doi.org/10.3846/enviro.2020.684.

Full text
Abstract:
Gravity anomalies provide valuable information about the Earth‘s gravity field. They are used for solving various geophysical and geodetic tasks, mineral and oil exploration, geoid and quasi-geoid determination, geodynamic processes of Earth, determination of the orbits of various objects, moving in space around the Earth etc. The increasing accuracy of solving the above mentioned problems poses new requirements for the accuracy of the gravity anomalies. Increasing the accuracy of gravity anomalies can be achieved by gaining the accuracy of the gravimetric and geodetic measurements, and by improving the methodology of the anomalies detection. The modern gravimetric devices allow to measure the gravity with an accuracy of several microgals. Space geodetic systems allow to define the geodetic coordinates and ellipsoidal heights of gravimetric points within a centimeter accuracy. This opens up the new opportunities to calculate in practice both hybrid and pure gravity anomalies and to improve their accuracy. In this context, it is important to analyse the possibilities of detecting various gravity anomalies and to improve the methodology for detecting gravity anomalies. Also it is important the correct selection of the gravity anomalies for different geodetic, geophysical and environmental engineering tasks. The modern gravity field data of the territory of Lithuania are used for the research.
APA, Harvard, Vancouver, ISO, and other styles
2

Nguyen, Q. T., J. F. Damlencourt, B. Vincent, V. Loup, Y. Le Cunff, P. Gentil, and S. Cristoloveanu. "SOI-GeOI hybrid substrates elaboration by Ge condensation: Process and electrical properties." In 2008 IEEE International SOI Conference. IEEE, 2008. http://dx.doi.org/10.1109/soi.2008.4656315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography