Academic literature on the topic 'Hybrid Renewable Energy Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid Renewable Energy Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Hybrid Renewable Energy Systems"

1

Martínez, Díaz Maria del Mar. "Stand-alone hybrid renewable energy systems (HRES)." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/457978.

Full text
Abstract:
End of Energy Poverty and achieving Sustainable Energy for all by 2030 is a universal challenge. 1.3 billion people without energy access and 2.8 billion people using unsustainable solid fuel for cooking and heating are global challenges for human and societal sustainable development. Nearly $1 trillion of investment is expected in the Sustainable Energy for All (SE4ALL) scenario to achieve universal energy access in 2030. Around 60% of investments will be in isolated off-grid and mini-grid systems with the relevant goal of duplicating the renewable energy sources in the energy mix. Access to innovation trends in renewable energy off-grid would benefit future installations. This work brings to light the recent years research contributions in Hybrid Renewable Energy Systems (HRES) and related aspects that would benefit these required investments in isolated off-grid and mini-grid systems. An overview on the thematic focus of research in Hybrid Renewable Energy Systems (HRES) in the last decade, period 2005 - 2015, is provided. This review covers multiple key aspects of HRES as the main focus of the research (technical, economical, environmental, financial, etc.); the design of the system (type of load, energy sources, storage, availability of meteorology data, etc.); different optimization criteria and objective function; software and modelling tools; and the type of application and country among others. A methodology for searching, identifying and categorizing the innovations related to HRES is proposed. Applying this methodology during this PhD work results in a primary database with a categorized bibliography including nearly 400 entries. Currently system design is mainly technical driven with economic feasibility analysis regarding the energy cost. As for environmental aspects, the beneficial impacts of renewable energy are hardly introduced as an economical value that is so far the most important decision-making criteria. Regarding decision-making tools, the most currently used optimization algorithms and software tools for the design of HRES is HOMER and a case study for understanding is proposed. Following the analysis of most popular and relevant criteria, an easy to use guideline is proposed encouraging decision-making for more sustainable energy access. There are untapped research opportunities for HRES in multi-disciplinary thematic areas. The analysis of innovations regarding the system design for Hybrid Renewable Energy Systems (HRES) have identified potential for research community aligned with the trends to integrate the value chain and foster innovative business models and sustainable energy markets. After the analysis of those different focus that goes from technical and economical, to environmental, regulatory or policy aspects, an integrated value chain for HRES systems is defined. Knowledge, methodologies & tools are provided in this PhD work for more stand-alone hybrid systems creating value for more of the stakeholders involved. After reviewing the latest innovations in HRES per thematic focus, an integrated value chain for those systems has been proposed and multidisciplinary research opportunities have been identified. Identifying the need to include the environmental aspects in early stages of the decision-making has lead to propose an easy to use guideline integrating most relevant criteria for the design of stand-alone renewable power systems. Finally, the research opportunities identified and the untapped potential of transferring latest innovations have result in the creation of the website ElectrifyMe (www.electrifyme.org) to enable valuable international networking contacts among researchers and encouraging multi-disciplinary research. "Knowledge, methodologies & tools" are powerful contributions by research community and innovators to foster more sustainable energy for all.<br>El fi de la pobresa energètica i l'assoliment d'energia sostenible per a tothom l'any 2030 és un repte universal. 1,3 mil milions de persones sense accés a l'energia i 2,8 mil milions de persones que utilitzen combustible sòlid insostenible per cuinar i escalfar són desafiaments globals pel desenvolupament humà sostenible i social. S'espera una inversió aproximada de $1 trilió en l'energia sostenible per a tots (SE4ALL) per aconseguir l'accés universal a l'energia en 2030. Al voltant del 60 % de les inversions seran en sistemes off-grid i mini-grid, amb la corresponent meta de duplicar les fonts d'energia renovables en el mix energétic. En aquesta tesis es facilita una visió general sobre els àmbits temàtics de la recerca en Hybrid Renewable Energy Systems (HRES) en l'última dècada, període 2005-2015. Aquesta revisió es refereix a diversos aspectes clau deis HRES com: el focus principal de la investigació (tècnics, econòmics, ambientals, financers, etc.); el disseny del sistema (tipus de carrega, fonts d'energia, l'emmagatzematge, la disponibilitat de dades de meteorologia, etc.); diferents criteris d'optimització i funció objectiu; programari de modelatge eines; i el tipus d'aplicació i el país, entre d'altres. Es proposa una metodologia per buscar, identificar i categoritzar les innovacions relacionades amb els HRES. L'aplicació d'aquesta metodologia durant aquest treball de doctorat proporciona una base de dades primaria amb una bibliografia classificada incloent prop de 400 entrades. Actualment el disseny dels sistemes incorporen criteris tècnics amb anàlisi de viabilitat econòmica sobre el cost de l'energia. Pel que fa a les eines de presa de decisions, el métode d'optimització més utilitzats en l'actualitat pel disseny de HRES és HOMER, i es proposa un estudi de cas per a la comprensió deis criteris de disseny. Després de l'anàlisi de la majoria deis valors més habituals i rellevants, es proposa una senzilla guia per la presa de decisions per a l'accés a l'energia més sostenible. Després de compartir innovacions i proporcionar metodologies i eines, facilitar la creació de xarxes entre els investigadors ha demostrat ser una poderosa acció per promoure recerca sense explotar amb equips multidisciplinaris i internacionals. La pàgina web ElectrifyMe (www .electrifyme .org) ha estat creada amb la finalitat de facilitar a la comunitat d'investigació descobrir les innovacions i compartir projectes . Coneixements, metodologies i eines es proporcionen en aquest treball de doctorat per afavorir la creació de valor als sistemes aïllats híbrids renovables (stand-alone HRES) pels actors involucrats. Després de revisar les últimes innovacions en la introducció de renovables en sistemes aïllats en diferent enfoc temàtic, s'han estat identificat oportunitats de recerca multidisciplinars i s'ha proposat una cadena de valor integrada per aquests sistemes. La identificació de la necessitat d'incloure els aspectes ambientals en les primeres etapes de la presa de decisions ha portat a proposar una guia fàcil per utilitzar la integració de criteris més rellevants pel disseny de sistemes d'energia renovables independents. Finalment, tes oportunitats de recerca identificades i el potencial sense explotar de transferir les darreres innovacions tenen com a resultat la creació de la pàgina web ElectrifyMe (www.electrifyme.org) per promoure contactes i col·laboracions de xarxes internacionals entre investigadors i el foment de la investigació multidisciplinar. "El coneixement, les metodologies i les eines són poderoses contribucions de la comunitat de recerca per assolir un accés sostenible a l'energia per tots"
APA, Harvard, Vancouver, ISO, and other styles
2

Kusakana, Kanzumba. "Optimal operation control of hybrid renewable energy systems." Thesis, Bloemfontein: Central University of Technology, Free State, 2014. http://hdl.handle.net/11462/670.

Full text
Abstract:
Thesis (D. Tech. (Electrical Engineering)) -- Central University of Technology, Free State, 2014<br>For a sustainable and clean electricity production in isolated rural areas, renewable energies appear to be the most suitable and usable supply options. Apart from all being renewable and sustainable, each of the renewable energy sources has its specific characteristics and advantages that make it well suited for specific applications and locations. Solar photovoltaic and wind turbines are well established and are currently the mostly used renewable energy sources for electricity generation in small-scale rural applications. However, for areas in which adequate water resources are available, micro-hydro is the best supply option compared to other renewable resources in terms of cost of energy produced. Apart from being capital-cost-intensive, the other main disadvantages of the renewable energy technologies are their resource-dependent output powers and their strong reliance on weather and climatic conditions. Therefore, they cannot continuously match the fluctuating load energy requirements each and every time. Standalone diesel generators, on the other hand, have low initial capital costs and can generate electricity on demand, but their operation and maintenance costs are very high, especially when they run at partial loads. In order for the renewable sources to respond reliably to the load energy requirements, they can be combined in a hybrid energy system with back-up diesel generator and energy storage systems. The most important feature of such a hybrid system is to generate energy at any time by optimally using all available energy sources. The fact that the renewable resources available at a given site are a function of the season of the year implies that the fraction of the energy provided to the load is not constant. This means that for hybrid systems comprising diesel generator, renewable sources and battery storage in their architecture, the renewable energy fraction and the energy storage capacity are projected to have a significant impact on the diesel generator fuel consumption, depending on the complex interaction between the daily variation of renewable resources and the non-linear load demand. V This was the context on which this research was based, aiming to develop a tool to minimize the daily operation costs of standalone hybrid systems. However, the complexity of this problem is of an extremely high mathematical degree due to the non-linearity of the load demand as well as the non-linearity of the renewable resources profiles. Unlike the algorithms already developed, the objective was to develop a tool that could minimize the diesel generator control variables while maximizing the hydro, wind, solar and battery control variables resulting in saving fuel and operation costs. An innovative and powerful optimization model was then developed capable of efficiently dealing with these types of problems. The hybrid system optimal operation control model has been simulated using fmincon interior-point in MATLAB. Using realistic and actual data for several case studies, the developed model has been successfully used to analyse the complex interaction between the daily non-linear load, the non-linear renewable resources as well as the battery dynamic, and their impact on the hybrid system’s daily operation cost minimization. The model developed, as well as the solver and algorithm used in this work, have low computational requirements for achieving results within a reasonable time, therefore this can be seen as a faster and more accurate optimization tool.
APA, Harvard, Vancouver, ISO, and other styles
3

Eriksson, Emma. "Hybrid Renewable Energy Systems with Battery and Hydrogen Storage." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/378157.

Full text
Abstract:
As population numbers and people's standards of living increase, so does the global energy demand and carbon dioxide emissions and it is imperative that new sustainable and renewable energy sources are sought, as the world's natural resources are depleting. Electricity generation presents the biggest opportunity to lower CO2 emissions and in an emerging world where the demand for alternative renewable energy systems is growing it is expected that one of the technologies in conjunction with conventional storage which will play a key role in reducing emissions is hydrogen fuel cell technology with hydrogen storage. Many attempts have been made to realise optimisation algorithms of renewable energy system using multiple techniques in literature. These attempts have consisted of using mathematical models combined with rules and object oriented modelling in order to assist in the design of renewable applications. The integration methods described in previous papers up to date seems to offer mainly technical and/or economical optimisation parameters. None of the presented methods seems to be based on a unified model where multi objectives and/constraints are taken into account above technical and economic considerations. There are also few practical examples of analysis and optimisation of hybrid renewable energy systems in a complete optimisation model where the behaviour of renewable energy sources, battery banks, electrolysers, fuel cells and hydrogen storage tanks are reviewed throughout the simulation in detail. For a successful transition to a renewable energy economy, optimisation of renewable energy systems must evolve to take into account metrics additional to technical performance and cost. A Normalised Weighted Constrained Multi-Objective (NWCMO) meta-heuristic optimisation algorithm has been proposed in conjunction with optional constraints for achieving a compromise between mutually conflicting objectives in multiple simultaneous categories; technical, economic, environmental and socio-political objectives, to simulate and optimise a renewable energy system with balanced outcomes. The socio political objective is represented by a proposed socio acceptance matrix which outputs a weighted measured social acceptance indicator towards proposed renewable energy systems. The methodology was implemented using an adjusted Particle Swarm Optimisation algorithm and tested against data and other studies from the literature. In each case the original results could be reproduced, but the newly-implemented algorithm was further able to find a more optimal design solution under the same constraints. In addition, the influence of additional quantified socio-political inputs was explored. This thesis presents a review of issues for integration of hydrogen energy technology into energy systems, emphasising electricity generation using fuel cell hydrogen technology. Integration of energy storage, sizing methodologies, energy flow management and their associated optimization algorithms and software implementation are addressed. The model presented in this thesis offers a streamlined integration of design rules, optimization techniques and constraints merged into one planning system. The outcome is a model offering an end user the possibility to carry out a proper feasibility study prior to embarking on implementing a renewable system. An optimisation methodology based on four classes of objective (technical, economic, environmental, socio-political) is presented, benchmarked and tested against various hybrid renewable energy systems with conventional and hydrogen storage.<br>Thesis (PhD Doctorate)<br>Doctor of Philosophy (PhD)<br>School of Environment and Sc<br>Science, Environment, Engineering and Technology<br>Full Text
APA, Harvard, Vancouver, ISO, and other styles
4

Stott, Paul Anthony. "Renewable variable speed hybrid system." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4781.

Full text
Abstract:
At present many remote and Island communities rely solely on diesel powered generators to provide electricity. Diesel fuel is both expensive and polluting and the constant speed operation of the diesel engine is inefficient. In this thesis the use of renewable energy sources to help offset diesel fuel usage and an alternative way of running the diesel generator with the aim of reducing electrical energy costs is investigated. Diesel generators have to be sized to meet peak demand, in one or two diesel generator island grids, these generators will be running at a fraction of maximum output for most of the time. A new variable speed diesel generator allows for a reduction in fuel consumption at part load compared to constant speed operation. Combining the variable speed diesel generator with renewable generation should maximise the diesel fuel offsetting of the renewable source due to the increased efficiency at low loads. The stability issues of maintaining transient performance in a renewable variable speed hybrid system have been modelled and simulated. A control strategy has been developed and the use of energy storage as a buffer for any remaining stability problems has been explored. The control strategy has then been experimentally tested along with one of the possible energy storage solutions. An economic feasibility study has been performed on a case study community to validate the main aim of this research of reducing the cost of electrical energy in diesel generator grids.
APA, Harvard, Vancouver, ISO, and other styles
5

Coppez, Gabrielle. "Optimal sizing of hybrid renewable energy systems for rural electrification." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/10274.

Full text
Abstract:
Includes bibliograhical references.<br>This project has the objective of creating a tool for feasibility assessment and recommendations of sizing of hybrid renewable energy systems in rural areas in South Africa. This involves the development of a tool which would analyse information input about the climate of the area and the load demand.
APA, Harvard, Vancouver, ISO, and other styles
6

Renaudineau, Hugues. "Hybrid Renewable Energy Sourced System : Energy Management & Self-Diagnosis." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0336/document.

Full text
Abstract:
Cette thèse a pour but le développement d'une source photovoltaïque autonome ayant des capacités d'auto-diagnostic. Un structure d'hybridation spécifique est proposée consistant en une hybridation DC de sources photovoltaïques, d'une batterie au lithium et de supercondensateurs. Des modèles dynamiques des convertisseurs boost conventionnels et de leur variante avec isolation galvanique sont proposés. Un observateur d'état est ensuite présenté pour estimer en ligne les différents paramètres représentant les pertes des convertisseurs. On montre qu'il est possible d'utiliser ces paramètres estimés pour la gestion de l'énergie dans le système, avec en particulier l'optimisation du rendement de structures parallèles. L'optimisation des sources photovoltaïques est aussi étudiée avec une attention particulière accordée aux phénomènes d'ombrage partiel et le design d'un algorithme de maximisation de la puissance produite (MPPT) dans le cas d'une architecture distribuée série. De part une architecture de puissance spécifique, on propose aussi une méthode d'estimation de l'état de santé (SOH) de la batterie qui est validée sur des cellules de batterie Li - ion et LiFePO4. On montre que le convertisseur Cuk isolé avec inductances couplées est parfaitement adapté pour faire du diagnostic en ligne sur les batteries par injection de courant. Enfin, un schéma de gestion de l'énergie global est proposé, et on vérifie le bon fonctionnement de l'ensemble de la source hybride proposée<br>This thesis interested on developing a stand-alone photovoltaic system with self-diagnosis possibility. A specific structure has been proposed consisting in a DC hybridization of photovoltaic sources, a Lithium-based battery and supercapacitors. Dynamics models of the boost converter and the current-fed dual-bridge DC-DC converter are proposed and an efficient state observer is proposed to estimate the models equivalent losses' parameters online. It is shown that the estimated parameters can be used in the energy management scheme, with in particular optimisation of the efficiency of paralleled structures. The photovoltaic source optimization is also studied with special attention on shading phenomenon and design of MPPT technique especially on the case of distributed series architecture. Through a specific hybridization structure, State-Of-Health estimation is tested on Li-ion and LiFePO4 batteries. It is shown that the isolated coupled-inductors Cuk converter is very efficient for battery estimation through current injection. Finally, a global energy management scheme is proposed, and the developed stand-alone photovoltaic system is validated to operate as supposed
APA, Harvard, Vancouver, ISO, and other styles
7

Mohamed, Muaviyath. "Energy Constraint and Adaptability: Focus on Renewable Energy on Small Islands." Thesis, University of Canterbury. Department of Mechanical Engineering, 2012. http://hdl.handle.net/10092/6433.

Full text
Abstract:
Renewable energy integration into diesel generation systems for remote island communities is a rapidly growing energy engineering field. Fuel supply issues are becoming more common and the disruption, instability and panic caused by fuel shortages results in inefficient and unreliable power supplies for remote island communities. This thesis develops an energy engineering approach for meeting renewable energy development, supply security, cost and sustainability objectives. The approach involves adapting proven energy engineering techniques including energy auditing, energy system modelling with basic cost analysis and demand side management. The novel aspect of this research is the development of critical load engineering in the system design, and informing this with an assessment of essentiality of energy services during the audit phase. This approach was prompted by experiences with previous fuel shortages and long term sustainability policy drivers. The methodology uses the most essential electric loads as the requirement for sizing the renewable energy capacity in the hybrid system. This approach is revolutionary because communication with the customers about availability and the need to shed non-essential loads helps to both meet cost and security requirements and to reduce levels of panic and uncertainty when fuel supply issues arise. A sustainable power generation system is a system that provides continuity of supply for electrical appliances that are considered by the residents to be essential and for which adaptability and resilience of behaviour were key design priorities over growth. The sustainable electrical energy supply should match the critical (essential) load and should have the ability to continue without major disruptions to the daily lives of the people in these communities. Essential energy end uses were identified through energy audits and surveys. The electric power system is designed so that renewable energy sources alone can meet that “essential” demand with a plant that is both economically and technically feasible. Diesel generators were supplemented to meet the short fall in meeting the unconstrained electric demand. This is to design a system that is generally competitive with the present conventional power generation. This method should be particularly suitable for handling the complexities of a modern-day energy system in terms of planning a sizable sustainable energy and electricity system, either based on wholly sustainable sources or integrating sustainable sources of energy into a conventional generation system. The final hybrid system chosen after numerous simulations for the case study (Fenfushi island in the Maldives) community has the minimum renewable energy sources to meet the essential load but uses diesel to supplement the present load. A variety of design parameters such as PV size, wind turbine sizes and numbers and battery capacity have been considered. The minimum renewable energy sources to supply the essential loads of the community were simulated with diesel generators to find the optimal supply mix for the present load (typical unconstrained demand). The final outcome has the following characteristics: NPC and COE were $1,532,340 and $0.37/kWh respectively, lower than any diesel-only systems that could supply the demand. The total annual electricity production is 386,444 units (kWh), of which 9.61% is excess electricity and the annual operating cost is $68,688. Compared to the diesel-only systems there is a fuel savings of 77,021 litres of diesel per year, which is a 66.5 % reduction. An annual carbon dioxide emission reduction of 202,824 kg was achieved, which is a reduction of 66.5%. An annual renewable energy contribution of 70% would be achieved, 34% of which would be from PV arrays and 36% from wind turbines. The selected system shows that even with 30 percent power supply from diesel generators, still the highest NPC is on diesel generation for a life of over 25 years.
APA, Harvard, Vancouver, ISO, and other styles
8

Alawhali, Nasser. "CONTRIBUTIONS TO HYBRID POWER SYSTEMS INCORPORATING RENEWABLES FOR DESALINATION SYSTEMS." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/115.

Full text
Abstract:
Renewable energy is one of the most reliable resource that can be used to generate the electricity. It is expected to be the most highly used resource for electricity generation in many countries in the world in the next few decades. Renewable energy resources can be used in several purposes. It can be used for electricity generation, water desalination and mining. Using renewable resources to desalinate the water has several advantages such as reduce the emission, save money and improve the public health. The research described in the thesis focuses on the analysis of using the renewable resources such as solar and wind turbines for desalination plant. The output power from wind turbine is connected through converter and the excess power will be transfer back to the main grid. The photo-voltaic system (PV) is divided into several sections, each section has its own DC-DC converter for maximum power point tracking and a two-level grid connected inverter with different control strategies. The functions of the battery are explored by connecting it to the system in order to prevent possible voltage fluctuations and as a bu er storage in order to eliminate the power mismatch between PV array generation and load demand. Computer models of the system are developed and implemented using the PSCADTM / EMTDCTM software.
APA, Harvard, Vancouver, ISO, and other styles
9

Curtis, Daniel Joseph. "Nuclear renewable oil shale hybrid energy systems : configuration, performance, and development pathways." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97964.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references.<br>Nuclear Renewable Oil Shale Systems (NROSS) are a class of large Hybrid Energy Systems in which nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and also provide flexible, dispatchable electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and the formations of kerogen oil shale in the western United States are the largest and densest hydrocarbon resource on the planet. When heated above 300 °C, kerogen decomposes into oil, gas, and char. NROSS couples electricity and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves economics for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. The nuclear reactor driving an NROSS system would operate steadily at full power, providing steam for shale heating in closed steam lines when the price of electricity is low and electricity to the grid when the price of electricity is high. Because oil shale has low thermal conductivity, heat input to the shale can be cycled as needed without disrupting the steady increase in average temperature. The target average shale temperature of 350 °C would be reached over 2 years using two heating stages in the baseline configuration driven by light water reactors. First stage heating brings the shale to an intermediate temperature, assumed to be 210 °C in this study. The second heating stage isolates the steam delivery line from the reactor and uses electricity, purchased when prices are low, to increase steam temperature and bring the shale to 350 °C. This capacity to absorb low price electricity mitigates the tendency for electricity prices to collapse to zero, or potentially negative values, during periods of peak wind and solar output. The analysis herein shows that liquid fuels produced by a baseline NROSS would have the lowest life cycle greenhouse gas impact of any presently available fossil liquid fuels and that operation as part of an NROSS complex would increase reactor revenues by 41% over a stand-alone baseload reactor. The flexible, dispatchable electricity provided by NROSS could also enable the transition to a very-low-carbon grid in which renewables are widely deployed and the NROSS provides variable output to balance their uncontrolled output to meet demand. Fully deployed, NROSS could require tens or hundreds of reactors. Large fleet operations and local mass production of the necessary hardware could bring about substantial reductions in system cost as development proceeds, potentially offering a pathway to jump start and maximize the realization of the mass production cost savings envisioned for small modular reactors. The development pathway to achieve large scale NROSS deployment will be complicated, however, requiring involvement from many government agencies, a demonstration system, and a complex commercialization effort with partnered nuclear vendors, utilities, and petroleum system developers.<br>by Daniel Joseph Curtis.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
10

Esmaili, Gholamreza. "Application of advanced power electronics in renewable energy sourcesand hybrid generating systems." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1141850833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography