To see the other types of publications on this topic, follow the link: Hybrid metal/ferromagnet nanostructures.

Journal articles on the topic 'Hybrid metal/ferromagnet nanostructures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hybrid metal/ferromagnet nanostructures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kolenda, Stefan, Peter Machon, Detlef Beckmann, and Wolfgang Belzig. "Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions." Beilstein Journal of Nanotechnology 7 (November 3, 2016): 1579–85. http://dx.doi.org/10.3762/bjnano.7.152.

Full text
Abstract:
Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybri
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Gui-Xiang, Gui-Lian Zhang, Wen-Yue Ma, and LI-Hua Shen. "Spin filtering in a hybrid ferromagnet, Schottky metal and semiconductor nanostructure." Solid State Communications 231-232 (April 2016): 6–9. http://dx.doi.org/10.1016/j.ssc.2016.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, Li-Hua, Wen-Yue Ma, Gui-Xiang Liu, and Lin Yuan. "Spatial spin splitter based on a hybrid ferromagnet, Schottky metal and semiconductor nanostructure." Journal of Magnetism and Magnetic Materials 401 (March 2016): 231–35. http://dx.doi.org/10.1016/j.jmmm.2015.10.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wolf, M. J., F. Hübler, S. Kolenda, and D. Beckmann. "Charge and spin transport in mesoscopic superconductors." Beilstein Journal of Nanotechnology 5 (February 17, 2014): 180–85. http://dx.doi.org/10.3762/bjnano.5.18.

Full text
Abstract:
Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin. Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin
APA, Harvard, Vancouver, ISO, and other styles
5

Schömig, H., S. Halm, G. Bacher, et al. "Micromagnetoluminescence on ferromagnet–semiconductor hybrid nanostructures." Journal of Applied Physics 95, no. 11 (2004): 7411–13. http://dx.doi.org/10.1063/1.1652392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sidorenko, A. S., R. A. Morari, V. Boian, et al. "Hybrid nanostructures superconductor-ferromagnet for superconducting spintronics." Journal of Physics: Conference Series 1758, no. 1 (2021): 012037. http://dx.doi.org/10.1088/1742-6596/1758/1/012037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hihath, S., P. Riechers, R. Kiehl, J. Chen, and C. Murray. "TEM Analysis of Fe3O4/GaAs Hybrid Ferromagnet/Semiconductor Nanostructures." Microscopy and Microanalysis 18, S2 (2012): 1632–33. http://dx.doi.org/10.1017/s143192761201001x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Akimov, I. A., V. L. Korenev, V. F. Sapega, et al. "Orientation of electron spins in hybrid ferromagnet-semiconductor nanostructures." physica status solidi (b) 251, no. 9 (2014): 1663–72. http://dx.doi.org/10.1002/pssb.201350236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

CHEN, SAI-YAN, MAO-WANG LU, YI TANG, and GUI-LIAN ZHANG. "BIAS-TUNABLE ELECTRON-SPIN POLARIZATION IN HYBRID FERROMAGNETIC-SCHOTTKY-STRIPE AND SEMICONDUCTOR NANOSTRUCTURE." Modern Physics Letters B 24, no. 11 (2010): 1069–77. http://dx.doi.org/10.1142/s0217984910023116.

Full text
Abstract:
Recently, an electron-spin filter was proposed by depositing a nanosized ferromagnetic metal stripe and a Schottky normal metal stripe on the top of the semiconductor heterostructure [F. Zhai, H. Q. Xu and Y. Guo, Phys. Rev. B70 (2004) 085308]. This device has a considerable electron-spin polarization and potential application in spintronics. Here we apply a bias to this device and theoretically demonstrate how to manipulate its electron-spin polarization. By numerical simulations, we found that not only the amplitude of the electron-spin polarization but also its sign varies with the bias, gi
APA, Harvard, Vancouver, ISO, and other styles
10

Wittmann, Andreas, Claas-Henrik Möller, Oliver Kronenwerth, Matthias Holz, and Dirk Grundler. "Hybrid ferromagnet/semiconductor nanostructures: spin-valve effect and extraordinary magnetoresistance." Journal of Physics: Condensed Matter 16, no. 48 (2004): S5645—S5652. http://dx.doi.org/10.1088/0953-8984/16/48/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lu, Mao-Wang, Gui-Lian Zhang, and Sai-Yan Chen. "A GMR device based on hybrid ferromagnetic-Schottky-metal and semiconductor nanostructure." Semiconductor Science and Technology 23, no. 3 (2008): 035022. http://dx.doi.org/10.1088/0268-1242/23/3/035022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Temnov, Vasily V., Gaspar Armelles, Ulrike Woggon, et al. "Active magneto-plasmonics in hybrid metal–ferromagnet structures." Nature Photonics 4, no. 2 (2010): 107–11. http://dx.doi.org/10.1038/nphoton.2009.265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Moshchalkov, Victor V., Dušan S. Golubović, and Mathieu Morelle. "Nucleation of superconductivity and vortex matter in hybrid superconductor/ferromagnet nanostructures." Comptes Rendus Physique 7, no. 1 (2006): 86–98. http://dx.doi.org/10.1016/j.crhy.2005.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kong, Y. H., S. Y. Chen, G. L. Zhang, and X. Fu. "A Tunable 3-Terminal GMR Device Based on a Hybrid Magnetic-Electric-Barrier Nanostructure." Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/316897.

Full text
Abstract:
We propose a giant magnetoresistance (GMR) device, which can be experimentally realized by depositing two ferromagnetic (FM) strips and a Schottky metal (SM) stripe in parallel configuration on top of the GaAs heterostructure. The GMR effect ascribes a significant electron transmission difference between the parallel and antiparallel magnetization configurations of two FM stripes. Moreover, the MR ratio depends strongly on the magnetic strength of the magnetic barrier (MB) and the electric barrier (EB) height induced by an applied voltage to the SM stripe. Thus, this system can be used as a GM
APA, Harvard, Vancouver, ISO, and other styles
15

Lu, M. W., S. Y. Chen, and J. R. Xiao. "Size- and voltage-dependent spin polarization in hybrid ferromagnetic-Schottky-metal and semiconductor nanostructure." Solid State Communications 150, no. 29-30 (2010): 1409–12. http://dx.doi.org/10.1016/j.ssc.2010.04.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wen, Yu, Ayako Ayako Hashimoto, Abdillah Sani Bin Mohd Najib, Akihiko Hirata, and Hideki Abe. "Topological Analysis of Metal and Metal Oxide Hybrid Nanostructures." Microscopy and Microanalysis 26, S2 (2020): 2096–98. http://dx.doi.org/10.1017/s1431927620020437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dass, Chandriker Kavir, Thomas Jarvis, Vasyl P. Kunets, et al. "Quantum Beats in Hybrid Metal–Semiconductor Nanostructures." ACS Photonics 2, no. 9 (2015): 1341–47. http://dx.doi.org/10.1021/acsphotonics.5b00328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yampolskiy, A. L. "Ellipsometry of hybrid noble metal-dielectric nanostructures." Semiconductor Physics, Quantum Electronics and Optoelectronics 21, no. 4 (2018): 412–16. http://dx.doi.org/10.15407/spqeo21.04.412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ding, Mengning, Yifan Tang, and Alexander Star. "Understanding Interfaces in Metal–Graphitic Hybrid Nanostructures." Journal of Physical Chemistry Letters 4, no. 1 (2012): 147–60. http://dx.doi.org/10.1021/jz301711a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Khusainov, Mansur G., та Yurii N. Proshin. "π Phase Superconductivity and Magnetism in Ferromagnet / Superconductor / Ferromagnet Trilayers". Solid State Phenomena 152-153 (квітень 2009): 512–17. http://dx.doi.org/10.4028/www.scientific.net/ssp.152-153.512.

Full text
Abstract:
On the base of new boundary-value problem for the Eilenberger function we investigate the superconducting and magnetic states in ferromagnet/superconductor (FM/S) nanostructures, where superconductivity is a superposition of the BCS pairing with zero total momentum in the S layers and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing with nonzero 3D coherent momentum k in the FM layers. We originally study the interplay between the BCS and FFLO states in the pure thin FM/S/FM trilayers and two novel -phase superconducting states with electron-electron repulsion in the FM layers are predicte
APA, Harvard, Vancouver, ISO, and other styles
21

ZHENG, Di, HongXing XU, Yang LI, et al. "The novel plasmonics-transition metal dichalcogenides hybrid nanostructures." SCIENTIA SINICA Physica, Mechanica & Astronomica 49, no. 12 (2019): 124205. http://dx.doi.org/10.1360/sspma-2019-0111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jiang, Ruibin, Benxia Li, Caihong Fang, and Jianfang Wang. "Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications." Advanced Materials 26, no. 31 (2014): 5274–309. http://dx.doi.org/10.1002/adma.201400203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ray, Debdatta, Andrei Kiselev, and Olivier J. F. Martin. "Multipolar scattering analysis of hybrid metal-dielectric nanostructures." Optics Express 29, no. 15 (2021): 24056. http://dx.doi.org/10.1364/oe.427911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lu, M. W., and S. M. Zhou. "A bias-tunable electron-spin filter based on a hybrid ferromagnetic-Schottky-metal and semiconductor nanostructure." Physics Letters A 374, no. 42 (2010): 4349–53. http://dx.doi.org/10.1016/j.physleta.2010.08.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Khosroabadi, Akram A., Palash Gangopadhyay, Byron Cocilovo, et al. "Spectroscopic ellipsometry on metal and metal-oxide multilayer hybrid plasmonic nanostructures." Optics Letters 38, no. 19 (2013): 3969. http://dx.doi.org/10.1364/ol.38.003969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yu, S. H., X. J. Cui, L. L. Li, et al. "From Starch to Metal/Carbon Hybrid Nanostructures: Hydrothermal Metal-Catalyzed Carbonization." Advanced Materials 16, no. 18 (2004): 1636–40. http://dx.doi.org/10.1002/adma.200400522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cheng, Feng, Zhidong Du, Xinjun Wang, et al. "All‐Optical Helicity‐Dependent Switching in Hybrid Metal–Ferromagnet Thin Films." Advanced Optical Materials 8, no. 13 (2020): 2000379. http://dx.doi.org/10.1002/adom.202000379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Golubov, A. A., M. Yu Kupriyanov, and M. Siegel. "Density of states anomalies in hybrid superconductor-ferromagnet-normal metal structures." Journal of Experimental and Theoretical Physics Letters 81, no. 4 (2005): 180–84. http://dx.doi.org/10.1134/1.1914877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Merkt, Ulrich. "Hybrid semiconductor/metal nanostructures with two-dimensional electron systems." Superlattices and Microstructures 33, no. 5-6 (2003): 357–67. http://dx.doi.org/10.1016/j.spmi.2004.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kelsall, R. W., A. Pecchia, A. Bourlange, et al. "Electronic properties of hybrid metal-discotic liquid crystal nanostructures." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 654–58. http://dx.doi.org/10.1016/s1386-9477(02)00922-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

JOO, Jinsoo. "Characteristics and Applications of Organic Semiconductor/Metal Hybrid Nanostructures." Physics and High Technology 19, no. 12 (2010): 18. http://dx.doi.org/10.3938/phit.19.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Schierhorn, M., S. J. Lee, S. W. Boettcher, G. D. Stucky, and M. Moskovits. "Metal–Silica Hybrid Nanostructures for Surface-Enhanced Raman Spectroscopy." Advanced Materials 18, no. 21 (2006): 2829–32. http://dx.doi.org/10.1002/adma.200601254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Urbańczyk, Adam, Frank W. M. van Otten, and Richard Nötzel. "Self-aligned epitaxial metal-semiconductor hybrid nanostructures for plasmonics." Applied Physics Letters 98, no. 24 (2011): 243110. http://dx.doi.org/10.1063/1.3596460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Paudel, Hari P., and Michael N. Leuenberger. "Light-Controlled Plasmon Switching Using Hybrid Metal-Semiconductor Nanostructures." Nano Letters 12, no. 6 (2012): 2690–96. http://dx.doi.org/10.1021/nl203990c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Devi, Hemam Rachna, Omeshwari Yadorao Bisen, Zhong Chen, and Karuna Kar Nanda. "Carbon Nanostructures-Transition Metal Oxide Hybrid As Bifunctional Electrocatalyst." ECS Meeting Abstracts MA2021-01, no. 38 (2021): 1238. http://dx.doi.org/10.1149/ma2021-01381238mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khosroabadi, Akram A., Palash Gangopadhyay, Byron Cocilovo, et al. "Spectroscopic ellipsometry on metal and metal-oxide multilayer hybrid plasmonic nanostructures: erratum." Optics Letters 39, no. 9 (2014): 2810. http://dx.doi.org/10.1364/ol.39.002810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

ZHU, ZHEN-GANG, GANG SU, BIAO JIN, and QING-RONG ZHENG. "EFFECT OF IMPURITIES AND EFFECTIVE MASSES ON SPIN-DEPENDENT ELECTRICAL TRANSPORT IN FERROMAGNET-NORMAL METAL-FERROMAGNET HYBRID JUNCTIONS." International Journal of Modern Physics B 16, no. 19 (2002): 2857–73. http://dx.doi.org/10.1142/s0217979202011366.

Full text
Abstract:
The effect of nonmagnetic impurities and the effective masses on the spin-dependent transport in a ferromagnet-normal metal-ferromagnet junction is investigated on the basis of a two-band model. Our results show that impurities and the effective masses of electrons in two ferromagnetic electrodes have remarkable effects on the behaviors of the conductance, namely, both affect the oscillating amplitudes, periods, as well as the positions of the resonant peaks of the conductance considerably. The impurity tends to suppress the amplitudes of the conductance, and makes the spin-valve effect less o
APA, Harvard, Vancouver, ISO, and other styles
38

Haldar, Krishna Kanta, Narayan Pradhan, and Amitava Patra. "Hybrid Nanostructures: Formation of Heteroepitaxy in Different Shapes of Au-CdSe Metal-Semiconductor Hybrid Nanostructures (Small 20/2013)." Small 9, no. 20 (2013): 3423. http://dx.doi.org/10.1002/smll.201370125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Barbillon, Grégory. "Fabrication and SERS Performances of Metal/Si and Metal/ZnO Nanosensors: A Review." Coatings 9, no. 2 (2019): 86. http://dx.doi.org/10.3390/coatings9020086.

Full text
Abstract:
Surface-enhanced Raman scattering (SERS) sensors are very powerful analytical tools for the highly sensitive detection of chemical and biological molecules. Substantial efforts have been devoted to the design of a great number of hybrid SERS substrates such as silicon or zinc oxide nanosystems coated with gold/silver nanoparticles. By comparison with the SERS sensors based on Au and Ag nanoparticles/nanostructures, higher enhancement factors and excellent reproducibilities are achieved with hybrid SERS nanosensors. This enhancement can be due to the appearance of hotspots located at the interf
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Hai, Chee Ying Khoo, Boluo Yadian, et al. "The role of metal layers in the formation of metal–silicon hybrid nanoneedle arrays." Nanoscale 6, no. 6 (2014): 3078–82. http://dx.doi.org/10.1039/c3nr06183c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chatterjee, Aniruddha, and Dharmesh Hansora. "Graphene Based Functional Hybrid Nanostructures: Preparation, Properties and Applications." Materials Science Forum 842 (February 2016): 53–75. http://dx.doi.org/10.4028/www.scientific.net/msf.842.53.

Full text
Abstract:
The intent of this chapter is to provide a basic overview of recent advances in graphene based hybrid nanostructures including their preparation, properties and potential applications in various field. The development of graphene based functional materials, has shown their tremendous interest in areas of science, engineering and technology. These materials include graphene supported inorganic nanomaterials and films, graphene-metal decorated nanostructures, Core/shell structures of nanocarbon-graphene and graphene doped polymer hybrid nanocomposites etc. They have been prepared by various meth
APA, Harvard, Vancouver, ISO, and other styles
42

Magna, Gabriele, Mounika Muduganti, Roberto Paolesse, and Corrado Di Natale. "Gas Sensing with Porphyrin Functionalized Metal Oxide Nanostructures." Proceedings 14, no. 1 (2019): 28. http://dx.doi.org/10.3390/proceedings2019014028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kryuchenko, Yu V. "HYBRID NANOSTRUCTURES WITH QUANTUM DOTS A2B6 AND METAL NANOPARTICLES (REVIEW)." Optoèlektronika i poluprovodnikovaâ tehnika 51, no. 2016 (2016): 7–30. http://dx.doi.org/10.15407/jopt.2016.51.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vasa, Parinda, and Christoph Lienau. "Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures." ACS Photonics 5, no. 1 (2017): 2–23. http://dx.doi.org/10.1021/acsphotonics.7b00650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhao, Xinhong, Peng Wang, and Baojun Li. "Surface plasmon enhanced energy transfer in metal–semiconductor hybrid nanostructures." Nanoscale 3, no. 8 (2011): 3056. http://dx.doi.org/10.1039/c1nr10367a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Akinaga, Hiro. "Magnetic-Field-Sensing Materials Composed of Metal–Semiconductor Hybrid Nanostructures." Journal of Nanoscience and Nanotechnology 5, no. 2 (2005): 250–54. http://dx.doi.org/10.1166/jnn.2005.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jiang, Ruibin, Benxia Li, Caihong Fang, and Jianfang Wang. "ChemInform Abstract: Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications." ChemInform 45, no. 40 (2014): no. http://dx.doi.org/10.1002/chin.201440225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bala, Tanushree, Ajay Singh, Ambarish Sanyal, et al. "Fabrication of Noble metal-semiconductor hybrid nanostructures using phase transfer." Nano Research 6, no. 2 (2013): 121–30. http://dx.doi.org/10.1007/s12274-013-0287-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wittrock, Steffen, Dennis Meyer, Markus Muller, et al. "Spin-Current Manipulation of Photo-Induced Magnetization Dynamics in Heavy Metal/Ferromagnet Double Layer-Based Nanostructures." IEEE Transactions on Magnetics 53, no. 11 (2017): 1–4. http://dx.doi.org/10.1109/tmag.2017.2703856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

wassel, Ahmed R., Mehrez E. El-Naggar, and Kamel Shoueir. "Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: a review." Journal of Environmental Chemical Engineering 8, no. 5 (2020): 104175. http://dx.doi.org/10.1016/j.jece.2020.104175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!