Academic literature on the topic 'Hybrid PV/T'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid PV/T.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hybrid PV/T"

1

Ul Abdin, Zain, and Ahmed Rachid. "A Survey on Applications of Hybrid PV/T Panels." Energies 14, no. 4 (2021): 1205. http://dx.doi.org/10.3390/en14041205.

Full text
Abstract:
Photovoltaic-thermal (PV/T) collectors have gained a lot of attention in recent years due to their substantial advantages as compared to ST or PV systems alone and even to other non-solar technologies. However, PV/Ts are still not as popular in industry or construction and they are not even known to major players implementing solar energy installations. In this article, a general presentation of PV/Ts and a review of their applications are given. First, different heat extraction media (e.g., air, water, bi-fluid, etc.) and hybrid design configurations of hybrid PV/T collectors are addressed. Next, the main applications of PV/T collectors are discussed in order to highlight their feasibility and usefulness and to raise awareness for adoption in the industry and buildings sector. Applications include desalination, air-conditioning, drying, trigeneration, etc. This paper should be considered as a reference form of PV/Ts to extract key points for future research and development as well as for other applications.
APA, Harvard, Vancouver, ISO, and other styles
2

El Hocine, H. Ben Cheikh, and M. Marir-Benabbas. "Study of Various Configurations of Hybrid PV/T System." International Journal of Materials 8 (November 14, 2021): 62–69. http://dx.doi.org/10.46300/91018.2021.8.8.

Full text
Abstract:
In this study, an attempt has been made to evaluate the theoretical performance and evaluation of a hybrid PV/thermal (PV/T) collector based on dual heat extraction operation a function of climatic and design parameters. On the first hand, the different configurations of hybrid collectors are considered for the present study which are defined as unglazed PV/T air heaters, with and without tedlar, PVT hybrid water collector, in the second hand two configurations with dual extraction operation (water and air as heat removal fluid) are presented which are defined as dual PV/T model with tedlar, dual hybrid PV/T without tedlar. Analytical expressions for the temperatures of solar cells, back surface of the module, outlet air, and outlet water of those configurations have been derived. Numerical computations have been carried out for composite climate and the results for different configurations have been compared. Our results clearly show the direct impact of various parameters, in particular the solar radiation, ambient temperature, mass flow rate on the variation of outlet and solar cell of the collector.
APA, Harvard, Vancouver, ISO, and other styles
3

Alktranee, Mohammed, and Péter Bencs. "Applications of nanotechnology with hybrid photovoltaic/thermal systems: A review." Journal of Applied Engineering Science 19, no. 2 (2021): 292–306. http://dx.doi.org/10.5937/jaes2102292a.

Full text
Abstract:
This paper appears potential of use nanofluids as a working fluid with the photovoltaic/thermal (PV/T) systems as an alternative of the conventional liquids in improves the efficiency of the hybrid PV/T system. The review highlights the impact of some parameters (base fluid, volume fraction, the concentration of nanoparticles, surfactants, shape, and size of nanoparticles) on nanofluids' thermophysical properties and their effect on the PV/T system's efficiencies. Hence, it discusses the PV/T behavior, which uses different nanofluids based on previous experimental, analytical, and numerical studies. The review concluded that using nanofluid as a cooling fluid or spectral filter contributes by enhancing the performance and increasing the PV/T system's efficiency. Thus, each type of nanofluids has certain features that contribute to removing the PV cells' excess heat by cooling it, contributing to its work's stability, and increasing its productivity. Nanofluids thermophysical properties play an intrinsic role by enhancing nanofluids' performance, thus positively reflecting on the PV/T system's performance. Despite the variation in the values of thermal and electrical efficiency, Most of the studies that used nanofluids have achieved encouraging results that appeared by improving the performance of PV/T systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Marc-Alain Mutombo, N., Freddie Inambao, and Glen Bright. "Performance analysis of thermosyphon hybrid photovoltaic thermal collector." Journal of Energy in Southern Africa 27, no. 1 (2016): 28. http://dx.doi.org/10.17159/2413-3051/2016/v27i1a1564.

Full text
Abstract:
The conversion of solar irradiance into electricity by a photovoltaic module (PV) is 6– 7% of the incoming energy from the sun depending on the type of technology and the environmental parameters. More than 80% of incoming energy from the sun is reflected or absorbed by the solar module. The fraction of energy absorbed increases with solar cell temperature and the cells’ efficiency drops as a consequence. The efficiency of a PV module is improved by combining a PV module and a thermal collector in one unit, resulting in a hybrid photovoltaic and thermal collector (PV/T). The purpose of this paper is to present the behavior a thermosyphon hybrid PV/T when exposed to variations of environmental parameters and to demonstrate the advantage of cooling photovoltaic modules with water using a rectangular channel profile for the thermal collector. A single glazed flat-box absorber PV/T module was designed, its behavior for different environmental parameters tested, the numerical model developed, and the simulation for particular days for Durban weather run. The simulation result showed that the overall efficiency of the PV/T module was 38.7% against 14.6% for a standard PV module while the water temperature in the storage tank reached 37.1 °C. This is a great encouragement to the marketing of the PV/T technology in South Africa particularly during summer, and specifically in areas where the average annual solar irradiance is more than 4.70 kWh/m²/day.
APA, Harvard, Vancouver, ISO, and other styles
5

ADUN, Humphrey, Mustapha Mukhtar, Micheal Adedeji, et al. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids." Energies 14, no. 15 (2021): 4434. http://dx.doi.org/10.3390/en14154434.

Full text
Abstract:
The amelioration of photovoltaic (PV) and photovoltaic/thermal (PV/T) systems have garnered increased research interest lately, more so due to the discovery of the thermal property augmentation of nanofluids. The overarching goal of this study is to conduct a comparative analysis of mono, hybrid, and ternary hybrid nanofluids utilized as fluids for heat transfer applications and particularly as cooling mediums in PV/T applications. Al2O3, ZnO, Al2O3-ZnO, and Al2O3-ZnO-Fe3O4 nanofluids are synthesized at 1% volume concentration using the two-step method. The zeta potential tests carried out showed that the fluids have high stability. The numerical model developed in this study was validated using real data culled from Cyprus International University. The findings in this study showed that the Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid and ZnO mono nanofluid were more efficient heat transfer fluids for the PV/T system. The optimum relative electrical PV/T efficiency against that of the PV is 8.13% while the electrical and thermal enhancement recorded in this study was 1.79% and 19.06%, respectively, measured for the ternary hybrid nanofluid based PV/T system. This present study shows that despite the limitation of pumping power and pressure drop associated with nanofluid in thermal systems, the close performance evaluation criterion values as compared with water is positive for practical utilization of nanofluid in PV/T systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Pater, Sebastian. "Long-Term Performance Analysis Using TRNSYS Software of Hybrid Systems with PV-T." Energies 14, no. 21 (2021): 6921. http://dx.doi.org/10.3390/en14216921.

Full text
Abstract:
A hybrid photovoltaic-thermal collector (PV-T) with the capability to produce thermal energy and electrical energy simultaneously has attracted the attention of researchers, especially in terms of improving PV-T performance. This study analyses the work of four model installations with PV-T and other devices built in the transient systems simulation program. The novelty of this article lies in a long-term approach to the operation of PV-T panels under selected climatic conditions. Influence of the installation’s configuration on the obtained temperatures of solar cells, and, in consequence, on electric power generated by PV-T and the amount of heat produced during one year in a selected location is presented. Among others, the impact of the temperature coefficient of photovoltaic cells for long-term PV-T operation was analyzed in the paper. The results showed that the type of cell used may decrease the yearly electric energy production from PV-T even by 7%. On the other hand, intensification of the process of heat reception from PV-T using a heat pump increased this production by 6% in relation to the base model. The obtained research results indicate possible methods for improving the effectiveness of PV-T operation in a long-term aspect.
APA, Harvard, Vancouver, ISO, and other styles
7

Geetha, R., M. M. Vijayalakshmi, and E. Natarajan. "Modeling and Simulation Assessment of Solar Photovoltaic/Thermal Hybrid Liquid System Using TRNSYS." Applied Mechanics and Materials 813-814 (November 2015): 700–706. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.700.

Full text
Abstract:
The PV/T hybrid system is a combined system consisting of PV panel behind which heat exchanger with fins are embedded. The PV/T system consists of PV panels with a battery bank, inverter etc., and the thermal system consists of a hot water storage tank, pump and differential thermostats. In the present work, the modeling and simulation of a Solar Photovoltaic/Thermal (PV/T) hybrid system is carried out for 5 kWp using TRNSYS for electrical energy and thermal energy for domestic hot water applications. The prominent parameters used for determining the electrical efficiency, thermal efficiency, overall thermal efficiency, electrical thermal efficiency and exergy efficiency are the solar radiation, voltage, current, ambient temperature, mass flow rate of water, area of the PV module etc. The simulated results of the Solar PV/T hybrid system are analyzed for the optimum water flow rate of 25 kg/hr. The electrical efficiency, thermal efficiency, overall thermal efficiency, equivalent thermal efficiency, exergy efficiency are found to be 10%, 34%, 60%, 35% and 13% respectively. The average tank temperature is found to be 50°C.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Hong Bing, and Ping Wei. "Comparative Study on Hybrid PV/T Heat Pump Systems Using Different PV Panels." Advanced Materials Research 446-449 (January 2012): 2888–94. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.2888.

Full text
Abstract:
Many studies have found that the photovoltaic (PV) cell temperature plays an important impact on the solar-to-electricity conversion efficiency. Different cooling liquids like air and water have been introduced to pass across the PVs to reduce the cell temperature, and thus increase the electrical efficiency. In this paper, the refrigerant R134a is used as the cooling liquid and the PV/thermal (PV/T) panel is coupled with a heat pump system acting as the evaporator, which is expected to achieve a better cooling effect and energy performance due to its low boiling temperature. Two different kinds of PV/T panels, glass vacuum tube (GVT) type and flat plate (FP) type, are proposed for the study on the energy performance comparison. The results show that the GVT PV/T panel has an average thermal efficiency of 0.775 and an average electrical efficiency of 0.089 (based on the reference efficiency of 0.12), which is 73.4% and 1.1% higher than that of the FP PV/T panel respectively, with the solar radiation varying from 200 W/m2to 1000 W/m2. The GVT PV/T heat pump system has an average COP of 5.6, 9.8% higher the FP PV/T heat pump system. The GVT PV/T heat pump system has a better energy performance than the FP PV/T heat pump system.
APA, Harvard, Vancouver, ISO, and other styles
9

Strazzullo, P., D. De Luca, A. Caldarelli, et al. "Numerical performance investigation of High Vacuum Flat Plate Hybrid Photovoltaic-Thermal devices." Journal of Physics: Conference Series 2685, no. 1 (2024): 012035. http://dx.doi.org/10.1088/1742-6596/2685/1/012035.

Full text
Abstract:
Abstract We propose an innovative flat plate hybrid Photovoltaic-Thermal system under high vacuum (HV PV-T) optimized for solar-to-thermal energy conversion. It consists of a glass cover, metallic vessel, and the actual PV-T device, which englobes a low-emissive Transparent Conductive Oxide (TCO), a perovskite-based PV cell, a Solar Absorber, and a copper substrate. We investigate, through a 1-D model developed in MATLAB, the performances of the proposed PV-T system, still mined by radiative losses, varying the operating temperature (Top) and the emittance of the TCO (εTCO ) in the ranges of (25÷175) °C and (0.05÷0.45) respectively. The annual thermal and electrical productions are evaluated considering the Typical Meteorological Year of Naples, Italy. Specific annual costs and emission savings are evaluated and compared with the ones assured by commercial High Vacuum Flat Plate Solar-Thermal (HVFP ST) and PV collectors. Results indicate that the proposed HV PV-T increases the annual cost savings by 34% and 11% when compared to HVFP ST and PV collectors, respectively. Moreover, the presented HV PV-T increases the annual CO2 emissions savings by 7% and 48% when compared to HVFP ST and PV collectors, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Srimanickam, B., M. M. Vijayalakshmi, and Elumalai Natarajan. "Experimental Study of Exergy Analysis on Flat Plate Solar Photovoltaic Thermal (PV/T) Hybrid System." Applied Mechanics and Materials 787 (August 2015): 82–87. http://dx.doi.org/10.4028/www.scientific.net/amm.787.82.

Full text
Abstract:
The objective of present study is to conduct exergy analysis on flat plate solar photovoltaic thermal (PV/T) hybrid system. The solar insolation, current, voltage, inlet and outlet air temperature of the cooling duct, ambient air temperature, and solar panel surface temperature are the major parameters used to calculate the energy and exergy efficiency. An amended electrical efficiency is used to estimate the electrical output and performance of PV/T hybrid system. Further, an enriched equation for the exergy efficiency of a PV/T hybrid system has been used for exergy analysis. Finally, parametric studies have been carried out. An extensive energy and exergy analysis is carried out to calculate the electrical and thermal parameters. The experimental results are in good agreement with the earlier studies. In addition to that, the electrical efficiency, thermal efficiency, electrical thermal efficiency, overall energy efficiency and exergy efficiency of PV/T hybrid system is found to be about 9.78%, 24.22%, 27.17%, 44.84% and 11.23% respectively.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hybrid PV/T"

1

Nalis, Amrizal. "Quasi-Dynamic Characterization of Hybrid Photovoltaic/Thermal (PV/T) Flat-Plate Collectors." Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/84100.

Full text
Abstract:
Un model híbrid transitòria fotovoltaic / tèrmic ha estat desenvolupat i validat experimentalment. La metodologia s'estén el model tèrmic quasi-dinàmica s'indica a la norma EN 12975 per involucrar el rendiment elèctric i estudiar el comportament dinàmic minimitzar les limitacions de l'hora de caracteritzar el col • lector. Una es mou cap enrere procediment mitjà de filtrat s'ha aplicat per millorar la resposta del model de condicions de treball variables. Quant a la part elèctrica, el model inclou les dependències tèrmiques i la radiació en les seves variables. Els resultats van revelar que els paràmetres característics inclosos en el model raonablement d'acord amb els valors experimentals obtinguts de la norma d'estat estacionari i els mesuraments de la corba característica IV. Després d'un procés de calibració del model proposat és una eina adequada per predir el comportament tèrmic i elèctric d'un col • lector solar híbrida, per un temps determinat conjunt de dades.<br>A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 to involve the electrical performance and to consider the dynamic behaviour minimising constraints when characterising the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model reasonably agree with the experimental values obtained from standard steady-state and IV characteristic curve measurements. After a calibration process the proposed model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set<br>Se ha desarrollado un modelo dinámico para caracterizar colectores solares híbridos térmofotovoltaicos. La metodología extiende el modelo térmico estipulado en la norma EN 12975 involucrando la aportación eléctrica y estudiando el comportamiento dinámico para minimizar las restricciones a la hora de caracterizar el módulo. Se han implementado procedimientos de filtrado que mejoran la respuesta del modelo bajo condiciones variables. En cuanto a la parte eléctrica, el modelo incluye las dependencias térmicas y la radiación en sus variables. Los resultados obtenidos a partir de caracterización dinámica del colector híbrido PV/T revelaron que los parámetros característicos incluidos en el modelo concuerdan razonablemente bien con los valores experimentales obtenidos siguiendo el estándar de caracterización estacionaria, la capacidad calorífica efectiva y las mediciones de la curva característica IV. Después de un proceso de calibración, el modelo es una herramienta adecuada para predecir el comportamiento de un colector solar híbrido, para unas condiciones externas determinadas.
APA, Harvard, Vancouver, ISO, and other styles
2

Moreno, Puerto Jose. "Performance Evaluation of the Solarus AB Asymmetric Concentrating Hybrid PV/T Collector." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17096.

Full text
Abstract:
The energy sector is currently in a state of change as conventional energy sources are questioned by the need of new clean and sustainable energy sources to satisfy the global energy demand in the long term. Renewable energies respond to this increasing demand and solar energy is an advanced example of them. Photovoltaic modules are experiencing a steady reduction in their production costs. It is needed that this trend continues and, along with it, their propagation and expansion in the market continues. One way of reducing production costs is by using inexpensive light concentrators to increase the output of the costly photovoltaic cell. In this respect, the Solarus AB hybrid PV/T collector has been designed based on this principle. This collector is a CPC (Compound Parabolic Collector) and belongs to the MaReCo (Maximum Reflector Collector) family. The aim of this thesis is to deeply investigate this technology in two main areas. Firstly, the collector will be tested both electrically and thermally in order to evaluate its performance. To do so, a solar test rig has been built and connected at the building Hall 45 of Högskolan i Gävle, Gävle, Sweden. The second main area of investigation of this thesis is to determine the optimal price for the Solarus AB hybrid PV/T collector in order to be competitive in the solar energy market. This study will be based in the current market prices of photovoltaic and thermal collectors. Regarding the electrical performance of the collector, the results obtained show that the front side of the receiver produces more electricity throughout the day than the reflector side. This has guided Solarus AB to decide to change the design of its receiver to improve its performance. With the current design, it has been obtained a peak power at STC of 220W. In relation with the thermal part, the heat losses of the collector have been estimated obtaining a U value of 6,8W/(m2*K), a thermal optical beam efficiency of 63,5% and a total optical beam efficiency of 74,5%. The price market study of photovoltaic and thermal collector has shown that 2m2 of the Solarus AB hybrid PV/T collector produces approximately the same annual electricity and heat as 1,1m2 of a photovoltaic module with an efficiency of 15,5% and a flat plate collector of 0,85m2 of aperture area. According to the market study, its cost is equivalent to 190€ for the PV module and 220€ for the flat plate collector. This means that the price of the Solarus AB hybrid PV/T collector should be lower than 410€.
APA, Harvard, Vancouver, ISO, and other styles
3

Brottier, Laetitia. "Optimisation biénergie d'un panneau solaire multifonctionnel : du capteur aux installations in situ." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN009/document.

Full text
Abstract:
Dans un contexte de lutte contre le réchauffement climatique, le bâtiment est un secteur stratégique du fait de sa forte consommation de chaleur et d’électricité. Le solaire, thermique et photovoltaïque, a de forts atouts pour répondre à cet enjeu avec une compétitivité qui s’accélère. En particulier, le solaire hybride PVT est prometteur avec un double gain : l’extraction de la chaleur sous le module photovoltaïque apporte à la fois un gain de rendement électrique, et un gain de par l’utilisation de cette chaleur pour les besoins du bâtiment. L’état de l’art permet de toucher du doigt la diversité des concepts de solaire hybride, et le PVT plan non survitré à eau a été retenu dans cette thèse. Pour faire face à des problématiques de durabilité et de performance, DualSun a conçu un module hybride avec un échangeur en acier inoxydable directement laminé pendant le process du module photovoltaïque.L’analyse de ces capteurs est faite en Partie I, d’abord avec un modèle 3D de l’échangeur. Ce modèle permet de déterminer des débits minimaux, de quantifier l’intérêt à ne pas isoler les bords du module et de visualiser que la perte de charge pour ce concept est principalement liée aux entrées et sorties du module mais reste tout à fait acceptable. Devant les limitations en termes de périmètre et de temps de calcul de ce modèle 3D, des modèles simplifiés sont proposés et comparés. Les résultats de ces modèles simplifiés corroborent une température de stagnation du concept DualSun de l’ordre de 75°C, ce qui confirme que le design est intrinsèquement résiliant à la surchauffe même en l’absence de besoins. Enfin les performances thermiques sur 9 prototypes avec des variations de composition couche par couche ont confirmé que le modèle est robuste. La puissance thermique(non isolé) est de 758W thermique pour un besoin à 30°C et la puissance photovoltaïque de 250Wc électrique dans des conditions extérieures standards (STC).Une analyse système de ces modules intégrés dans un ensemble complexe est réalisée dans la Partie II. Pour le système dit préchauffage d’eau sanitaire en maison individuelle (CESI), les quatre logiciels PVSyst, PVGis, Polysun, Solo sont comparés au logiciel Trnsys avec les Type 295 et Type 816 qui intègrent les deux modèles simplifiés du module définis dans la partie I. Les modèles physiques de ces logiciels sont cohérents entre eux dans le domaine d’utilisation.Les résultats de ces logiciels utilisés à partir de données statistiques pour la météo et les habitudes de consommation sont comparés à des mesures terrain sur 28 installations CESI hybride chez des particuliers. L’objectif a été de quantifier les erreurs d’estimation des prédictions statistiques par rapport au réel. Si l’écart type sur productible photovoltaïque et les températures maximales atteinte par les modules reliés à l’incertitude sur la météo est faible (environ 10%), l’écart type sur l’estimation du besoin sur la base d’un volume moyen consommé est beaucoup plus forte (de l’ordre de 30%) du fait d’un comportement très irrégulier de consommation chez les particuliers en terme d’heure et de volume de puisage en fonction des jours. Les températures moyennes atteintes au niveau des modules sont supérieures à 45°C pendant la moitié de l’année et permettent un préchauffage effectif du ballon sanitaire. Des couvertures solaires des besoins d’eau chaude de 57-58% sont mesurées près de Lyon.Dans le chauffage d’eau sanitaire collectif en couplage pompe à chaleur (HP+) ou en chauffage piscine (SP), les modèles statistiques permettent une évaluation des productibles du fait d’une stabilité des besoins.En conclusion, le solaire hybride devrait être une technologie clé de la transition énergétique pour les bâtiments dans les années à venir, sa compétitivité avec le vecteur électrique est déjà réelle. La technologie est appelée à évoluer pour réduire ses coûts d’année en année à l’instar du photovoltaïque et renforcer ainsi son positionnement face au gaz<br>In the context of the fight against climate change, the building is a strategic sector to address because of its high consumption of heat and electricity. Solar energy, both thermal and photovoltaic, has strong assets to meet this challenge and is becoming more and more cost-competitive. In particular, the PVT hybrid solar is a promising solution with a double advantage: the extraction of heat under the photovoltaic module brings both a gain in electrical efficiency, and a gain by generating heat for the needs of the building. The state of the art demonstrates the diversity of solar hybrid technologies, and this thesis specifically addresses the unglazed flat-plate design with water as the heat transfer fluid. To address sustainability and performance issues, the company DualSun designed a PVT hybrid module with a stainless steel heat exchanger directly laminated during the photovoltaic module process.The analysis of the DualSun collector is done in Part I, first with a 3D model of the exchanger. This model makes it possible to determine minimum flows, to quantify the interest not to insulate the edges of the module and to visualize that the pressure drop for this concept is mainly related to the inlets and outlets of the module but remains acceptable. Given the limitations in terms of scope and calculation time of this 3D model, simplified models are proposed and compared. The results of these simplified models corroborate a stagnation temperature of the DualSun concept of around 75°C, which confirms that the design is intrinsically resilient to overheating even in the absence of hot water consumption. Finally, thermal performance on 9 prototypes with layer-by-layer composition variations confirm that the model is robust. The models demonstrate that the 250Wp non-insulated version of the PVT panel has a thermal power output of 758 Wth for hot water needs at 30°C.A system analysis of these modules integrated in a complex system is carried out in Part II. For the preheating Domestic Hot Water system (DHW), four software programs, PVSyst, PVGis, Polysun, Solo are compared to Trnsys with the Type 295 and Type 816, which integrate the two simplified models of the module defined in the section I. The physical models of these software programs are consistent with each other in the field of use.The results of these software programs used from statistical data for the weather and consumption habits are compared to field measurements on 28 DHW (domestic hot water) hybrid installations in private homes. The objective was to quantify the errors of estimation of the statistical predictions with respect to the reality. While the standard deviation of PV output and maximum temperatures reached by the modules related to the uncertainty on the weather is low (about 10%), the standard deviation of estimated hot water needs based on an average consumption is much higher (about 30%) because of irregular consumption behavior in individuals in terms of time and volume depending on the days. The average temperatures reached at the level of the modules are higher than 45°C during half of the year and allow an effective preheating of the sanitary tank. Solar covering of hot water needs of 57-58% are measured near Lyon.For combined solar and heat pump (HP+) systems in multi-dwelling buildings and for pool heating (SP) systems, statistical models allow a reliable evaluation of the energy production because of stable hot water needs.In conclusion, solar hybrid should be a key technology for the energy transition of buildings in the coming years. PVT technology will evolve to reduce costs from year to year as observed with photovoltaic technology and thus strengthen its cost-competitive position against gas as a heat source for homes and buildings
APA, Harvard, Vancouver, ISO, and other styles
4

MARTORANA, Francesca. "INNOVATIVE PHOTOVOLTAIC-THERMAL HEAT PUMP SOLUTIONS FOR DOMESTIC HOT WATER PRODUCTION." Doctoral thesis, Università degli Studi di Palermo, 2022. http://hdl.handle.net/10447/533576.

Full text
Abstract:
With the rapid growth of energy consumption in the building sector and the consequent necessity to develop energy efficiency strategies, the application of heat pump systems seems to be a competitive solution to improve energy efficiency. In particular, air-source heat pump (ASHP) systems assisted by solar energy have drawn great attention, owing to their great feasibility in buildings for space heating/cooling and hot ater production purposes. The complementation system between solar and air energy can solve the poor performance of the air source heat pump under low-temperature conditions and can also make up for the shortcoming of the solar collector as an unstable energy source. Both solar energy technologies and air source heat pumps (ASHP) are widely used renewable energy sources at the moment. The former has the advantages of low utilization cost, simple technology, easy access, and no pollution, while the latter has the advantages of high efficiency, energy-saving, and good environmental benefits. Among emerging technologies coupled to heat pump systems, PV/T hybrid solar collectors are estimated to have a high potential and a fast-growing market. The PV performance of PV/T collectors increases slightly compared with a panel with PV cells since the operating temperatures of the PV cells are reduced due to the cooling effect of the heat extraction. Solar-assisted heat pump systems for DHW and space heating purposes have been studied by several researchers. Both experimental investigations and numerical studies aimed to assess the potential and performance of various system designs under different climatic boundaries. The aim of the present thesis is the investigation of the energy performance of systems based on the coupling of air to water heat pumps with PV/T hybrid solar collectors for producing domestic hot water (DHW). The gains from using these two currently promising technologies and the benefits of their integration are investigated by analising different configurations of these integrated systems. Comparisons with more traditional technologies were performed both in terms of thermal and electrical power production and energy savings. In particular, investigations were performed in order to identify the optimal number of modules that make up the solar plant and the most performing technology with the purpose of this thesis among PV, PV/T, and ST collectors. Furthermore, two different integration configurations were analysed depending on the different functions of the thermal contribution of the PV/T string within the entire system. The simulations were performed both for the context of the mainland, considering the climate of Palermo (Italy), both for the context of the minor Mediterranean islands, with particular reference to Lampedusa (Italy). For the latter case, in particular, the impact of the substitution of existing fuel-based technologies with heat pump systems eventually coupled to a photovoltaic (PV), solar thermal plant (ST), and hybrid photovoltaic-thermal (PV/T) systems was analysed.
APA, Harvard, Vancouver, ISO, and other styles
5

Ul, Abdin Zain. "Modélisation et contrôle des panneaux photovoltaïques hybrides." Electronic Thesis or Diss., Amiens, 2022. http://www.theses.fr/2022AMIE0057.

Full text
Abstract:
Le niveau de vie a augmenté la demande mondiale d'énergie et la consommation d'énergie fossile est considérée comme le principal facteur de l'augmentation de la température mondiale. Les énergies renouvelables sont l'un des principaux domaines d'intérêt des gouvernements de presque tous les pays. L'énergie solaire est propre et la source d'énergie la plus abondante disponible dans le monde et un système photovoltaïque thermique (PV-T) utilise l'énergie solaire et fournit en même temps de la chaleur et de l'électricité à faible émission de carbone. Différents moyens d'extraction de chaleur, des configurations de conception hybrides et les principales applications des collecteurs PV-T hybrides sont abordés pour mettre en évidence leur faisabilité et leur utilité. L'objectif de ce travail de thèse est la modélisation, la conception, l'optimisation et le contrôle d'un collecteur PV-T hybride. La modélisation des différentes configurations de collecteurs hybrides PV-T a été réalisée et étudiée en détail. Cela nécessite une étude approfondie des transferts de chaleur entre les composants du collecteur, l'approche proposée est basée sur une technique de graphe de liaison qui est un outil générique et général pour représenter les transferts thermiques. Une véritable application d'ingénierie, un séchoir solaire basé sur le collecteur PV-T et la récupération de la chaleur perdue ainsi que la recirculation de l'air est également étudiée. La thèse présente une nouvelle conception d'un collecteur PV-T qui intègre un réservoir de stockage de la chaleur ainsi qu'une résistance électrique pour augmenter la production thermique lorsque cela est nécessaire. La simulation numérique de la dynamique des fluides d'un système et la validation ultérieure de la conception proposée sont ensuite présentées. Cette étude porte également sur l'évaluation de l'influence des paramètres géométriques internes. Les résultats obtenus permettent d'analyser l'utilité du design proposé et d'en valider la viabilité. L'optimisation de tels systèmes est importante afin d'obtenir un rendement maximal : le plus d'énergie possible à moindre coût et cela nécessite d'analyser l'effet de divers paramètres. La plage de température du collecteur doit être contrôlée et les modèles développés sont appliqués à des fins de contrôle et d'observation. La température de sortie a été contrôlée à l'aide d'une variété de contrôleurs qui sont : un contrôleur PI simple, un contrôleur H-infinity et un contrôleur à mode glissant. De plus, un modèle multiple est construit et un observateur est conçu pour estimer les états du modèle multiple. Un observateur d'état avec une entrée inconnue est également développé, une amélioration de la conception. Il a été démontré que les contrôleurs conçus suivent les points de consigne souhaités et que les observateurs proposés estiment les états du collecteur, affichant ainsi l'efficacité. Enfin, le collecteur thermique PV-T a été modélisé en utilisant un réseau de neurones artificiels et utilisé à des fins de contrôle<br>The standard of living has risen the global energy demand and fossil fuel energy usage is considered the main factor for the rise in global temperature. Renewable energy has been one of the main areas of interest by governments of nearly all countries. Solar energy is clean and the most abundant energy source available around the globe and a photovoltaic thermal (PV-T) system uses solar energy and provides heat and low carbon electricity at the same time. Different heat extraction mediums, hybrid design configurations and the main applications of PV-T collectors are addressed to highlight their feasibility and usefulness. The focus of this thesis work is the modeling, design, optimization, and control of a hybrid PV-T collector. The modeling of the different configurations of hybrid PV-T collectors was conducted and studied in detail. It requires a thorough study of heat transfer between the collector's components and the proposed approach is based on a bond graph technique which is a generic and general tool to represent thermal transfers. A real engineering application, a solar dryer based on the PV-T collector and waste heat recovery along with air recirculation is also investigated. The thesis presents a new design of a PV-T collector that incorporates a storage tank to store heat as well as an electrical resistance to increase thermal production when necessary. Computational fluid dynamics (CFD) simulation of a system and the subsequent validation of the proposed design are then presented. This study also focuses on assessing the influence of internal geometrical parameters. The achieved results permit to analyze the usefulness of the proposed design and validate the viability. Optimization of such systems is highly important in order to get maximum output that is the most energy with lower cost and this requires analyzing the effect of various parameters. The temperature range of the collector must be controlled and the developed models are applied for the purpose of control and observation. The output temperature was controlled using a variety of controllers that are; a simple PI controller, H-infinity controller and sliding mode controller (SMC). Moreover, a multiple model is constructed and an observer is designed for estimating the states of the multiple model. A state observer with an unknown input is also developed, an improvement in the design. It was shown that the designed controllers track the desired set points and the proposed observers estimate the states of the collector, thus displaying the effectiveness. Finally, the hybrid PV-T collector was modeled by using artificial neural network (ANN) and also used for the purpose of control
APA, Harvard, Vancouver, ISO, and other styles
6

Linde, Daniel. "Evaluation of a Flat-Plate Photovoltaic Thermal (PVT) Collector prototype." Thesis, Högskolan Dalarna, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:du-24061.

Full text
Abstract:
This Master thesis, in collaboration with Morgonsol Väst AB, was completed as a part of the Solar Energy engineering program at Dalarna University. It analyses the electrical and thermal performance of a prototype PVT collector developed by Morgonsol Väst AB. By following the standards EN 12975 and EN ISO 9806 as guides, the thermal tests of the collector were completed at the facility in Borlänge. The electrical performance of the PVT collector was evaluated by comparing it to a reference PV panel fitted next to it. The result from the tests shows an improved electrical performance of the PVT collector caused by the cooling and a thermal performance described by the linear efficiency curve ηth=0.53-21.6(Tm-Ta/G). The experimental work in this thesis is an initial study of the prototype PVT collector that will supply Morgonsol Väst with important data for future development and research of the product.
APA, Harvard, Vancouver, ISO, and other styles
7

Assoa, Ya Brigitte. "Performances de capteurs solaires PV/T hybrides bi-fluides intégrables à l'enveloppe des bâtiments." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0007/these.pdf.

Full text
Abstract:
Cette thèse se bas sur les projets Slar Steel (ADEME/PUCA) et Toit PV-Th (ANR-PREBAT). Son objectif est de concevoir une configuration innovante de composant Hybride multi-fonctionnel et intégrable à l’enveloppe des bâtis, basée sur la juxtaposition des fonctions de production thermique et électrique. Ainsi, ont été proposées deux configurations de capteurs solaires PV/T hybrides bi-fluides (à air et à eau) intégrables en toiture et composé de modules PV à support métallique nervuré. A l’intérieur des nervures, sont disposés des systèmes producteurs d’eau chaude. Des modèles thermiques et électriques de ces prototypes ont été développés progressivement sous TRNSYS et validés étape par étape à partir d’expérimentations menées en régime permanent puis dynamique. Ces étapes ont permis d’évaluer leurs productivités thermiques et électriques et le taux de couverture solaire des besoins énergétiques pour des configurations types afin de les comparer à la production de composants standards<br>This work is based on the Solar Steel program and on the PV-Th roof ANR-PREBAT program. The purpose of this work is to design a new configuration of multi-functional hybrid solar collector based on the superposition of the thermal and electric functions. Then, we proposed two prototypes of solar PV/T hybrid bi-fluids collector (air and water) which can be integrated into roof and are composed of some PV modules stuck on a ribbed metal absorber. Inside the rib, are installed hot water producing devices. Thermal and electrical models of these components have been developed gradually by the meaning of TRNSYS and have been validated step by step on the basis of experiments conducted in steady state and in dynamic state. These steps have permit to evaluate their thermal and electrical productivities and the energy needs solar coverage for various standard configurations in order to compare them to the productivity of some standard components
APA, Harvard, Vancouver, ISO, and other styles
8

Assoa, Ya Brigitte Brau Jean Ménézo Christophe. "Performances de capteurs solaires PV/T hybrides bi-fluides intégrables à l'enveloppe des bâtiments étude expérimentale et modélisation adaptée /." Villeurbanne : Doc'INSA, 2008. http://docinsa.insa-lyon.fr/these/pont.php?id=assoa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tiwari, Arvind. "Performance evaluation of hybrid photovoltaic/thermal(PV/T) systems." Thesis, 2005. http://localhost:8080/xmlui/handle/12345678/6152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SHIU, FONG-RONG, and 許峰榮. "Analysis of the PV/T hybrid system with fast heat conduction design." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/8f523f.

Full text
Abstract:
碩士<br>東南科技大學<br>機械工程研究所<br>105<br>This article is targeted for the photoelectric plate in the photoelectric energy conversion formed by the surface waste heat to be reabsorbed, to convert into hot water, so that the formation of rapid thermal conductivity of the PV/T hybrid system. This paper for the rapid thermal conductivity of the PV/T hybrid system is to do indoor simulation environment and outdoor real environment of the experimental test and analysis, and confirm the differences between the two systems. The use of heat pipe two-phase flow quickly heat conduction to the Photoelectric plate above a water-storage tank, not only the rapid cooling of the surface temperature of the photovoltaic panel and waste heat can be recycled. The use of halogen light with 400~1000W/m2 four kinds of radiation respectively, setting three inclined angles,10°,20° and 30°, with the I-V curve measuring instrument and the thermal imaging device to obtain the data to calculate the efficiency and analysis. In the simulation environment according to the experimental data into the formula after conversion, the results of this study show that the whole simulation effect of the inclined angle 10° in the environment is preferably, the inclined angle 20° is the Secondly, 30° is the Worst. It is better to lay heat pipe over hot water efficiency photoelectric plate, but because the heat pipe in the photoelectric board above the relationship between the photoelectric plates to receive light source affect the total efficiency, above the heat pipe is better in the two laying methods. The efficiency of the former is more than doubled in the outdoor real environment compared to the indoor simulation environment.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hybrid PV/T"

1

Othman, Mohd Yusof Hj, and Faridah Hussain. "Designs of Various Hybrid Photovoltaic-Thermal (PV/T) Solar Collectors." In Photovoltaics for Sustainable Electricity and Buildings. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39280-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prakash, Om, and Ankish Aman. "Exergy and Energy Analysis of Hybrid Solar PV/T Collector." In Advances in Smart Grid Automation and Industry 4.0. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7675-1_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

El Fouas, Chaimae, Mohamed Hajji, Hicham Bouali, Bekkay Hajji, Giuseppe Marco Tina, and Yamina Khlifi. "Absorber Designs Effect on the Performance of PV/T Water Hybrid Collector." In Lecture Notes in Electrical Engineering. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1405-6_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aminou Moussavou, A. A., A. K. Raji, and M. Adonis. "Controlling the Hybrid PV/T System Self-heating Using Extrinsic Cell Resistance." In Advanced Technologies for Solar Photovoltaics Energy Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64565-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hj. Othman, Mohd Yusof, Faridah Hussain, Kamaruzzman Sopian, Baharuddin Yatim, and Hafidz Ruslan. "Design of Various Hybrid Single-Pass Photovoltaic–Thermal (PV/T) Solar Collector." In Renewable Energy in the Service of Mankind Vol II. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18215-5_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nayak, Sujata, and Kapil Narwal. "Economic Analysis of Hybrid Photovoltaic-Thermal (PV-T) Integrated Indirect-Type Solar Dryer." In Solar Drying Technology. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3833-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Al-Damook, Moustafa, Mansour Al Qubeissi, Zinedine Khatir, Darron Dixon-Hardy, and Peter J. Heggs. "Thermal and Electrical Performance Evaluation and Design Optimization of Hybrid PV/T Systems." In Advances in Heat Transfer and Thermal Engineering. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

El Manssouri, Oussama, Bekkay Hajji, Antonio Gagliano, and Giuseppe Marco Tina. "Numerical Analysis of Bi-fluid PV/T Hybrid Collector Using the Finite Difference Method." In Lecture Notes in Electrical Engineering. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6893-4_70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baranwal, Naimish Kumar, and Mukesh Kumar Singhal. "Modeling and Simulation of a Spiral Type Hybrid Photovoltaic Thermal (PV/T) Water Collector Using ANSYS." In Springer Proceedings in Energy. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0235-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jarimi, Hasila, Mohd Nazari Abu Bakar, Norain A. Manaf, Mahmod Othman, and Mahadzir Hj Din. "Investigation on the Thermal Characteristics of a Bi-fluid-Type Hybrid Photovoltaic/Thermal (PV/T) Solar Collector." In Renewable Energy in the Service of Mankind Vol II. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18215-5_87.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hybrid PV/T"

1

Mittal, Tarun, Siddharth Saroha, Vishal Bhalla, et al. "Numerical Study of Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Using Nanofluids." In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22090.

Full text
Abstract:
The commonly used methods to harness solar energy are solar thermal and solar photovoltaic (PV). A new category photovoltaic/thermal (PV/T) hybrid combines these two technologies, and achieves higher combined efficiency. The challenge is to keep the operating temperature of the PV low and at the same time not compromise on the temperature of the thermal cycle. Various designs of PV/T hybrids (both flat plate and concentrated) have already been proposed which utilize air or water to remove the heat from PV cells in order to enhance the overall efficiency of PV/T hybrid collector. Recent papers have showed that nanofluids can be used as an optical filter to filter the required wavelength range (equivalent to the band gap of the PV cell) from solar spectra. Thus, the heating of PV cells can be significantly reduced and higher overall efficiencies can be achieved using selective absorption by nanofluids. In this study, a new design of a PV/T hybrid collector was proposed and two nanofluid filters that can be used with Silicon (Si) PV cells were identified and corresponding thermal and overall efficiencies of PV/T hybrid collector were calculated.
APA, Harvard, Vancouver, ISO, and other styles
2

Khelifa, Abdelkrim, Khaled Touafek, Boutina Lyes, and Mouhamed Tahar Baissi. "Numerical Analysis of Hybrid Collector PV/T." In 2017 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2017. http://dx.doi.org/10.1109/irsec.2017.8477240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hota, Sai Kiran, Jordyn Brinkley, Lun Jiang, Gerardo Diaz, and Roland Winston. "Experimental Performance of a Hybrid PV/T Collector." In ISES Solar World Congress 2019/IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019. International Solar Energy Society, 2019. http://dx.doi.org/10.18086/swc.2019.05.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dutreuil, Jerry A., and Hamid A. Hadim. "Design Parameters for High-Efficiency Hybrid PV/Thermal Solar Energy Systems." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44580.

Full text
Abstract:
With recently increasing focus on solar energy, there has been increased interest in hybrid PV/thermal (PV/T) solar energy systems. In the PV/T system, a thermal energy recovery system is implemented to remove waste heat from the PV cells, thereby decreasing their operating temperature, leading to enhanced overall energy performance of the PV cells. The possibility of the utilization of waste heat recovered for hot water or space heating makes the PV/T system highly attractive for building integration. The main objective of this study is to conduct a state-of-the-art review and compare existing PV/T systems in terms of the factors limiting their electrical and thermal performance. Critical design parameters for maximum efficiency of PVT systems are identified and practical recommendations for improved design of PVT systems are provided.
APA, Harvard, Vancouver, ISO, and other styles
5

Zevallos, Francisco E., Cheng-Xian Lin, and Robel Kiflemariam. "A Computational Model for Performance Prediction of a Hybrid PV/T Module." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38569.

Full text
Abstract:
In this paper we investigate the performance of an integrated solar photovoltaic and thermal (PV/T) liquid (water) collector using a computational simulation program. A detailed time-dependent thermal model was formulated to calculate and correlate the thermal parameters in a standard PV/T collector, including solar cell temperature, back surface temperature, and outlet water temperature. Based on the energy balance of each component of the system, an analytical expression for the temperature of the PV module and the water was derived. In addition, an analytical expression for the instantaneous energy efficiency of the PV/T collector was also derived in terms of thermal, design and climatic parameters. Built on previously published model, a new computer simulation program was developed and validated. The thermal simulation results obtained are more precise than those previously reported in the literature.
APA, Harvard, Vancouver, ISO, and other styles
6

Hajji, M., S. E. Naimi, B. Hajji, A. El Mehdi, and M. L. El Hafyani. "Performance analysis of hybrid photovoltaic/thermal(PV/T) collector." In 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2015. http://dx.doi.org/10.1109/irsec.2015.7455048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sbarbaro, D., and R. Pena. "Dynamic output power optimization in hybrid PV/T panels." In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016. http://dx.doi.org/10.1109/iecon.2016.7793408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ulavi, Tejas U., Jane H. Davidson, and Tim Hebrink. "Analysis of a Hybrid PV/T Concept Based on Wavelength Selective Films." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18011.

Full text
Abstract:
The technical performance of a non-tracking hybrid PV/T concept that uses a wavelength selective film is modeled. The wavelength selective film is coupled with a compound parabolic concentrator to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber while transmitting the visible portion of the spectrum to an underlying thin-film photovoltaic module. The optical performance of the CPC/selective film is obtained through Monte Carlo Ray-Tracing. The CPC geometry is optimized for maximum total energy generation for a roof-top application. Applied to a rooftop in Phoenix, Arizona USA, the hybrid PV/T provides 20% more energy compared to a system of the same area with independent solar thermal and PV modules, but the increase is achieved at the expense of a decrease in the electrical efficiency from 8.8% to 5.8%.
APA, Harvard, Vancouver, ISO, and other styles
9

Nasri, Hamza, Kamel Sahlaoui, Hatem Oueslati, Hichem Taghouti, and Abdelkader Mami. "Experimental Comparative Study between PV Solar Collector and Hybrid PV/T Air Collector." In 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). IEEE, 2022. http://dx.doi.org/10.1109/cistem55808.2022.10043870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Xinqiang, Siyi Zhou, Mark Meyers, Bahgat G. Sammakia, and Bruce Murray. "Performance Analysis of a Combination System of Concentrating PV/T Collector and TEGs." In ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73062.

Full text
Abstract:
Thermoelectric modules utilize available temperature differences to generate electricity by the Seebeck effect. The current study investigates the merits of employing thermoelectrics to harvest additional electric energy instead of just cooling concentrating photovoltaic (CPV) modules by heat sinks (heat extractors). One of the attractive options to convert solar energy into electricity efficiently is to laminate TE modules between CPV modules and heat extractors to form a CPV-TE/thermal hybrid system. In order to perform an accurate estimation of the additional electrical energy harvested, a coupled field model is developed to calculate the electrical performance of TE devices, which incorporates a rigorous interfacial energy balance including the Seebeck effect, the Peltier effect, and Joule heating, and results in better predictions of the conversion capability. Moreover, a 3D multiphysics computational model for the hybrid concentrating PV-TE/thermal (CPV-TE/T) water collector system consisting of a solar concentrator, 10 serially-connected GaAs/Ge PV cells, 300 couples of bismuth telluride TE modules, and a cooling channel with heat-recovery capability, is implemented by using the commercial FE–tool COMSOL™. A conjugate heat transfer model is used, assuming laminar flow through the cooling channel. The performance and efficiencies of the hybrid system are analyzed. As compared with the traditional PV/T system, a comparable thermal efficiency and a higher 8% increase of the electrical efficiency can be observed through the PV-TE hybrid system. Additionally, with the identical convective surface area and cooling flow rate in both configurations, the PV-TE/T hybrid system yields higher PV cell temperatures but more uniform temperature distributions across the cell array, which thus eliminates the current matching problem; however, the higher cell temperatures lower the PV module’s fatigue life, which has become one of the biggest challenges in the PV-TE hybrid system.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography