Academic literature on the topic 'Hybrid Renewable Energy Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid Renewable Energy Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hybrid Renewable Energy Systems"
Jung, Tae Yong, Donghun Kim, SeoKyung Lim, and Jongwoo Moon. "Evaluation criteria of independent hybrid energy systems." International Journal of Low-Carbon Technologies 14, no. 4 (August 1, 2019): 493–99. http://dx.doi.org/10.1093/ijlct/ctz036.
Full textVaretsky, Y., and Z. Hanzelka. "STOCHASTIC MODELLING OF A HYBRID RENEWABLE ENERGY SYSTEM." Tekhnichna Elektrodynamika 2016, no. 2 (March 10, 2016): 58–62. http://dx.doi.org/10.15407/techned2016.02.058.
Full textDeshmukh, M. K., and S. S. Deshmukh. "Modeling of hybrid renewable energy systems." Renewable and Sustainable Energy Reviews 12, no. 1 (January 2008): 235–49. http://dx.doi.org/10.1016/j.rser.2006.07.011.
Full textKgopana, Khuthadzo, and Olawale Popoola. "Improved utilization of hybrid energy for low-income houses based on energy consumption pattern." AIMS Energy 11, no. 1 (2023): 79–109. http://dx.doi.org/10.3934/energy.2023005.
Full textSayed, Enas Taha, Abdul Ghani Olabi, Abdul Hai Alami, Ali Radwan, Ayman Mdallal, Ahmed Rezk, and Mohammad Ali Abdelkareem. "Renewable Energy and Energy Storage Systems." Energies 16, no. 3 (February 1, 2023): 1415. http://dx.doi.org/10.3390/en16031415.
Full textAntonio de Souza Ribeiro, Luiz, Osvaldo Ronald Saavedra, José Gomes de Matos, Shigeaki Leite Lima, Guilherme Bonan, and Alexandre Saccol Martins. "Hybrid renewable energy systems, Solar energy, Standalone micro-grid, wind energy." Eletrônica de Potência 15, no. 4 (November 1, 2010): 313–22. http://dx.doi.org/10.18618/rep.2010.4.313322.
Full textBocklisch, Thilo. "Hybrid Energy Storage Systems for Renewable Energy Applications." Energy Procedia 73 (June 2015): 103–11. http://dx.doi.org/10.1016/j.egypro.2015.07.582.
Full textSabishchenko, Oleksandr, Rafał Rębilas, Norbert Sczygiol, and Mariusz Urbański. "Ukraine Energy Sector Management Using Hybrid Renewable Energy Systems." Energies 13, no. 7 (April 7, 2020): 1776. http://dx.doi.org/10.3390/en13071776.
Full textHoma, Maksymilian, Anna Pałac, Maciej Żołądek, and Rafał Figaj. "Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology." Energies 15, no. 23 (December 2, 2022): 9152. http://dx.doi.org/10.3390/en15239152.
Full textStanley, Andrew P. J., Jennifer King, Aaron Barker, Darice Guittet, William Hamilton, Christopher Bay, Paul Fleming, and Michael Sinner. "Multi-Timescale Wind-Based Hybrid Energy Systems." Journal of Physics: Conference Series 2265, no. 4 (May 1, 2022): 042062. http://dx.doi.org/10.1088/1742-6596/2265/4/042062.
Full textDissertations / Theses on the topic "Hybrid Renewable Energy Systems"
Martínez, Díaz Maria del Mar. "Stand-alone hybrid renewable energy systems (HRES)." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/457978.
Full textEl fi de la pobresa energètica i l'assoliment d'energia sostenible per a tothom l'any 2030 és un repte universal. 1,3 mil milions de persones sense accés a l'energia i 2,8 mil milions de persones que utilitzen combustible sòlid insostenible per cuinar i escalfar són desafiaments globals pel desenvolupament humà sostenible i social. S'espera una inversió aproximada de $1 trilió en l'energia sostenible per a tots (SE4ALL) per aconseguir l'accés universal a l'energia en 2030. Al voltant del 60 % de les inversions seran en sistemes off-grid i mini-grid, amb la corresponent meta de duplicar les fonts d'energia renovables en el mix energétic. En aquesta tesis es facilita una visió general sobre els àmbits temàtics de la recerca en Hybrid Renewable Energy Systems (HRES) en l'última dècada, període 2005-2015. Aquesta revisió es refereix a diversos aspectes clau deis HRES com: el focus principal de la investigació (tècnics, econòmics, ambientals, financers, etc.); el disseny del sistema (tipus de carrega, fonts d'energia, l'emmagatzematge, la disponibilitat de dades de meteorologia, etc.); diferents criteris d'optimització i funció objectiu; programari de modelatge eines; i el tipus d'aplicació i el país, entre d'altres. Es proposa una metodologia per buscar, identificar i categoritzar les innovacions relacionades amb els HRES. L'aplicació d'aquesta metodologia durant aquest treball de doctorat proporciona una base de dades primaria amb una bibliografia classificada incloent prop de 400 entrades. Actualment el disseny dels sistemes incorporen criteris tècnics amb anàlisi de viabilitat econòmica sobre el cost de l'energia. Pel que fa a les eines de presa de decisions, el métode d'optimització més utilitzats en l'actualitat pel disseny de HRES és HOMER, i es proposa un estudi de cas per a la comprensió deis criteris de disseny. Després de l'anàlisi de la majoria deis valors més habituals i rellevants, es proposa una senzilla guia per la presa de decisions per a l'accés a l'energia més sostenible. Després de compartir innovacions i proporcionar metodologies i eines, facilitar la creació de xarxes entre els investigadors ha demostrat ser una poderosa acció per promoure recerca sense explotar amb equips multidisciplinaris i internacionals. La pàgina web ElectrifyMe (www .electrifyme .org) ha estat creada amb la finalitat de facilitar a la comunitat d'investigació descobrir les innovacions i compartir projectes . Coneixements, metodologies i eines es proporcionen en aquest treball de doctorat per afavorir la creació de valor als sistemes aïllats híbrids renovables (stand-alone HRES) pels actors involucrats. Després de revisar les últimes innovacions en la introducció de renovables en sistemes aïllats en diferent enfoc temàtic, s'han estat identificat oportunitats de recerca multidisciplinars i s'ha proposat una cadena de valor integrada per aquests sistemes. La identificació de la necessitat d'incloure els aspectes ambientals en les primeres etapes de la presa de decisions ha portat a proposar una guia fàcil per utilitzar la integració de criteris més rellevants pel disseny de sistemes d'energia renovables independents. Finalment, tes oportunitats de recerca identificades i el potencial sense explotar de transferir les darreres innovacions tenen com a resultat la creació de la pàgina web ElectrifyMe (www.electrifyme.org) per promoure contactes i col·laboracions de xarxes internacionals entre investigadors i el foment de la investigació multidisciplinar. "El coneixement, les metodologies i les eines són poderoses contribucions de la comunitat de recerca per assolir un accés sostenible a l'energia per tots"
Kusakana, Kanzumba. "Optimal operation control of hybrid renewable energy systems." Thesis, Bloemfontein: Central University of Technology, Free State, 2014. http://hdl.handle.net/11462/670.
Full textFor a sustainable and clean electricity production in isolated rural areas, renewable energies appear to be the most suitable and usable supply options. Apart from all being renewable and sustainable, each of the renewable energy sources has its specific characteristics and advantages that make it well suited for specific applications and locations. Solar photovoltaic and wind turbines are well established and are currently the mostly used renewable energy sources for electricity generation in small-scale rural applications. However, for areas in which adequate water resources are available, micro-hydro is the best supply option compared to other renewable resources in terms of cost of energy produced. Apart from being capital-cost-intensive, the other main disadvantages of the renewable energy technologies are their resource-dependent output powers and their strong reliance on weather and climatic conditions. Therefore, they cannot continuously match the fluctuating load energy requirements each and every time. Standalone diesel generators, on the other hand, have low initial capital costs and can generate electricity on demand, but their operation and maintenance costs are very high, especially when they run at partial loads. In order for the renewable sources to respond reliably to the load energy requirements, they can be combined in a hybrid energy system with back-up diesel generator and energy storage systems. The most important feature of such a hybrid system is to generate energy at any time by optimally using all available energy sources. The fact that the renewable resources available at a given site are a function of the season of the year implies that the fraction of the energy provided to the load is not constant. This means that for hybrid systems comprising diesel generator, renewable sources and battery storage in their architecture, the renewable energy fraction and the energy storage capacity are projected to have a significant impact on the diesel generator fuel consumption, depending on the complex interaction between the daily variation of renewable resources and the non-linear load demand. V This was the context on which this research was based, aiming to develop a tool to minimize the daily operation costs of standalone hybrid systems. However, the complexity of this problem is of an extremely high mathematical degree due to the non-linearity of the load demand as well as the non-linearity of the renewable resources profiles. Unlike the algorithms already developed, the objective was to develop a tool that could minimize the diesel generator control variables while maximizing the hydro, wind, solar and battery control variables resulting in saving fuel and operation costs. An innovative and powerful optimization model was then developed capable of efficiently dealing with these types of problems. The hybrid system optimal operation control model has been simulated using fmincon interior-point in MATLAB. Using realistic and actual data for several case studies, the developed model has been successfully used to analyse the complex interaction between the daily non-linear load, the non-linear renewable resources as well as the battery dynamic, and their impact on the hybrid system’s daily operation cost minimization. The model developed, as well as the solver and algorithm used in this work, have low computational requirements for achieving results within a reasonable time, therefore this can be seen as a faster and more accurate optimization tool.
Eriksson, Emma. "Hybrid Renewable Energy Systems with Battery and Hydrogen Storage." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/378157.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Stott, Paul Anthony. "Renewable variable speed hybrid system." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4781.
Full textCoppez, Gabrielle. "Optimal sizing of hybrid renewable energy systems for rural electrification." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/10274.
Full textThis project has the objective of creating a tool for feasibility assessment and recommendations of sizing of hybrid renewable energy systems in rural areas in South Africa. This involves the development of a tool which would analyse information input about the climate of the area and the load demand.
Renaudineau, Hugues. "Hybrid Renewable Energy Sourced System : Energy Management & Self-Diagnosis." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0336/document.
Full textThis thesis interested on developing a stand-alone photovoltaic system with self-diagnosis possibility. A specific structure has been proposed consisting in a DC hybridization of photovoltaic sources, a Lithium-based battery and supercapacitors. Dynamics models of the boost converter and the current-fed dual-bridge DC-DC converter are proposed and an efficient state observer is proposed to estimate the models equivalent losses' parameters online. It is shown that the estimated parameters can be used in the energy management scheme, with in particular optimisation of the efficiency of paralleled structures. The photovoltaic source optimization is also studied with special attention on shading phenomenon and design of MPPT technique especially on the case of distributed series architecture. Through a specific hybridization structure, State-Of-Health estimation is tested on Li-ion and LiFePO4 batteries. It is shown that the isolated coupled-inductors Cuk converter is very efficient for battery estimation through current injection. Finally, a global energy management scheme is proposed, and the developed stand-alone photovoltaic system is validated to operate as supposed
Mohamed, Muaviyath. "Energy Constraint and Adaptability: Focus on Renewable Energy on Small Islands." Thesis, University of Canterbury. Department of Mechanical Engineering, 2012. http://hdl.handle.net/10092/6433.
Full textAlawhali, Nasser. "CONTRIBUTIONS TO HYBRID POWER SYSTEMS INCORPORATING RENEWABLES FOR DESALINATION SYSTEMS." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/115.
Full textCurtis, Daniel Joseph. "Nuclear renewable oil shale hybrid energy systems : configuration, performance, and development pathways." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97964.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Nuclear Renewable Oil Shale Systems (NROSS) are a class of large Hybrid Energy Systems in which nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and also provide flexible, dispatchable electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and the formations of kerogen oil shale in the western United States are the largest and densest hydrocarbon resource on the planet. When heated above 300 °C, kerogen decomposes into oil, gas, and char. NROSS couples electricity and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves economics for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. The nuclear reactor driving an NROSS system would operate steadily at full power, providing steam for shale heating in closed steam lines when the price of electricity is low and electricity to the grid when the price of electricity is high. Because oil shale has low thermal conductivity, heat input to the shale can be cycled as needed without disrupting the steady increase in average temperature. The target average shale temperature of 350 °C would be reached over 2 years using two heating stages in the baseline configuration driven by light water reactors. First stage heating brings the shale to an intermediate temperature, assumed to be 210 °C in this study. The second heating stage isolates the steam delivery line from the reactor and uses electricity, purchased when prices are low, to increase steam temperature and bring the shale to 350 °C. This capacity to absorb low price electricity mitigates the tendency for electricity prices to collapse to zero, or potentially negative values, during periods of peak wind and solar output. The analysis herein shows that liquid fuels produced by a baseline NROSS would have the lowest life cycle greenhouse gas impact of any presently available fossil liquid fuels and that operation as part of an NROSS complex would increase reactor revenues by 41% over a stand-alone baseload reactor. The flexible, dispatchable electricity provided by NROSS could also enable the transition to a very-low-carbon grid in which renewables are widely deployed and the NROSS provides variable output to balance their uncontrolled output to meet demand. Fully deployed, NROSS could require tens or hundreds of reactors. Large fleet operations and local mass production of the necessary hardware could bring about substantial reductions in system cost as development proceeds, potentially offering a pathway to jump start and maximize the realization of the mass production cost savings envisioned for small modular reactors. The development pathway to achieve large scale NROSS deployment will be complicated, however, requiring involvement from many government agencies, a demonstration system, and a complex commercialization effort with partnered nuclear vendors, utilities, and petroleum system developers.
by Daniel Joseph Curtis.
S.M.
Esmaili, Gholamreza. "Application of advanced power electronics in renewable energy sourcesand hybrid generating systems." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1141850833.
Full textBooks on the topic "Hybrid Renewable Energy Systems"
Rekioua, Djamila. Hybrid Renewable Energy Systems. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34021-6.
Full textElbaset, Adel A., and Salah Ata. Hybrid Renewable Energy Systems for Remote Telecommunication Stations. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66344-5.
Full textBohre, Aashish Kumar, Pradyumn Chaturvedi, Mohan Lal Kolhe, and Sri Niwas Singh, eds. Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0979-5.
Full textAbdelaziz Mohamed, Mohamed, and Ali Mohamed Eltamaly. Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64795-1.
Full textChris, Greacen, Krause Lars, McKee Wade, and Heinrich-Böll-Stiftung. Thailand and South East Asia Regional Office., eds. Renewable energy options on Andaman Sea: A feasibility study for hybrid renewable energy/diesel systems in two Tsunami impacted communities. Chiang Mai: Heinrich Böll Foundation, South East Asia Regional Office Chiang Mai, 2007.
Find full textSharmeela, C., P. Sanjeevikumar, P. Sivaraman, and Meera Joseph. IoT, Machine Learning and Blockchain Technologies for Renewable Energy and Modern Hybrid Power Systems. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003360780.
Full textPaolo, Tartarini, ed. Solar hydrogen energy systems: Science and technology for the hydrogen economy. Milan: Springer, 2011.
Find full text1962-, Martin Tony, ed. Hybrid and alternative fuel vehicles. 2nd ed. Boston: Prentice Hall, 2011.
Find full textHalderman, James D. Hybrid and alternative fuel vehicles. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.
Find full text1962-, Martin Tony, ed. Hybrid and alternative fuel vehicles. Upper Saddle River, N.J: Pearson/Prentice Hall, 2009.
Find full textBook chapters on the topic "Hybrid Renewable Energy Systems"
Zohuri, Bahman. "Hybrid Renewable Energy Systems." In Hybrid Energy Systems, 1–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70721-1_1.
Full textZohuri, Bahman. "Types of Renewable Energy." In Hybrid Energy Systems, 105–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70721-1_4.
Full textZohuri, Bahman. "Hydrogen Energy Technology, Renewable Source of Energy." In Hybrid Energy Systems, 135–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70721-1_5.
Full textAl-Hallaj, Said, and Kristofer Kiszynski. "Renewable Energy Sources and Energy Conversion Devices." In Hybrid Hydrogen Systems, 9–29. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84628-467-0_2.
Full textRekioua, Djamila. "Hybrid Renewable Energy Systems Overview." In Hybrid Renewable Energy Systems, 1–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34021-6_1.
Full textZohuri, Bahman. "Fission Nuclear Power Plants for Renewable Energy Source." In Hybrid Energy Systems, 195–211. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70721-1_7.
Full textRekioua, Djamila. "Storage in Hybrid Renewable Energy Systems." In Hybrid Renewable Energy Systems, 139–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34021-6_4.
Full textRekioua, Djamila. "Design of Hybrid Renewable Energy Systems." In Hybrid Renewable Energy Systems, 173–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34021-6_5.
Full textRekioua, Djamila. "Power Electronics in Hybrid Renewable Energies Systems." In Hybrid Renewable Energy Systems, 39–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34021-6_2.
Full textRekioua, Djamila. "MPPT Methods in Hybrid Renewable Energy Systems." In Hybrid Renewable Energy Systems, 79–138. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34021-6_3.
Full textConference papers on the topic "Hybrid Renewable Energy Systems"
Chandra, Ambrish. "Hybrid renewable energy standalone systems." In 2014 9th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2014. http://dx.doi.org/10.1109/iciinfs.2014.7036464.
Full textHassani, Hanane, Djamila Rekioua, Faika Zaouche, and Seddik Bacha. "Supervision of Hybrid Renewable Energy Systems." In 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA). IEEE, 2019. http://dx.doi.org/10.1109/icsresa49121.2019.9182478.
Full textSharafi, Masoud, and Tarek Y. ElMekkawy. "Stochastic Optimization of Hybrid Renewable Energy Systems." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46181.
Full textOunnabi, Smahane, and Hamid Mounir. "Recent Development of Hybrid Renewable Energy Systems." In 2021 9th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2021. http://dx.doi.org/10.1109/irsec53969.2021.9741165.
Full textBahlawan, Hilal, Agostino Gambarotta, Enzo Losi, Lucrezia Manservigi, MIrko Morini, Pier Ruggero Spina, and Mauro Venturini. "Sizing and Operation of a Hybrid Energy Plant Composed of Industrial Gas Turbines, Renewable Energy Systems and Energy Storage Technologies." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16331.
Full textRecalde, Luis, Hong Yue, William Leithead, Olimpo Anaya-Lara, Hongda Liu, and Jiang You. "Hybrid Renewable Energy Systems Sizing for Offshore Multi-Purpose Platforms." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96017.
Full textPerera, A. T. D. "Optimum Design of Standalone Hybrid Energy Systems Minimizing Waste of Renewable Energy." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59518.
Full textBarin, A., L. N. Canha, A. R. Abaide, R. B. Orling, and L. F. G. Martins. "Selection of hybrid renewable energy systems in landfills." In 2012 9th International Conference on the European Energy Market (EEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/eem.2012.6254655.
Full textFaiz, Asghar, and Abdul Rehman. "Hybrid renewable energy systems: Hybridization and advance control." In 2015 Power Generation Systems and Renewable Energy Technologies (PGSRET). IEEE, 2015. http://dx.doi.org/10.1109/pgsret.2015.7312256.
Full textChandra, Ambrish. "Keynote lecture I: Hybrid renewable energy standalone systems." In 2017 Nineteenth International Middle East Power Systems Conference (MEPCON). IEEE, 2017. http://dx.doi.org/10.1109/mepcon.2017.8301148.
Full textReports on the topic "Hybrid Renewable Energy Systems"
Murphy, Caitlin, Dylan Harrison-Atlas, Nicholas Grue, Thomas Mosier, Juan Gallego-Calderon, and Shiloh Elliott. Complementarity of Renewable Energy-Based Hybrid Systems. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1972008.
Full textRuth, Mark, Dylan Cutler, Francisco Flores-Espino, Greg Stark, Thomas Jenkin, Travis Simpkins, and Jordan Macknick. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1285734.
Full textBragg-Sitton, Shannon M., Richard Boardman, Cristian Rabiti, Jong Suk Kim, Michael McKellar, Piyush Sabharwall, Jun Chen, M. Sacit Cetiner, T. Jay Harrison, and A. Lou Qualls. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1333006.
Full textRuth, Mark, Dylan Cutler, Francisco Flores-Espino, Greg Stark, Thomas Jenkin, Travis Simpkins, and Jordan Macknick. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1333039.
Full textBragg-Sitton, Shannon M., and Richard D. Boardman. Nuclear-Renewable Hybrid Energy Systems: FY17 Stakeholder Engagement and International Activities. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1466819.
Full textRuth, Mark, Dylan Cutler, Francisco Flores-Espino, and Greg Stark. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1351061.
Full textRuth, Mark, Dylan Cutler, Francisco Flores-Espino, Greg Stark, and Thomas Jenkin. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1335586.
Full textRabiti, C., A. Epiney, P. Talbot, J. S. Kim, S. Bragg-Sitton, A. Alfonsi, A. Yigitoglu, et al. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1408526.
Full textGanda, Francesco, and Giovanni Maronati. Economic Data and Modeling Support for the Two Regional Case Studies: Nuclear-Renewable Hybrid Energy Systems: Analysis of Technical & Economic Issues. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1483989.
Full textPutriastuti, Massita Ayu Cindy, Vivi Fitriyanti, and Muhammad Razin Abdullah. Leveraging the Potential of Crowdfunding for Financing Renewable Energy. Purnomo Yusgiantoro Center, June 2021. http://dx.doi.org/10.33116/br.002.
Full text