Journal articles on the topic 'Hybrid Plasmonic Metamaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hybrid Plasmonic Metamaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jaksic, Zoran, Marko Obradov, Olga Jaksic, Goran Isic, Slobodan Vukovic, and Vasiljevic Radovic. "Methods of decreasing losses in optical metamaterials." Facta universitatis - series: Electronics and Energetics 31, no. 4 (2018): 501–18. http://dx.doi.org/10.2298/fuee1804501j.
Full textMaccaferri, Nicolò, Alessio Gabbani, Francesco Pineider, Terunori Kaihara, Tlek Tapani, and Paolo Vavassori. "Magnetoplasmonics in confined geometries: Current challenges and future opportunities." Applied Physics Letters 122, no. 12 (2023): 120502. http://dx.doi.org/10.1063/5.0136941.
Full textPancaldi, Matteo, Naëmi Leo, and Paolo Vavassori. "Selective and fast plasmon-assisted photo-heating of nanomagnets." Nanoscale 11, no. 16 (2019): 7656–66. http://dx.doi.org/10.1039/c9nr01628g.
Full textZeng, Shuwen, Guozhen Liang, Alexandre Gheno, et al. "Plasmonic Metasensors Based on 2D Hybrid Atomically Thin Perovskite Nanomaterials." Nanomaterials 10, no. 7 (2020): 1289. http://dx.doi.org/10.3390/nano10071289.
Full textFujita, Kazuhiro. "Hybrid Newmark-conformal FDTD modeling of thin spoof plasmonic metamaterials." Journal of Computational Physics 376 (January 2019): 390–410. http://dx.doi.org/10.1016/j.jcp.2018.09.050.
Full textKilic, Ufuk, Matthew Hilfiker, Alexander Ruder, et al. "Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials." Advanced Functional Materials 31, no. 20 (2021): 2010329. http://dx.doi.org/10.1002/adfm.202010329.
Full textAhmadivand, Arash, Burak Gerislioglu, G. Timothy Noe, and Yogendra Kumar Mishra. "Gated Graphene Enabled Tunable Charge–Current Configurations in Hybrid Plasmonic Metamaterials." ACS Applied Electronic Materials 1, no. 5 (2019): 637–41. http://dx.doi.org/10.1021/acsaelm.9b00035.
Full textWang, Huan, Jiajun Linghu, Xuezhi Wang, Qiyi Zhao, and Hao Shen. "Angular-Dependent THz Modulator with Hybrid Metal-Graphene Metastructures." Nanomaterials 13, no. 13 (2023): 1914. http://dx.doi.org/10.3390/nano13131914.
Full textLi, Yuxiang, Guohua Dong, Ruiqiang Zhao, et al. "Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials." Journal of Physics D: Applied Physics 51, no. 28 (2018): 285105. http://dx.doi.org/10.1088/1361-6463/aac9a3.
Full textHuang, Jijie, Xin Li Phuah, Luke Mitchell McClintock, et al. "Core-shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling." Materials Today 51 (December 2021): 39–47. http://dx.doi.org/10.1016/j.mattod.2021.10.024.
Full textGuddala, Sriram, D. Narayana Rao, and S. Anantha Ramakrishna. "Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances." Journal of Optics 18, no. 6 (2016): 065104. http://dx.doi.org/10.1088/2040-8978/18/6/065104.
Full textHuang, Jijie, Xuejing Wang, Nicki L. Hogan, et al. "Nanoscale Artificial Plasmonic Lattice in Self-Assembled Vertically Aligned Nitride-Metal Hybrid Metamaterials." Advanced Science 5, no. 7 (2018): 1800416. http://dx.doi.org/10.1002/advs.201800416.
Full textLi, Yang, Dezhao Li, Dan Zhou, Cheng Chi, Shihe Yang, and Baoling Huang. "Efficient, Scalable, and High-Temperature Selective Solar Absorbers Based on Hybrid-Strategy Plasmonic Metamaterials." Solar RRL 2, no. 8 (2018): 1800057. http://dx.doi.org/10.1002/solr.201800057.
Full textLian, Jiqing, Dawei Zhang, Ruijin Hong, Tingzhen Yan, Taiguo Lv, and Daohua Zhang. "Broadband Absorption Tailoring of SiO2/Cu/ITO Arrays Based on Hybrid Coupled Resonance Mode." Nanomaterials 9, no. 6 (2019): 852. http://dx.doi.org/10.3390/nano9060852.
Full textHernandez Linares, I. G., and G. Gonzalez de la Cruz. "Role of Plasmon Modes on the Optical Reflectivity of Graphene-Metallic Structures: A Theoretical Approach." Journal of Nano Research 60 (November 2019): 76–85. http://dx.doi.org/10.4028/www.scientific.net/jnanor.60.76.
Full textPaldi, Robynne L., Xuejing Wang, Xing Sun, et al. "Vertically Aligned AgxAu1–x Alloyed Nanopillars Embedded in ZnO as Nanoengineered Low-Loss Hybrid Plasmonic Metamaterials." Nano Letters 20, no. 5 (2020): 3778–85. http://dx.doi.org/10.1021/acs.nanolett.0c00790.
Full textChen, Chen, Liu, et al. "Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface." Nanomaterials 9, no. 10 (2019): 1350. http://dx.doi.org/10.3390/nano9101350.
Full textZhang, Di, Shikhar Misra, Jie Jian, et al. "Self-Assembled BaTiO3–AuxAg1–x Low-Loss Hybrid Plasmonic Metamaterials with an Ordered “Nano-Domino-like” Microstructure." ACS Applied Materials & Interfaces 13, no. 4 (2021): 5390–98. http://dx.doi.org/10.1021/acsami.0c19108.
Full textHu, Hai, Na Chen, Hanchao Teng, et al. "Gate-tunable negative refraction of mid-infrared polaritons." Science 379, no. 6632 (2023): 558–61. http://dx.doi.org/10.1126/science.adf1251.
Full textMa, Zhenhe, Xianghe Meng, Xiaodi Liu, Guangyuan Si, and Yan Jun Liu. "Liquid Crystal Enabled Dynamic Nanodevices." Nanomaterials 8, no. 11 (2018): 871. http://dx.doi.org/10.3390/nano8110871.
Full textKilic, Ufuk, Matthew Hilfiker, Alexander Ruder, et al. "Helical Nanostructures: Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials (Adv. Funct. Mater. 20/2021)." Advanced Functional Materials 31, no. 20 (2021): 2170143. http://dx.doi.org/10.1002/adfm.202170143.
Full textLi, Yang, Dezhao Li, Dan Zhou, Cheng Chi, Shihe Yang, and Baoling Huang. "Efficient, Scalable, and High-Temperature Selective Solar Absorbers Based on Hybrid-Strategy Plasmonic Metamaterials (Solar RRL 8∕2018)." Solar RRL 2, no. 8 (2018): 1870196. http://dx.doi.org/10.1002/solr.201870196.
Full textVerma, Sneha, and B. M. A. Rahman. "Advanced refractive index sensor using 3-dimensional metamaterial based nanoantenna array." Journal of Physics: Conference Series 2407, no. 1 (2022): 012054. http://dx.doi.org/10.1088/1742-6596/2407/1/012054.
Full textZhang, Jianfa, Qilin Hong, Jinglan Zou, et al. "Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor." Micromachines 11, no. 3 (2020): 268. http://dx.doi.org/10.3390/mi11030268.
Full textVerma, Sneha, and B. M. A. Rahman. "Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array." Sensors 23, no. 3 (2023): 1290. http://dx.doi.org/10.3390/s23031290.
Full textDu, Wei, Youcheng Zhu, Zhendong Yan, et al. "Pronounced Linewidth Narrowing of Vertical Metallic Split-Ring Resonators via Strong Coupling with Metal Surface." Nanomaterials 11, no. 9 (2021): 2194. http://dx.doi.org/10.3390/nano11092194.
Full textGu, Jianqiang, Ranjan Singh, Abul K. Azad, et al. "An active hybrid plasmonic metamaterial." Optical Materials Express 2, no. 1 (2011): 31. http://dx.doi.org/10.1364/ome.2.000031.
Full textHedayati, M. Keshavarz, S. Fahr, C. Etrich, F. Faupel, C. Rockstuhl, and M. Elbahri. "The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow." Nanoscale 6, no. 11 (2014): 6037–45. http://dx.doi.org/10.1039/c4nr00087k.
Full textShi, Cai-Feng, Zhong-Qiu Li, Chen Wang, Jian Li, and Xing-Hua Xia. "Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin using nanochannels of 3D hybrid plasmonic metamaterial." Biosensors and Bioelectronics 178 (April 2021): 113040. http://dx.doi.org/10.1016/j.bios.2021.113040.
Full textZhang, Zhaojian, Junbo Yang, Xin He, et al. "Active control of broadband plasmon-induced transparency in a terahertz hybrid metal–graphene metamaterial." RSC Advances 8, no. 49 (2018): 27746–53. http://dx.doi.org/10.1039/c8ra04329a.
Full textYan, Zhendong, Zhixing Zhang, Wei Du, et al. "Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial." Nanomaterials 10, no. 12 (2020): 2408. http://dx.doi.org/10.3390/nano10122408.
Full textButt, Muhammad Ali, and Nikolai Lvovich Kazansky. "Narrowband perfect metasurface absorber based on impedance matching." Photonics Letters of Poland 12, no. 3 (2020): 88. http://dx.doi.org/10.4302/plp.v12i3.1041.
Full textHabib, Mohsin, Murat Gokbayrak, Ekmel Ozbay, and Humeyra Caglayan. "Electrically controllable plasmon induced reflectance in hybrid metamaterials." Applied Physics Letters 113, no. 22 (2018): 221105. http://dx.doi.org/10.1063/1.5063461.
Full textKalaswad, Matias, Di Zhang, Xingyao Gao, et al. "Integration of Hybrid Plasmonic Au–BaTiO3 Metamaterial on Silicon Substrates." ACS Applied Materials & Interfaces 11, no. 48 (2019): 45199–206. http://dx.doi.org/10.1021/acsami.9b15528.
Full textShen, Jinyong, Tianyun Zhu, Jing Zhou, et al. "High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors." Sensors 23, no. 1 (2022): 168. http://dx.doi.org/10.3390/s23010168.
Full textZhang, Di, Zhimin Qi, Jie Jian, et al. "Thermally Stable Au–BaTiO3 Nanoscale Hybrid Metamaterial for High-Temperature Plasmonic Applications." ACS Applied Nano Materials 3, no. 2 (2020): 1431–37. http://dx.doi.org/10.1021/acsanm.9b02271.
Full textJi, Jie, Siyan Zhou, Weijun Wang, Furi Ling, and Jianquan Yao. "Active control of terahertz plasmon-induced transparency in the hybrid metamaterial/monolayer MoS2/Si structure." Nanoscale 11, no. 19 (2019): 9429–35. http://dx.doi.org/10.1039/c8nr08813f.
Full textWang, Xuejing, Jie Jian, Zhiguang Zhou, et al. "Self‐Assembled Ag–TiN Hybrid Plasmonic Metamaterial: Tailorable Tilted Nanopillar and Optical Properties." Advanced Optical Materials 7, no. 3 (2018): 1801180. http://dx.doi.org/10.1002/adom.201801180.
Full textHu, Haitao, Xue Lu, Jianhua Huang, et al. "Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing." Nanomaterials 11, no. 12 (2021): 3361. http://dx.doi.org/10.3390/nano11123361.
Full textHajian, Hodjat, Amir Ghobadi, Sina Abedini Dereshgi, Bayram Butun, and Ekmel Ozbay. "Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials [Invited]." Journal of the Optical Society of America B 34, no. 7 (2017): D29. http://dx.doi.org/10.1364/josab.34.000d29.
Full textChen, Hongting, Zhaojian Zhang, Xiao Zhang, Yunxin Han, Zigang Zhou, and Junbo Yang. "Multifunctional Plasmon-Induced Transparency Devices Based on Hybrid Metamaterial-Waveguide Systems." Nanomaterials 12, no. 19 (2022): 3273. http://dx.doi.org/10.3390/nano12193273.
Full textZhang, Q., S. Zhou, S. F. Fu, and X. Z. Wang. "Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial." AIP Advances 7, no. 4 (2017): 045216. http://dx.doi.org/10.1063/1.4982672.
Full textButt, Muhammad Ali. "Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio." Photonics Letters of Poland 12, no. 3 (2020): 82. http://dx.doi.org/10.4302/plp.v12i3.1042.
Full textGong, Hui, Yu-Min Liu, Zhong-Yuan Yu, Xiu Wu, and Hao-Zhi Yin. "Hybrid plasmon waveguides with metamaterial substrate and dielectric substrate: A contrastive study." Chinese Physics B 23, no. 4 (2014): 046103. http://dx.doi.org/10.1088/1674-1056/23/4/046103.
Full textLiu, Bin, Pinghui Wu, Hongyang Zhu, and Li Lv. "Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectric−Dielectric−Metal Three-Layer Film Material." Micromachines 12, no. 12 (2021): 1552. http://dx.doi.org/10.3390/mi12121552.
Full textLitt, David B., Matthew R. Jones, Mario Hentschel, et al. "Hybrid Lithographic and DNA-Directed Assembly of a Configurable Plasmonic Metamaterial That Exhibits Electromagnetically Induced Transparency." Nano Letters 18, no. 2 (2018): 859–64. http://dx.doi.org/10.1021/acs.nanolett.7b04116.
Full textJibin, Kunnumpurathu, Jayaram S. Prasad, Giridharan Saranya, Sachin J. Shenoy, Kaustabh K. Maiti, and Ramapurath S. Jayasree. "Optically controlled hybrid metamaterial of plasmonic spiky gold inbuilt graphene sheets for bimodal imaging guided multimodal therapy." Biomaterials Science 8, no. 12 (2020): 3381–91. http://dx.doi.org/10.1039/d0bm00312c.
Full textWang, Xianjun, Hongyun Meng, Shuying Deng, et al. "Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface." Nanomaterials 9, no. 3 (2019): 385. http://dx.doi.org/10.3390/nano9030385.
Full textAdl, Hamid Pashaei, Setatira Gorji, Andrés F. Gualdrón-Reyes, Iván Mora-Seró, Isaac Suárez, and Juan P. Martínez-Pastor. "Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna." Nanomaterials 13, no. 1 (2022): 11. http://dx.doi.org/10.3390/nano13010011.
Full textGric, Tatjana, and Ortwin Hess. "Controlling hybrid-polarization surface plasmon polaritons in dielectric-transparent conducting oxides metamaterials via their effective properties." Journal of Applied Physics 122, no. 19 (2017): 193105. http://dx.doi.org/10.1063/1.5001167.
Full text