To see the other types of publications on this topic, follow the link: Hybrid Renewable Energy Systems.

Dissertations / Theses on the topic 'Hybrid Renewable Energy Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Hybrid Renewable Energy Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Martínez, Díaz Maria del Mar. "Stand-alone hybrid renewable energy systems (HRES)." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/457978.

Full text
Abstract:
End of Energy Poverty and achieving Sustainable Energy for all by 2030 is a universal challenge. 1.3 billion people without energy access and 2.8 billion people using unsustainable solid fuel for cooking and heating are global challenges for human and societal sustainable development. Nearly $1 trillion of investment is expected in the Sustainable Energy for All (SE4ALL) scenario to achieve universal energy access in 2030. Around 60% of investments will be in isolated off-grid and mini-grid systems with the relevant goal of duplicating the renewable energy sources in the energy mix. Access to innovation trends in renewable energy off-grid would benefit future installations. This work brings to light the recent years research contributions in Hybrid Renewable Energy Systems (HRES) and related aspects that would benefit these required investments in isolated off-grid and mini-grid systems. An overview on the thematic focus of research in Hybrid Renewable Energy Systems (HRES) in the last decade, period 2005 - 2015, is provided. This review covers multiple key aspects of HRES as the main focus of the research (technical, economical, environmental, financial, etc.); the design of the system (type of load, energy sources, storage, availability of meteorology data, etc.); different optimization criteria and objective function; software and modelling tools; and the type of application and country among others. A methodology for searching, identifying and categorizing the innovations related to HRES is proposed. Applying this methodology during this PhD work results in a primary database with a categorized bibliography including nearly 400 entries. Currently system design is mainly technical driven with economic feasibility analysis regarding the energy cost. As for environmental aspects, the beneficial impacts of renewable energy are hardly introduced as an economical value that is so far the most important decision-making criteria. Regarding decision-making tools, the most currently used optimization algorithms and software tools for the design of HRES is HOMER and a case study for understanding is proposed. Following the analysis of most popular and relevant criteria, an easy to use guideline is proposed encouraging decision-making for more sustainable energy access. There are untapped research opportunities for HRES in multi-disciplinary thematic areas. The analysis of innovations regarding the system design for Hybrid Renewable Energy Systems (HRES) have identified potential for research community aligned with the trends to integrate the value chain and foster innovative business models and sustainable energy markets. After the analysis of those different focus that goes from technical and economical, to environmental, regulatory or policy aspects, an integrated value chain for HRES systems is defined. Knowledge, methodologies & tools are provided in this PhD work for more stand-alone hybrid systems creating value for more of the stakeholders involved. After reviewing the latest innovations in HRES per thematic focus, an integrated value chain for those systems has been proposed and multidisciplinary research opportunities have been identified. Identifying the need to include the environmental aspects in early stages of the decision-making has lead to propose an easy to use guideline integrating most relevant criteria for the design of stand-alone renewable power systems. Finally, the research opportunities identified and the untapped potential of transferring latest innovations have result in the creation of the website ElectrifyMe (www.electrifyme.org) to enable valuable international networking contacts among researchers and encouraging multi-disciplinary research. "Knowledge, methodologies & tools" are powerful contributions by research community and innovators to foster more sustainable energy for all.
El fi de la pobresa energètica i l'assoliment d'energia sostenible per a tothom l'any 2030 és un repte universal. 1,3 mil milions de persones sense accés a l'energia i 2,8 mil milions de persones que utilitzen combustible sòlid insostenible per cuinar i escalfar són desafiaments globals pel desenvolupament humà sostenible i social. S'espera una inversió aproximada de $1 trilió en l'energia sostenible per a tots (SE4ALL) per aconseguir l'accés universal a l'energia en 2030. Al voltant del 60 % de les inversions seran en sistemes off-grid i mini-grid, amb la corresponent meta de duplicar les fonts d'energia renovables en el mix energétic. En aquesta tesis es facilita una visió general sobre els àmbits temàtics de la recerca en Hybrid Renewable Energy Systems (HRES) en l'última dècada, període 2005-2015. Aquesta revisió es refereix a diversos aspectes clau deis HRES com: el focus principal de la investigació (tècnics, econòmics, ambientals, financers, etc.); el disseny del sistema (tipus de carrega, fonts d'energia, l'emmagatzematge, la disponibilitat de dades de meteorologia, etc.); diferents criteris d'optimització i funció objectiu; programari de modelatge eines; i el tipus d'aplicació i el país, entre d'altres. Es proposa una metodologia per buscar, identificar i categoritzar les innovacions relacionades amb els HRES. L'aplicació d'aquesta metodologia durant aquest treball de doctorat proporciona una base de dades primaria amb una bibliografia classificada incloent prop de 400 entrades. Actualment el disseny dels sistemes incorporen criteris tècnics amb anàlisi de viabilitat econòmica sobre el cost de l'energia. Pel que fa a les eines de presa de decisions, el métode d'optimització més utilitzats en l'actualitat pel disseny de HRES és HOMER, i es proposa un estudi de cas per a la comprensió deis criteris de disseny. Després de l'anàlisi de la majoria deis valors més habituals i rellevants, es proposa una senzilla guia per la presa de decisions per a l'accés a l'energia més sostenible. Després de compartir innovacions i proporcionar metodologies i eines, facilitar la creació de xarxes entre els investigadors ha demostrat ser una poderosa acció per promoure recerca sense explotar amb equips multidisciplinaris i internacionals. La pàgina web ElectrifyMe (www .electrifyme .org) ha estat creada amb la finalitat de facilitar a la comunitat d'investigació descobrir les innovacions i compartir projectes . Coneixements, metodologies i eines es proporcionen en aquest treball de doctorat per afavorir la creació de valor als sistemes aïllats híbrids renovables (stand-alone HRES) pels actors involucrats. Després de revisar les últimes innovacions en la introducció de renovables en sistemes aïllats en diferent enfoc temàtic, s'han estat identificat oportunitats de recerca multidisciplinars i s'ha proposat una cadena de valor integrada per aquests sistemes. La identificació de la necessitat d'incloure els aspectes ambientals en les primeres etapes de la presa de decisions ha portat a proposar una guia fàcil per utilitzar la integració de criteris més rellevants pel disseny de sistemes d'energia renovables independents. Finalment, tes oportunitats de recerca identificades i el potencial sense explotar de transferir les darreres innovacions tenen com a resultat la creació de la pàgina web ElectrifyMe (www.electrifyme.org) per promoure contactes i col·laboracions de xarxes internacionals entre investigadors i el foment de la investigació multidisciplinar. "El coneixement, les metodologies i les eines són poderoses contribucions de la comunitat de recerca per assolir un accés sostenible a l'energia per tots"
APA, Harvard, Vancouver, ISO, and other styles
2

Kusakana, Kanzumba. "Optimal operation control of hybrid renewable energy systems." Thesis, Bloemfontein: Central University of Technology, Free State, 2014. http://hdl.handle.net/11462/670.

Full text
Abstract:
Thesis (D. Tech. (Electrical Engineering)) -- Central University of Technology, Free State, 2014
For a sustainable and clean electricity production in isolated rural areas, renewable energies appear to be the most suitable and usable supply options. Apart from all being renewable and sustainable, each of the renewable energy sources has its specific characteristics and advantages that make it well suited for specific applications and locations. Solar photovoltaic and wind turbines are well established and are currently the mostly used renewable energy sources for electricity generation in small-scale rural applications. However, for areas in which adequate water resources are available, micro-hydro is the best supply option compared to other renewable resources in terms of cost of energy produced. Apart from being capital-cost-intensive, the other main disadvantages of the renewable energy technologies are their resource-dependent output powers and their strong reliance on weather and climatic conditions. Therefore, they cannot continuously match the fluctuating load energy requirements each and every time. Standalone diesel generators, on the other hand, have low initial capital costs and can generate electricity on demand, but their operation and maintenance costs are very high, especially when they run at partial loads. In order for the renewable sources to respond reliably to the load energy requirements, they can be combined in a hybrid energy system with back-up diesel generator and energy storage systems. The most important feature of such a hybrid system is to generate energy at any time by optimally using all available energy sources. The fact that the renewable resources available at a given site are a function of the season of the year implies that the fraction of the energy provided to the load is not constant. This means that for hybrid systems comprising diesel generator, renewable sources and battery storage in their architecture, the renewable energy fraction and the energy storage capacity are projected to have a significant impact on the diesel generator fuel consumption, depending on the complex interaction between the daily variation of renewable resources and the non-linear load demand. V This was the context on which this research was based, aiming to develop a tool to minimize the daily operation costs of standalone hybrid systems. However, the complexity of this problem is of an extremely high mathematical degree due to the non-linearity of the load demand as well as the non-linearity of the renewable resources profiles. Unlike the algorithms already developed, the objective was to develop a tool that could minimize the diesel generator control variables while maximizing the hydro, wind, solar and battery control variables resulting in saving fuel and operation costs. An innovative and powerful optimization model was then developed capable of efficiently dealing with these types of problems. The hybrid system optimal operation control model has been simulated using fmincon interior-point in MATLAB. Using realistic and actual data for several case studies, the developed model has been successfully used to analyse the complex interaction between the daily non-linear load, the non-linear renewable resources as well as the battery dynamic, and their impact on the hybrid system’s daily operation cost minimization. The model developed, as well as the solver and algorithm used in this work, have low computational requirements for achieving results within a reasonable time, therefore this can be seen as a faster and more accurate optimization tool.
APA, Harvard, Vancouver, ISO, and other styles
3

Eriksson, Emma. "Hybrid Renewable Energy Systems with Battery and Hydrogen Storage." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/378157.

Full text
Abstract:
As population numbers and people's standards of living increase, so does the global energy demand and carbon dioxide emissions and it is imperative that new sustainable and renewable energy sources are sought, as the world's natural resources are depleting. Electricity generation presents the biggest opportunity to lower CO2 emissions and in an emerging world where the demand for alternative renewable energy systems is growing it is expected that one of the technologies in conjunction with conventional storage which will play a key role in reducing emissions is hydrogen fuel cell technology with hydrogen storage. Many attempts have been made to realise optimisation algorithms of renewable energy system using multiple techniques in literature. These attempts have consisted of using mathematical models combined with rules and object oriented modelling in order to assist in the design of renewable applications. The integration methods described in previous papers up to date seems to offer mainly technical and/or economical optimisation parameters. None of the presented methods seems to be based on a unified model where multi objectives and/constraints are taken into account above technical and economic considerations. There are also few practical examples of analysis and optimisation of hybrid renewable energy systems in a complete optimisation model where the behaviour of renewable energy sources, battery banks, electrolysers, fuel cells and hydrogen storage tanks are reviewed throughout the simulation in detail. For a successful transition to a renewable energy economy, optimisation of renewable energy systems must evolve to take into account metrics additional to technical performance and cost. A Normalised Weighted Constrained Multi-Objective (NWCMO) meta-heuristic optimisation algorithm has been proposed in conjunction with optional constraints for achieving a compromise between mutually conflicting objectives in multiple simultaneous categories; technical, economic, environmental and socio-political objectives, to simulate and optimise a renewable energy system with balanced outcomes. The socio political objective is represented by a proposed socio acceptance matrix which outputs a weighted measured social acceptance indicator towards proposed renewable energy systems. The methodology was implemented using an adjusted Particle Swarm Optimisation algorithm and tested against data and other studies from the literature. In each case the original results could be reproduced, but the newly-implemented algorithm was further able to find a more optimal design solution under the same constraints. In addition, the influence of additional quantified socio-political inputs was explored. This thesis presents a review of issues for integration of hydrogen energy technology into energy systems, emphasising electricity generation using fuel cell hydrogen technology. Integration of energy storage, sizing methodologies, energy flow management and their associated optimization algorithms and software implementation are addressed. The model presented in this thesis offers a streamlined integration of design rules, optimization techniques and constraints merged into one planning system. The outcome is a model offering an end user the possibility to carry out a proper feasibility study prior to embarking on implementing a renewable system. An optimisation methodology based on four classes of objective (technical, economic, environmental, socio-political) is presented, benchmarked and tested against various hybrid renewable energy systems with conventional and hydrogen storage.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles
4

Stott, Paul Anthony. "Renewable variable speed hybrid system." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4781.

Full text
Abstract:
At present many remote and Island communities rely solely on diesel powered generators to provide electricity. Diesel fuel is both expensive and polluting and the constant speed operation of the diesel engine is inefficient. In this thesis the use of renewable energy sources to help offset diesel fuel usage and an alternative way of running the diesel generator with the aim of reducing electrical energy costs is investigated. Diesel generators have to be sized to meet peak demand, in one or two diesel generator island grids, these generators will be running at a fraction of maximum output for most of the time. A new variable speed diesel generator allows for a reduction in fuel consumption at part load compared to constant speed operation. Combining the variable speed diesel generator with renewable generation should maximise the diesel fuel offsetting of the renewable source due to the increased efficiency at low loads. The stability issues of maintaining transient performance in a renewable variable speed hybrid system have been modelled and simulated. A control strategy has been developed and the use of energy storage as a buffer for any remaining stability problems has been explored. The control strategy has then been experimentally tested along with one of the possible energy storage solutions. An economic feasibility study has been performed on a case study community to validate the main aim of this research of reducing the cost of electrical energy in diesel generator grids.
APA, Harvard, Vancouver, ISO, and other styles
5

Coppez, Gabrielle. "Optimal sizing of hybrid renewable energy systems for rural electrification." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/10274.

Full text
Abstract:
Includes bibliograhical references.
This project has the objective of creating a tool for feasibility assessment and recommendations of sizing of hybrid renewable energy systems in rural areas in South Africa. This involves the development of a tool which would analyse information input about the climate of the area and the load demand.
APA, Harvard, Vancouver, ISO, and other styles
6

Renaudineau, Hugues. "Hybrid Renewable Energy Sourced System : Energy Management & Self-Diagnosis." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0336/document.

Full text
Abstract:
Cette thèse a pour but le développement d'une source photovoltaïque autonome ayant des capacités d'auto-diagnostic. Un structure d'hybridation spécifique est proposée consistant en une hybridation DC de sources photovoltaïques, d'une batterie au lithium et de supercondensateurs. Des modèles dynamiques des convertisseurs boost conventionnels et de leur variante avec isolation galvanique sont proposés. Un observateur d'état est ensuite présenté pour estimer en ligne les différents paramètres représentant les pertes des convertisseurs. On montre qu'il est possible d'utiliser ces paramètres estimés pour la gestion de l'énergie dans le système, avec en particulier l'optimisation du rendement de structures parallèles. L'optimisation des sources photovoltaïques est aussi étudiée avec une attention particulière accordée aux phénomènes d'ombrage partiel et le design d'un algorithme de maximisation de la puissance produite (MPPT) dans le cas d'une architecture distribuée série. De part une architecture de puissance spécifique, on propose aussi une méthode d'estimation de l'état de santé (SOH) de la batterie qui est validée sur des cellules de batterie Li - ion et LiFePO4. On montre que le convertisseur Cuk isolé avec inductances couplées est parfaitement adapté pour faire du diagnostic en ligne sur les batteries par injection de courant. Enfin, un schéma de gestion de l'énergie global est proposé, et on vérifie le bon fonctionnement de l'ensemble de la source hybride proposée
This thesis interested on developing a stand-alone photovoltaic system with self-diagnosis possibility. A specific structure has been proposed consisting in a DC hybridization of photovoltaic sources, a Lithium-based battery and supercapacitors. Dynamics models of the boost converter and the current-fed dual-bridge DC-DC converter are proposed and an efficient state observer is proposed to estimate the models equivalent losses' parameters online. It is shown that the estimated parameters can be used in the energy management scheme, with in particular optimisation of the efficiency of paralleled structures. The photovoltaic source optimization is also studied with special attention on shading phenomenon and design of MPPT technique especially on the case of distributed series architecture. Through a specific hybridization structure, State-Of-Health estimation is tested on Li-ion and LiFePO4 batteries. It is shown that the isolated coupled-inductors Cuk converter is very efficient for battery estimation through current injection. Finally, a global energy management scheme is proposed, and the developed stand-alone photovoltaic system is validated to operate as supposed
APA, Harvard, Vancouver, ISO, and other styles
7

Mohamed, Muaviyath. "Energy Constraint and Adaptability: Focus on Renewable Energy on Small Islands." Thesis, University of Canterbury. Department of Mechanical Engineering, 2012. http://hdl.handle.net/10092/6433.

Full text
Abstract:
Renewable energy integration into diesel generation systems for remote island communities is a rapidly growing energy engineering field. Fuel supply issues are becoming more common and the disruption, instability and panic caused by fuel shortages results in inefficient and unreliable power supplies for remote island communities. This thesis develops an energy engineering approach for meeting renewable energy development, supply security, cost and sustainability objectives. The approach involves adapting proven energy engineering techniques including energy auditing, energy system modelling with basic cost analysis and demand side management. The novel aspect of this research is the development of critical load engineering in the system design, and informing this with an assessment of essentiality of energy services during the audit phase. This approach was prompted by experiences with previous fuel shortages and long term sustainability policy drivers. The methodology uses the most essential electric loads as the requirement for sizing the renewable energy capacity in the hybrid system. This approach is revolutionary because communication with the customers about availability and the need to shed non-essential loads helps to both meet cost and security requirements and to reduce levels of panic and uncertainty when fuel supply issues arise. A sustainable power generation system is a system that provides continuity of supply for electrical appliances that are considered by the residents to be essential and for which adaptability and resilience of behaviour were key design priorities over growth. The sustainable electrical energy supply should match the critical (essential) load and should have the ability to continue without major disruptions to the daily lives of the people in these communities. Essential energy end uses were identified through energy audits and surveys. The electric power system is designed so that renewable energy sources alone can meet that “essential” demand with a plant that is both economically and technically feasible. Diesel generators were supplemented to meet the short fall in meeting the unconstrained electric demand. This is to design a system that is generally competitive with the present conventional power generation. This method should be particularly suitable for handling the complexities of a modern-day energy system in terms of planning a sizable sustainable energy and electricity system, either based on wholly sustainable sources or integrating sustainable sources of energy into a conventional generation system. The final hybrid system chosen after numerous simulations for the case study (Fenfushi island in the Maldives) community has the minimum renewable energy sources to meet the essential load but uses diesel to supplement the present load. A variety of design parameters such as PV size, wind turbine sizes and numbers and battery capacity have been considered. The minimum renewable energy sources to supply the essential loads of the community were simulated with diesel generators to find the optimal supply mix for the present load (typical unconstrained demand). The final outcome has the following characteristics: NPC and COE were $1,532,340 and $0.37/kWh respectively, lower than any diesel-only systems that could supply the demand. The total annual electricity production is 386,444 units (kWh), of which 9.61% is excess electricity and the annual operating cost is $68,688. Compared to the diesel-only systems there is a fuel savings of 77,021 litres of diesel per year, which is a 66.5 % reduction. An annual carbon dioxide emission reduction of 202,824 kg was achieved, which is a reduction of 66.5%. An annual renewable energy contribution of 70% would be achieved, 34% of which would be from PV arrays and 36% from wind turbines. The selected system shows that even with 30 percent power supply from diesel generators, still the highest NPC is on diesel generation for a life of over 25 years.
APA, Harvard, Vancouver, ISO, and other styles
8

Alawhali, Nasser. "CONTRIBUTIONS TO HYBRID POWER SYSTEMS INCORPORATING RENEWABLES FOR DESALINATION SYSTEMS." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/115.

Full text
Abstract:
Renewable energy is one of the most reliable resource that can be used to generate the electricity. It is expected to be the most highly used resource for electricity generation in many countries in the world in the next few decades. Renewable energy resources can be used in several purposes. It can be used for electricity generation, water desalination and mining. Using renewable resources to desalinate the water has several advantages such as reduce the emission, save money and improve the public health. The research described in the thesis focuses on the analysis of using the renewable resources such as solar and wind turbines for desalination plant. The output power from wind turbine is connected through converter and the excess power will be transfer back to the main grid. The photo-voltaic system (PV) is divided into several sections, each section has its own DC-DC converter for maximum power point tracking and a two-level grid connected inverter with different control strategies. The functions of the battery are explored by connecting it to the system in order to prevent possible voltage fluctuations and as a bu er storage in order to eliminate the power mismatch between PV array generation and load demand. Computer models of the system are developed and implemented using the PSCADTM / EMTDCTM software.
APA, Harvard, Vancouver, ISO, and other styles
9

Curtis, Daniel Joseph. "Nuclear renewable oil shale hybrid energy systems : configuration, performance, and development pathways." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97964.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Nuclear Renewable Oil Shale Systems (NROSS) are a class of large Hybrid Energy Systems in which nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and also provide flexible, dispatchable electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and the formations of kerogen oil shale in the western United States are the largest and densest hydrocarbon resource on the planet. When heated above 300 °C, kerogen decomposes into oil, gas, and char. NROSS couples electricity and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves economics for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. The nuclear reactor driving an NROSS system would operate steadily at full power, providing steam for shale heating in closed steam lines when the price of electricity is low and electricity to the grid when the price of electricity is high. Because oil shale has low thermal conductivity, heat input to the shale can be cycled as needed without disrupting the steady increase in average temperature. The target average shale temperature of 350 °C would be reached over 2 years using two heating stages in the baseline configuration driven by light water reactors. First stage heating brings the shale to an intermediate temperature, assumed to be 210 °C in this study. The second heating stage isolates the steam delivery line from the reactor and uses electricity, purchased when prices are low, to increase steam temperature and bring the shale to 350 °C. This capacity to absorb low price electricity mitigates the tendency for electricity prices to collapse to zero, or potentially negative values, during periods of peak wind and solar output. The analysis herein shows that liquid fuels produced by a baseline NROSS would have the lowest life cycle greenhouse gas impact of any presently available fossil liquid fuels and that operation as part of an NROSS complex would increase reactor revenues by 41% over a stand-alone baseload reactor. The flexible, dispatchable electricity provided by NROSS could also enable the transition to a very-low-carbon grid in which renewables are widely deployed and the NROSS provides variable output to balance their uncontrolled output to meet demand. Fully deployed, NROSS could require tens or hundreds of reactors. Large fleet operations and local mass production of the necessary hardware could bring about substantial reductions in system cost as development proceeds, potentially offering a pathway to jump start and maximize the realization of the mass production cost savings envisioned for small modular reactors. The development pathway to achieve large scale NROSS deployment will be complicated, however, requiring involvement from many government agencies, a demonstration system, and a complex commercialization effort with partnered nuclear vendors, utilities, and petroleum system developers.
by Daniel Joseph Curtis.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
10

Esmaili, Gholamreza. "Application of advanced power electronics in renewable energy sourcesand hybrid generating systems." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1141850833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Esmaili, Gholamreza. "Application of advanced power electronics in renewable energy sources and hybrid generating systems." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141850833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Amusat, O. O. "Design and optimization of hybrid renewable energy systems for off-grid continuous operations." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566604/.

Full text
Abstract:
The mining industry accounts for a significant portion of the energy demand by the industrial sector. The rising demand for metals around the world, coupled with the depletion of readily accessible ore deposits, has led to mining operations moving to more remote locations with no grid supply of energy. As a result, the operations require transport of fuel over large distances, leading to a significant increase in the overall mining cost. Renewable energy is considered to be the most promising solution to the mining industry energy problem. This work investigates the possibility of operating remote mines on local generation from renewables. A survey of recent literature revealed that while a lot of research had been done on hybrid renewable energy systems design and sizing, little thought had been given to accounting for the stochastic nature of renewable resources in the sizing process. Previous works focused on the sizing of PV-wind-battery systems; other potential generation and storage technologies were largely ignored. The challenge of intermittency in the power output of renewable generation systems had also largely been ignored. This thesis extends the state of the art on hybrid systems sizing by developing models and methodologies to address these challenges. A novel hybrid energy system integrating thermal and electrical renewable generation options with multiple large scale energy storage options is considered in this thesis. Models are developed for the different components of the energy system, with dynamic models incorporated for the material and energy balances of the storage alternatives, leading to a system of nonlinear differential algebraic equations (DAEs). The temporal nature of the renewable resources is accounted for by considering multiple stochastic renewable input scenarios generated from probability distribution functions (PDFs) as inputs into the system model. A reliability measure to quantify the impact of weather-based variability, called the modified loss of power supply probability, is developed. A bi-criteria sizing methodology which allows for the stochastic nature of renewable resources to be accounted for is presented. The approach combines the time series approach to reliability evaluation with a stochastic simulation model. Two approaches for mitigating the impact of intermittency in power outputs of renewable generation technologies are also developed. The first approach is based on system redesign, while the second approach is based on the introduction of an instantaneous response storage option. Case studies were presented to demonstrate the various methodologies. The results show that climate-based variability can have a significant impact on the cost and performance of hybrid energy systems and should always be accounted for in the sizing process. Intermittency needs to be accounted for in some form at the design stage as it can have an impact on the choice of technologies. The integration of thermal and electrical power generation and storage options provide a way to reduce hybrid system costs. The methodologies developed in this thesis are applicable to any location and can easily be extended to incorporate other generation and storage alternatives. They provide the decision maker with necessary information for making preliminary sizing decisions.
APA, Harvard, Vancouver, ISO, and other styles
13

Sharafi, Masoud. "Multi-objective optimal design of hybrid renewable energy systems using simulation-based optimization." Elsevier, 2014. http://hdl.handle.net/1993/31040.

Full text
Abstract:
Renewable energy (RE) resources are relatively unpredictable and dependent on climatic conditions. The negative effects of existing randomness in RE resources can be reduced by the integration of RE resources into what is called Hybrid Renewable Energy Systems (HRES). The design of HRES remains as a complicated problem since there is uncertainty in energy prices, demand, and RE sources. In addition, it is a multi-objective design since several conflicting objectives must be considered. In this thesis, an optimal sizing approach has been proposed to aid decision makers in sizing and performance analysis of this kind of energy supply systems. First, a straightforward methodology based on ε-constraint method is proposed for optimal sizing of HRESs containing RE power generators and two storage devices. The ε-constraint method has been applied to minimize simultaneously the total net present cost of the system, unmet load, and fuel emission. A simulation-based particle swarm optimization approach has been used to tackle the multi-objective optimization problem. In the next step, a Pareto-based search technique, named dynamic multi-objective particle swarm optimization, has been performed to improve the quality of the Pareto front (PF) approximated by the ε-constraint method. The proposed method is examined for a case study including wind turbines, photovoltaic panels, diesel generators, batteries, fuel cells, electrolyzers, and hydrogen tanks. Well-known metrics from the literature are used to evaluate the generated PF. Afterward, a multi-objective approach is presented to consider the economic, reliability and environmental issues at various renewable energy ratio values when optimizing the design of building energy supply systems. An existing commercial apartment building operating in a cold Canadian climate has been described to apply the proposed model. In this test application, the model investigates the potential use of RE resources for the building. Furthermore, the application of plug-in electric vehicles instead of gasoline car for transportation is studied. Comparing model results against two well-known reported multi-objective algorithms has also been examined. Finally, the existing uncertainties in RE and load are explicitly incorporated into the model to give more accurate and realistic results. An innovative and easy to implement stochastic multi-objective approach is introduced for optimal sizing of an HRES.
February 2016
APA, Harvard, Vancouver, ISO, and other styles
14

Akarohid, Yuwadee. "Overview of IEC Recommendations for renewable energy and hybrid systems for rural electrification." Thesis, Akarohid, Yuwadee (2017) Overview of IEC Recommendations for renewable energy and hybrid systems for rural electrification. Honours thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/38682/.

Full text
Abstract:
The International Electrotechnical Commission (IEC) is a universal company having a major mission to arrange International standards. IEC TS 62257 introduced herein is one of those series. It concerns about rural electrification which is further away from the national main power line. It is very expensive to get a few single users to utilise a grid to meet cost-effective. Therefore the stand-alone electrical systems are taken into account to serve better situations. In these days, rural electrification is played one of the important strategies to maximise comfort to those people in rural area as well as rural economic expansion. This thesis focuses on overview of IEC TS 62257. The project purpose concerns to five significant points. Firstly, to investigate and enable the choice of renewable energy based electrification systems to meet the requirements of customers in the field of decentralised rural electrification project. Secondly, to provide a technical specification for renewable energy and hybrid systems. Thirdly, to evaluate the minimum sufficient requirements, relevant to the field of application that is: renewable energy and hybrid off-grid systems corresponding to the high standard safety. Fourthly, to review the methodology in the standard IEC TS 62257 to achieve the best technical and economic conditions for acceptance, operation, maintenance and replacement of equipment and complete system life cycle. Lastly, to learn about the combination of diesel generator system and solar energy during the project. To attain an achievement of the five purposes as above mentioned, Rottnest Island case study was taken as an example of rural or remote Electrification in order to compare it with IEC TS 62257 series in term of similarity and difference between them. Although this project is completed, Rottnest power electrification is still a lot more to discover. Regarding to the most efficiency of the rural power project, the selection in which part of IEC TS 62257 should be taken to an appropriate consideration.
APA, Harvard, Vancouver, ISO, and other styles
15

Zeinaldeen, Laith Akeelaldeen. "Estimating the performance of hybrid (monocrystalline PV - cooling) system using different factors." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1862.

Full text
Abstract:
AN ABSTRACT OF THE DISSERTATION OFLaith A. Zeinaldeen, for the Doctor of Philosophy degree in AGRICULTURAL SCIENCES – Renewable Energy, presented on November 2, 2020, at Southern Illinois University Carbondale.TITLE: ESTIMATING THE PERFORMANCE OF HYBRID (MONOCRYSTALLINE PV - COOLING) SYSTEM USING DIFFERENT FACTORSMAJOR PROFESSOR: Dr. Logan O. ParkAmbient temperature significantly affects photovoltaic (PV) panel performance. High temperature reduces PV panel efficiency, fill factor, and maximum power, driving up solar electrical system investment return period by increasing startup cost. Using a proper cooling system to cool down the PV panel temperature, especially during the summer season, will improve the PV panel performance, enhance its longevity, and accelerate the startup cost recovery to the solar electrical system. This dissertation presents two studies about monocrystalline PV panels. The studies used two general objectives: (i) study the best cooling period and water nozzle type to improve the monocrystalline PV panel output; and (ii) evaluating the performance of the monocrystalline PV panel using different cooling systems, other water pump discharge, and various water types during different times of day. In the first study (chapter 4), an experiment was conducted during July 2018 to determine Effect of using different cooling periods and different water nozzle types on the fill factor, efficiency, and the maximum power of monocrystalline PV panel. This experiment used two factors. The first factor was the cooling periods, which included three levels of PV panel cooling periods (5, 15, and 30 minutes). The second factor was water nozzle type: hollow cone and flat fan.In the second study (chapters 5, 6, and 7), an experiment was conducted during July and August 2018 to determine Effect of using different factors on the performance of monocrystalline PV panel at a site belong to the College of Agriculture – Southern Illinois University in Carbondale, IL. This experiment used four factors. The first factor was the time of day, the second factor was the cooling system, the third factor was the water pump discharge, and the fourth factor was the water type. The present studies' principal findings were: (i) the first experiment, the 15 minutes cooling period achieved the highest PV panel fill factor (0.795). In comparison, the 30 minutes cooling period reached the highest panel efficiency (18.6%) and maximum power (92.5 Watt). In contrast, the 5 minutes cooling period achieved the lowest PV panel fill factor (0.720), lowest panel efficiency (12.9%), and most insufficient panel maximum power (63.5 Watt). The hollow cone water nozzle achieved the highest panel fill factor (0.783), highest panel efficiency (16.60%), and the most elevated PV panel maximum power (82.8Watt). Interaction between the cooling and water nozzle types was non-significant on PV panel fill factor, significant on panel efficiency, and highly significant on PV panel maximum power. The interaction results between the cooling period and nozzle type demonstrate that the hollow cone nozzle with 30 minutes cooling period achieved the highest panel fill factor, highest panel efficiency, and the most elevated panel maximum power. The flat fan with a 5-minute cooling period achieved the lowest fill factor, lowest panel efficiency, and most insufficient panel maximum power. Tukey test results showed a highly significant difference (P < 0.0001) between the cooling period and the control treatment, and between the nozzle type treatment and the control treatment on panel fill factor, efficiency, and panel maximum power. Cooling periods have the most considerable effect on panel fill factor, panel efficiency, and maximum panel power, followed by the nozzle type. (ii) The second experiment results showed, the first cooling system (HC1) achieved the highest PV panel maximum power (77.0Watt), highest fill factor (0.745), highest PV panel efficiency (14.75%), highest average net energy (39.5Wh), highest PV panel energy (189.0 Wh) and highest average power gain (34.6Watt) comparing to the rest of the cooling systems. In comparison, the fourth (FtF2) achieved the lowest maximum power (58.0 Watt), lowest fill factor (0.653), lowest average efficiency (11.6%), lowest average net energy (-4.0Wh), lowest average energy (147.5Wh), and lowest average power gain (17.5 Watt). The fifth cooling system (SP) achieved the least average water consumption (2.0 L / hr.), while the second cooling system (HC2) achieved the highest average water consumption (39.0 L / hr.). The medium water pump discharge (M) produced the most elevated PV panel maximum power (67.6 Watt), highest fill factor (0.709), highest average PV panel efficiency (13.28%), highest average PV panel net energy (18 Wh), highest average PV panel energy (169.0Wh) and the highest average PV panel power gain (25.9Watt). High water pump discharge (H) achieved the lowest maximum power (63.8Watt), lowest average panel efficiency (12.48%), lowest average net energy (7.5Wh), lowest average panel energy (159.5Wh), and the lowest average power gain (21.8 Watt). The low water pump discharge (L) achieved the lowest panel fill factor (0.698). Lake water achieved the highest panel maximum power (66.1Watt), lowest PV panel fill factor (0.698), highest panel efficiency (12.94%), lowest net energy (12.8 Wh), highest panel energy (165.2 Wh), and lowest power gain (23.5Watt). In contrast, city water achieved the most elevated PV panel fill factor (0.708), most insufficient panel maximum power (64.8 Watt), highest average PV panel net energy (14.8 Wh), lowest efficiency (12.62%), highest average PV panel power gain (24.25 Watt) and lowest panel energy (162.1 Wh). Tukey post hoc difference testing showed highly significant differences (P < 0.0001) between the time of day, cooling system, water pump discharge, water type treatments, and their control treatment on PV panel maximum power, fill factor, panel efficiency, panel net energy, panel energy, power gain, and the system water consumption. The cooling system has the most considerable effect on PV panel maximum power, panel fill factor, panel efficiency, panel net energy, panel energy, panel power gain, and the system water consumption. In general, using the cooling system improves the PV panel performance through enhancing the PV panel efficiency, maximum panel power, panel fill factor, panel net energy, panel energy, and PV panel power gain. Keywords: Cooling system, cooling periods, water pump discharge, water type, time of day, efficiency, maximum power, fill factor, net energy, panel energy, PV panel power gain, and cooling system water consumption.
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Shengqi. "Investigating the impacts of renewable energy generators and energy storage systems on power system frequency response." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/94463/1/Shengqi_Zhang_Thesis.pdf.

Full text
Abstract:
High level of intermittent renewable generation such as PV plants and wind farms will require distributed storage systems to meet the power system frequency operation standards. This thesis proposes a rule-based controller to co-ordinate the renewables and distributed energy storage system for improving frequency response.
APA, Harvard, Vancouver, ISO, and other styles
17

Octaviano, Villasana Claudia Alejandra. "The value of electricity storage under large-scale penetration of renewable energy : a hybrid modeling approach." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99824.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Engineering Systems Division, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 219-234).
Due to the physics of electricity, and the current high costs of storage technologies, electricity generation and demand need to be instantaneously balanced at all times. The large-scale deployment of intermittent renewables requires increased operational flexibility to accommodate fluctuating and unpredictable power supply while maintaining this balance. This dissertation investigates the value of electricity storage for the economy. Specifically, what is the value of storage under large-scale penetration of renewable energy in the context of climate policy? To answer this question, I develop a new hybrid modeling approach that couples an electricity sector model to the MIT EPPA model, a general equilibrium model for climate change policy analysis. The electricity sector model includes the main constraints for reliable and secure operation; electricity demand; wind, solar and hydro resources on the hourly time-scale; and utility-scale storage technologies. The hybrid modeling approach reconciles the very short-term dynamics required for renewables and storage technologies assessment, and the long-term time-scale required for the analysis of economic and environmental outcomes under climate policy. Using Mexico as a case study, this dissertation analyses policies currently under discussion in the country. The experimental design explores increasing shares of renewables with varying levels of storage capacity. Under scenarios with increasing shares of renewables in the power grid, the value of storage increases sharply. By 2050, with 50% renewables penetration, the present value of storage capacity per MW installed in Mexico is estimated at $1500/MW and $200/MWh. Energy management services resulted in the highest value component (58%), followed by operational reserves provision (22%) and capacity payments (18%). Storage capacity in the system changes both investments and operational decisions, allowing larger penetration of wind technologies and displacing gas technologies. Storage capacity in the system reduces price volatility and the occurrence of negative prices that would otherwise result as renewables scale up. The general equilibrium analysis shows that the availability of competitive storage technologies under an economy-wide climate policy reduces the overall policy costs. Simulating a 50% emissions reduction by 2050, the model demonstrated that storage could decrease total welfare losses by 0.7% when compared to the case without storage. Despite the sharp increase in the value of storage driven by renewables penetration, the findings suggest that the current cost of most storage technologies will still have to drastically be reduced for them to be economical.
by Claudia Alejandra Octaviano Villasana.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
18

Allan, James. "The development and characterisation of enhanced hybrid solar photovoltaic thermal systems." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/11624.

Full text
Abstract:
A photovoltaic thermal solar collector (PVT) produces both heat and electricity from a single panel. PVT collectors produce more energy, for a given area, than conventional electricity and heat producing panels, which means they are a promising technology for applications with limited space, such as building integration. This work has been broken down into 3 subprojects focusing on the development of PVT technology. In the first subproject an experimental testing facility was constructed to characterise the performance of PVT collectors. The collectors under investigation were assembled by combining bespoke thermal absorbers and PV laminates. Of the two designs tested, the serpentine design had the highest combined efficiency of 61% with an 8% electrical fraction. The header riser design had a combined efficiency of 59% with an electrical fraction of 8%. This was in agreement with other results published in literature and highlights the potential for manufacturers of bespoke thermal absorbers and PV devices to combine their products into a single PVT device that could achieve improved efficiency over a given roof area. In the second project a numerical approach using computational fluid dynamics was developed to simulate the performance of a solar thermal collector. Thermal efficiency curves were simulated and the heat removal factor and heat loss coefficient differed from the experimental measurements by a maximum of 12.1% and 2.9% respectively. The discrepancies in the findings is attributed to uncertainty in the degree of thermal contact between the absorber and the piping. Despite not perfectly matching the experimental results, the CFD approach also served as a useful tool to carry out performance comparisons of different collector designs and flow conditions. The effect of 5 different flow configurations for a header collector was investigated. It was found that the most efficient design had uniform flow through the pipe work which was in agreement with other studies. The temperature induced voltage mismatch, that occurs in the PV cells of PVT collector was also investigated. It was concluded that the temperature variation was not limiting and the way in which PV cells are wired together on the surface of a PVT collector did not influence the combined electrical power output.
APA, Harvard, Vancouver, ISO, and other styles
19

Gan, Leong Kit. "Improving the performance of hybrid wind-diesel-battery systems." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/31482.

Full text
Abstract:
Off-grid hybrid renewable energy systems are known as an attractive and sustainable solution for supplying clean electricity to autonomous consumers. Typically, this applies to the communities that are located in remote or islanded areas where it is not cost-effective to extend the grid facilities to these regions. In addition, the use of diesel generators for electricity supply in these remote locations are proven to be uneconomical due to the difficult terrain which translates into high fuel transportation costs. The use of renewable energy sources, coupling with the diesel generator allows for the diesel fuel to be offset. However, to date, a common design standard for the off-grid system has yet to be found and some challenges still exist while attempting to design a reliable system. These include the sizing of hybrid systems, coordination between the operation of dissimilar power generators and the fluctuating load demands, optimal utilisation of the renewable energy resources and identifying the underlying principles which reduce the reliability of the off-grid systems. In order to address these challenges, this research has first endeavoured into developing a sizing algorithm which particularly seeks the optimal size of the batteries and the diesel generator usage. The batteries and diesel generator function in filling the gap between the power generated from the renewable energy resources and the load demand. Thus, the load requirement is also an important factor in determining the cost-effectiveness of the overall system in the long run. A sensitivity analysis is carried out to provide a better understanding of the relationship between the assessed renewable energy resources, the load demand, the storage capacity and the diesel generator fuel usage. The thesis also presents the modelling, simulation and experimental work on the proposed hybrid wind-diesel-battery system. These are being implemented with a full-scale system and they are based on the off-the-shelf components. A novel algorithm to optimise the operation of a diesel generator is also proposed. The steady-state and dynamic analysis of the proposed system are presented, from both simulation and an experimental perspective. Three single-phase grid-forming inverters and a fixed speed wind turbine are used as a platform for case studies. The grid-forming inverters adopt droop control method which allows parallel operation of several grid-forming sources. Droop control-based inverters are known as independent and autonomous due to the elimination of intercommunication links among distributed converters. Moreover, the adopted fixed speed wind turbine employs a squirrel cage induction generator which is well known for its robustness, high reliability, simple operation and low maintenance. The results show a good correlation between the modelling, the experimental measurements, and the field tested results. The final stage of this research explores the effect of tower shadow on off-grid systems. Common tower designs for small wind turbine applications, which are the tubular and the lattice configurations, are considered in this work. They generate dissimilar tower shadow profiles due to the difference in structure. In this research, they are analytically modelled for a wind turbine which is being constructed as a downwind configuration. It is proven that tower shadow indeed brings negative consequence to the system, particularly its influence on battery lifetime within an off-grid system. This detrimental effect occurs when power generation closely matches the load demand. In this situation, small frequent charging and discharging cycles or the so called microcycles, take place. The battery lifetime reduction due to these microcycles has been quantified and it is proven that they are not negligible and should be taken into consideration while designing an off-grid hybrid system.
APA, Harvard, Vancouver, ISO, and other styles
20

Teran, Rivero Carlos Eduardo. "Hybrid Renewable Energy Analysis via Homer Pro and ETAP: A case study in Venezuela." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2793.

Full text
Abstract:
AN ABSTRACT OF THE THESIS OFCarlos Eduardo Teran Rivero, for the Master of Science degree in Electrical Engineering, presented on October 15, 2020, at Southern Illinois University Carbondale. TITLE: HYBRID RENEWABLE ENERGY SYSTEMS ANALYSIS VIA HOMER PRO AND ETAP: A CASE STUDY IN VENEZUELA MAJOR PROFESSOR: Dr. Arash Asrari The main objective of this project is to design a realistic hybrid renewable energy system as a micro-grid in order to supply required power to the villages of Coche Island located in Venezuela. Due to the deterioration of Venezuela’s power system, the native people inhabiting in the island frequently find themselves without electricity when there exists a shortage in supply. Considering “Margarita” as an example, the priority of the supply is always considered for the larger communities where there is any relevant issue which will leave the small communities of the Coche Island without any power. The motivation of this thesis is to propose a hybrid micro-grid located in some of the larger villages in the Coche Island using renewable energy resources (RERs) such as photovoltaic and wind turbines such that the community of the corresponding villages can locally generate power in order to cover their basic needs in normal and emergency situations. Toward this end, this thesis presents a hybrid configuration integrated with RERs to address the aforementioned challenges. The suggested frameworks are developed via two different software including ETAP (electrical transient analyzer program) and HOMER (hybrid optimization model for electric renewables), and a comprehensive comparison between the obtained results is provided to validate the effectiveness of the both software in the field of designing hybrid energy systems.
APA, Harvard, Vancouver, ISO, and other styles
21

Kamjoo, Azadeh. "A decision support system for integrated design of hybrid renewable energy system." Thesis, Northumbria University, 2015. http://nrl.northumbria.ac.uk/27224/.

Full text
Abstract:
While large-scale wind farms and solar power stations have been used widely as supplement to the nuclear, fossil fuels, hydro and geothermal power generation, at smaller scales these resources are not reliable to be used independently and may result in load rejection or an over size design which is not cost effective. A possible solution to solve this issue is using them as part of a hybrid power system. Complexity in design and analysis of hybrid renewable energy systems (HRES) has attracted the attention of many researchers to find better solutions by using various optimisation methods. Majority of the reported researches on optimal sizing of HRES in the literature are either only considering one objective to the optimisation problem or if more than one objective is considered the effect of uncertainties are ignored. This dissertation work investigates deterministic and stochastic approach in design of HRES. In deterministic approach it shows how adding a battery bank to a grid connected HRES might result in more cost effective design depending on different grid electricity prices. This work also investigates the reliability of HRES designed by conventional deterministic design approach and shows the weakness of common reliability analysis. To perform the stochastic approach the renewable resources variation are modelled using time series analysis and statistical analysis of their available historical meteorological data and the results are compared in this work. Chance constrained programming (CCP) approach is used to design a standalone HRES and it is shown that the common CCP approach which solves the problem based on the assumption on the joint distribution of the uncertain variables limits the design space of problem. This work then proposes a new method to solve CCP to improve the size of design space. This dissertation comprises multi-objective optimisation method based on Non-dominated Sorting Genetic Algorithm (NSGA-II) with an innovative method to use CCP as a tool in estimating the expected value of the objective function instead of Monte-Carlo simulation to decrease the computational time.
APA, Harvard, Vancouver, ISO, and other styles
22

Abdallah, Ibrahim. "Event-driven hybrid bond graph : Application : hybrid renewable energy system for hydrogen production and storage." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10104/document.

Full text
Abstract:
Ce travail de thèse constitue une contribution à la modélisation et au diagnostic des systèmes multi-domaines à commutation (hybrides). Il est appliqué à la supervision des systèmes multi-sources d’énergie propre où l’hydrogène est utilisé comme moyen de stockage. Un tel système associe des composantes énergétiques de nature différente et fait l’objet de commutations produites par la connexion et déconnexion d’un ou plusieurs composants. Ces commutations génèrent différents modes de fonctionnement et sont liées à l’intermittence des sources primaires, aux capacités de stockage et à la disponibilité opérationnelle des ressources matérielles qui constituent le système. La présence de ces commutations engendre une dynamique variable qui est classiquement difficile à exprimer mathématiquement sans exploiter tous les modes. Ces difficultés de modélisation se propagent pour affecter toutes les tâches dépendantes du modèle comme le diagnostic et la gestion de modes de fonctionnement. Pour résoudre ces problématiques, un nouvel outil, Bond Graph Hybride piloté par événements, a été développé. Entièrement graphique, ce formalisme permet une modélisation interdisciplinaire globale du système. En séparant la dynamique continue gérée par le Bond Graph Hybride des états discrets modélisés par un automate intégré, l’approche proposée simplifie la gestion des modes de fonctionnement. Le modèle issu de cette méthodologie est également bien adapté au diagnostic robuste, réalisable sans recourir aux équations analytiques. Associée au diagnostic robuste, cette gestion des modes permet l’implémentation de stratégies de reconfiguration et de protection en présence de défaillances
This research work constitutes a general contribution towards a simpler modelling and diagnosis of the multidisciplinary hybrid systems. Hybrid renewable energy systems where hydrogen is used to store the surplus of the power fits perfectly under this description. Such system gathers different energetic components that are needed to be connected or disconnected according to different operating conditions. These different switching configurations generate different operating modes and depend on the intermittency of the primary sources, the storage capacities and the operational availability of the different hardwares that constitute the system. The switching behaviour engenders a variable dynamic which is hard to be expressed mathematically without investigating all the operating modes. This modelling difficulty is transmitted to affect all the model-based tasks such as the diagnosis and the operating mode management. To solve this problematic, a new modelling tool, called event-driven hybrid bond graph, is developed. Entirely graphic, this formalism allows a multidisciplinary global modelling for all the operating modes at once. By separating the continuous dynamic driven by the bond graph, from the discrete states handled by an integrated automaton, this approach simplifies the management of the operating modes. The model issued using this methodology is also well-adapted to perform a robust diagnosis which is achievable without referring back to the analytical description of the model. The operating mode management, when associated with the on-line diagnosis, allows the implementation of reconfiguration strategies and protection protocols when faults are detected
APA, Harvard, Vancouver, ISO, and other styles
23

Baumann, Lars. "Improved system models for building-integrated hybrid renewable energy systems with advanced storage : a combined experimental and simulation approach." Thesis, De Montfort University, 2015. http://hdl.handle.net/2086/11103.

Full text
Abstract:
The domestic sector will play an important role in the decarbonisation and decentralisation of the energy sector in the future. Installation numbers of building-integrated small-scale energy systems such as photovoltaics (PV), wind turbines and micro-combined heat and power (CHP) have significantly increased. However, the power output of PV and wind turbines is inherently linked to weather conditions; thus, the injected power into the public grid can be highly intermittent. With the increasing share of renewable energy at all voltage levels challenges arise in terms of power stability and quality. To overcome the volatility of such energy sources, storage technologies can be applied to temporarily decouple power generation from power consumption. Two emerging storage technologies which can be applied at residential level are hydrogen systems and vanadium-redox-flow-batteries (VRFB). In addition, the building-integrated energy sources and storage system can be combined to form a hybrid renewable energy system (HRES) to manage the energy flow more efficiently. The main focus of this thesis is to investigate the dynamic performance of two emerging energy storage technologies, a hydrogen loop composed of alkaline electrolyser, gas storage and proton exchange membrane (PEM) fuel cell, and a VRFB. In addition, the application of building-integrated HRES at customer level to increase the self-consumption of the onsite generated electricity and to lower the grid interaction of the building has been analysed. The first part deals with the development of a research test-bed known as the Hybrid Renewable Energy Park (HREP). The HREP is a residential-scale distributed energy system that comprises photovoltaic, wind turbine, CHP, lead acid batteries, PEM fuel cell, alkaline electrolyser and VRFB. In addition, it is equipped with programmable electronic loads to emulate different energy consumption patterns and a charging point for electric vehicles. Because of its modular structure different combinations of energy systems can be investigated and it can be easily extended. A unified communication channel based on the local operating network (LON) has been established to coordinate and control the HREP. Information from the energy systems is gathered with a temporal resolution of one second. Integration issues encountered during the integration process have been addressed. The second part presents an experimental methodology to assess the steady state and dynamic performance of the electrolyser, the fuel cell and the VRFB. Operational constrains such as minimum input/output power or start-up times were extracted from the experiments. The response of the energy systems to single and multiple dynamic events was analysed, too. The results show that there are temporal limits for each energy system, which affect its response to a sudden load change or the ability to follow a load profile. Obstacles arise in terms of temporal delays mainly caused by the distributed communication system and should be considered when operating or simulating a HRES at system level. The third part shows how improved system models of each component can be developed using the findings from the experiments. System models presented in the literature have the shortcoming that operational aspects are not adequately addressed. For example, it is commonly assumed that energy systems at system level can respond to load variations almost instantaneously. Thus, component models were developed in an integrated manner to combine theoretical and operational aspects. A generic model layout was defined containing several subsystems, which enables an easy implementation into an overall simulation model in MATLAB®/Simulink®. Experimental methods were explained to extract the new parameters of the semi-empirical models and discrete operational aspects were modelled using Stateflow®, a graphical tool to formulate statechart diagrams. All system models were validated using measured data from the experimental analysis. The results show a low mean-absolute-percentage-error (<3%). Furthermore, an advanced energy management strategy has been developed to coordinate and to control the energy systems by combining three mechanisms; statechart diagrams, double exponential smoothing and frequency decoupling. The last part deals with the evaluation, operation and control of HRES in the light of the improved system models and the energy management strategy. Various simulated case studies were defined to assess a building-integrated HRES on an annual basis. Results show that the overall performance of the hydrogen loop can be improved by limiting the operational window and by reducing the dynamic operation. The capability to capture the waste heat from the electrolyser to supply hot water to the residence as a means of increasing the overall system efficiency was also determined. Finally, the energy management strategy was demonstrated by real-time experiments with the HREP and the dynamic performance of the combined operation has been evaluated. The presented results of the detailed experimental study to characterise the hydrogen loop and the VRFB as well as the developed system models revealed valuable information about their dynamic operation at system level. These findings have relevance to the future application and for simulation studies of building-integrated HRES. There are still integration aspects which need to be addressed in the future to overcome the proprietary problem of the control systems. The innovations in the HREP provide an advanced platform for future investigations such as electric-vehicles as decentralised mobile storage and the development of more advanced control approaches.
APA, Harvard, Vancouver, ISO, and other styles
24

Muller, Jan. "Do hybrid compressed air energy storage (HCAES) systems offer a viable alternative solution to energy storage requirements for small to medium size renewable energy systems?" Thesis, Muller, Jan (2009) Do hybrid compressed air energy storage (HCAES) systems offer a viable alternative solution to energy storage requirements for small to medium size renewable energy systems? Masters by Coursework thesis, Murdoch University, 2009. https://researchrepository.murdoch.edu.au/id/eprint/2087/.

Full text
Abstract:
With the increased international pressure to make use of more renewable energy technologies, the intermittent nature of renewable resources requires some kind of energy storage in order to ensure energy is available when needed. Most conventional storage solutions for small to medium size applications are based on chemical batteries which are hazardous, not easily recycled and can have a negative environmental effect. Thus renewed interest is being given to clean and environmentally friendly storage technologies such as compressed air, a technology more than a century old, and still being used in flammable and explosive industrial environments. New, improved compressors, air motors and advanced technologies and materials that can withstand large fluctuations in temperature have become available, and have been used by some innovative manufacturers to produce Hybrid Compressed Air Energy Storage (HCAES) Systems, which claim to have high turn around efficiencies. In this research, the available literature on compressed air systems, and new HCAES systems are evaluated in order to compare them to conventional storage technologies. Furthermore, an evaluation was conducted to determine if it would be possible to design a HCAES system with off the shelf air equipment and if this HCAES system could possibly be a viable alternative to conventional or new chemical battery storage technologies. During the research it was found that there is very little literature on the subject of HCEAS systems, and that the manufacturers do not give much information or proof on actual efficiencies of their systems. What was found is that there are several academic institutions working on combining compressed air with technologies such as diesel engines, oil pneumatics, wind, water, super capacitors and flywheels in order to improve current hybrid systems’ effectiveness and efficiency in energy storage and supply applications and to reduce the environmental footprint of such systems. From literature, research and manufacturer specifications it was found that although theoretical efficiencies of close to 100% can be realised, available HCAES systems do not offer such an effective or efficient solution as chemical battery systems. In addition off the shelf compressors and motors that can be used to design a HCAES system have been manufactured to give high performance and torque with low efficiencies. The efficiency is further drastically reduced as the storage pressure is increased, which is necessary to decrease storage vessel requirements.
APA, Harvard, Vancouver, ISO, and other styles
25

Haddad, Maroua. "Sizing and management of hybrid renewable energy system for data center supply." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD036.

Full text
Abstract:
Le secteur du numérique est récemment devenu un secteur majeur de la consommation d’électricité dans le monde, notamment avec l’avènement des data centers qui concentrent un très grand nombre de machines traitant des informations et fournissant des services. L’utilisation de sources d’énergie renouvelables sur site est un moyen prometteur de réduire l’impact écologique des data centers. Cependant, certaines énergies renouvelables comme les énergies solaire et éolienne sont intermittentes, étant liées aux conditions météorologiques. Étant donné qu’un centre de données doit maintenir une certaine qualité de service, l’utilisation efficace de ces sources nécessite l’utilisation de stockages. Cette thèse explore à la fois une méthode dimensionnement et une méthode de gestion optimale d’une infrastructure hybride d’énergie renouvelable, composée de panneaux photovoltaïques, d’éoliennes, de batteries et de système de stockage hydrogène.Une première contribution aborde le problème du dimensionnement de cette infrastructure électrique afin de répondre à la demande du data center. Un outil de dimensionnement est proposé, prenant en compte plusieurs métriques et fournissant trois configurations différentes. L’utilisateur choisit donc la configuration approprié, en fonction de son plan économique global de son écosystème H2. Une deuxième contribution étudie le problème de la gestion de l’énergie par programmation linéaire en nombres entiers. Un outil de gestion optimal est fourni pour trouver différents engagements optimaux des sources en fonction des objectifs de l’utilisateur. Les solutions obtenues sont ensuite discutées avec plusieurs métriques et avec différents horizons temporelles afin de trouver la meilleure solution pour répondre à la demande du data center. Enfin, une troisième contribution vise à prévoir évolution temporelle de l’ensoleillement et de la vitesse du vent à gros grain pour obtenir un dimensionnement plus précis à l’aide du modèle SARIMA
Information and communication technologies haverecently become a major sector in energy consumption,particularly with the advent of large platforms on the Internet. These platforms use data centers, which concentrate a very large number of machines processing information and providing services, causing a high energy consumption. The use of renewable energy sources (RES)on-site is then a promising way to reduce their ecological impact. However, some renewable energies such as solar and wind energy are intermittent and uncertain,being related to weather conditions. Since a data center must maintain a certain quality of service, using these sources effectively requires the usage of storage devices.This thesis explores an efficient sizing and management methods for a hybrid renewable energy infrastructure composed of wind turbines, photovoltaic panels, batteries and a hydrogen system..A first contribution addresses the problem of sizing the electrical plateform in order to meet the data center demand. A sizing tool is proposed, taking several metrics into account and providing three different system configurations as solutions. The user therefore chooses an appropriate configuration, according to his global economic plan of his H2 ecosystem. A second contribution studies the problem of energy management using amixed integer linear programming approach. An optimal management tool is therefore provided to find various source schedules according to different user’s objectives.The obtained solutions are discussed with several metrics considering different time horizon in order to find the beststorage management to meet the data center requests.Finally, a third contribution aims to forecast the weather data to obtain a preciser sizing of the sources using SARIMA model in order to reduce forecasts errors
APA, Harvard, Vancouver, ISO, and other styles
26

Ahmed, Eshita. "Hybrid Renewable Energy System Using Doubly-Fed Induction Generator and Multilevel Inverter." Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26501.

Full text
Abstract:
The proposed hybrid system generates AC power by combining solar and wind energy converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy system, the stator voltage and its frequency vary with wind speed, and in order to keep them constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel depending on their availability. It consists of a multilevel inverter which gives lower harmonic distortion in the stator voltage. Maximum power point tracking techniques have been implemented for both wind and solar power. The complete hybrid renewable energy system is implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in hardware using dSPACE controller board.
APA, Harvard, Vancouver, ISO, and other styles
27

Mathews, Shaji Varukunnel. "High renewable energy penetration hybrid power system for rural and desert areas." Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/90.

Full text
Abstract:
This thesis proposes innovative ways of designing and controlling a small to medium size islanded or utility grid connected power system consisting of diesel generators, renewable energy sources and battery energy storages such that both fossil fuel usage and size of expensive battery bank can be minimized and the level of penetration of renewable energy can be raised to unprecedented levels. Computer software simulations and experimental results verify the proposed design and control strategies.
APA, Harvard, Vancouver, ISO, and other styles
28

Gadkari, Sagar A. "A HYBRID RECONFIGURABLE SOLAR AND WIND ENERGY SYSTEM." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1225821057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gaslac, Lucero, Sebastian Willis, Grimaldo Quispe, and Carlos Raymundo. "A hybrid energy system based on renewable energy for the electrification of low-income rural communities." Institute of Physics Publishing, 2018. http://hdl.handle.net/10757/624632.

Full text
Abstract:
Electrification of low-income rural areas that have a limited connection or no access to electrical grids is one of the most demanding challenges in developing countries such as Peru. The international commitment to stop global warming and the reduction in the cost of renewable sources of energy have reduced the prices of fossil fuels in some cases. This has opened the way to the current research which proposes a hybrid energy system (HES) based on the use of renewable sources of energy. Therefore, a renewable electricity system (HRES) was set up at the village of Monte-Catache in the Cajamarca region, which is one of the poorest areas of Peru. Surveys and field studies were used to evaluate the socioeconomic characteristics, availability of renewable energy resources, and energy demand of this region. Potential energy sources were evaluated, and isolated photovoltaic systems with a battery bank were found to be the most appropriate according to the results obtained in the simulation with HOMER. This proposal constitutes an interesting contribution for future energy solutions in isolated and low-income rural areas.
Revisión por pares
APA, Harvard, Vancouver, ISO, and other styles
30

Barnawi, Abdulwasa. "Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources." University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1470357709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Anzalchi, Arash. "Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3506.

Full text
Abstract:
Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator.
APA, Harvard, Vancouver, ISO, and other styles
32

Kojok, Farah. "Performance study of hybrid cooling systems for the utilization in buildings." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4381/document.

Full text
Abstract:
La thèse est une contribution à la réduction de la consommation d'énergie primaire et à une meilleure utilisation des sources d'énergie renouvelables dans le cadre des systèmes de refroidissement utilisés dans le bâtiment. Après un état de l'art sur les systèmes de refroidissement, un modèle dynamique d'un système de rafraîchissement solaire à base de machine à absorption est développé et simulé. Ensuite, un facteur d'efficacité pour comparer la pertinence de ce système dans différentes régions du monde est défini. Dans la troisième partie, la notion des systèmes de refroidissement hybride -une méthode efficace contribuant à la réduction de la consommation d'énergie primaire- est présentée. Puis, les systèmes hybrides de refroidissement sont classés en catégories et sont comparés avec les systèmes de refroidissement individuels. Ensuite, un schéma permettant de sélectionner le meilleur système de refroidissement hybride dans des conditions données est proposé. Dans la dernière partie, une méthode de dimensionnement d’un système hybride à base d’énergies renouvelables est établie. Ainsi, le dimensionnement est réalisé en tenant compte de la région spécifique d’utilisation. Pour ce faire, un système de refroidissement hybride, conçu pour une maison standard, est modélisé puis simulé en utilisant le logiciel Trnsys. Finalement, et pour illustrer la méthode proposée, la problématique de dimensionnement est considérée pour deux régions différentes du globe; à savoir Marseille-France et Beyrouth-Liban. Le but est d’évaluer les performances de la méthode, à travers des données effectives, pour diverses conditions climatiques, prix des composants et tarif d'électricité
This thesis is a contribution towards the reduction of primary energy consumption and a better use of the renewable energy sources within the cooling system for building use. After a state of the art of the cooling machines for building use, a dynamic model for a solar absorption cooling system is developed and simulated. Then, an effectiveness factor (EF) for the comparison of solar absorption chiller suitability in different locations is defined. In the third chapter, the concept of hybrid cooling system -an efficient method contributing to the reduction of primary energy consumption- is presented. Hybrid cooling systems are categorized and reviewed, with the improvement achieved compared to standalone technologies. Then, a scheme for the selection of the best hybrid cooling system for given conditions is proposed. In the last part, an optimal sizing method that defines, in a specific region, a hybrid cooling energy system, economically feasible with maximum renewable energy share is presented. Thereby, the sizing method is performed taking into account the region where it will be used. For this purpose, a hybrid cooling system, used for a standard residential house, is designed. The system is modeled and simulated using a transient system simulation program, called Trnsys. Finally, the problem of sizing is studied for different case studies; namely Marseilles-France and Beirut-Lebanon. The aim is to assess the proposed method according to diverse climatic conditions, component prices and electricity costs
APA, Harvard, Vancouver, ISO, and other styles
33

Gazey, Ross Neville. "Sizing hybrid green hydrogen energy generation and storage systems (HGHES) to enable an increase in renewable penetration for stabilising the grid." Thesis, Robert Gordon University, 2014. http://hdl.handle.net/10059/947.

Full text
Abstract:
A problem that has become apparently growing in the deployment of renewable energy systems is the power grids inability to accept the forecasted growth in renewable energy generation integration. To support forecasted growth in renewable generation integration, it is now recognised that Energy Storage Technologies (EST) must be utilised. Recent advances in Hydrogen Energy Storage Technologies (HEST) have unlocked their potential for use with constrained renewable generation. HEST combines Hydrogen production, storage and end use technologies with renewable generation in either a directly connected configuration, or indirectly via existing power networks. A levelised cost (LC) model has been developed within this thesis to identify the financial competitiveness of the different HEST application scenarios when used with grid constrained renewable energy. Five HEST scenarios have been investigated to demonstrate the most financially competitive configuration and the benefit that the by-product oxygen from renewable electrolysis can have on financial competitiveness. Furthermore, to address the lack in commercial software tools available to size an energy system incorporating HEST with limited data, a deterministic modelling approach has been developed to enable the initial automatic sizing of a hybrid renewable hydrogen energy system (HRHES) for a specified consumer demand. Within this approach, a worst-case scenario from the financial competitiveness analysis has been used to demonstrate that initial sizing of a HRHES can be achieved with only two input data, namely – the available renewable resource and the load profile. The effect of the electrolyser thermal transients at start-up on the overall quantity of hydrogen produced (and accordingly the energy stored), when operated in conjunction with an intermittent renewable generation source, has also been modelled. Finally, a mass-transfer simulation model has been developed to investigate the suitability of constrained renewable generation in creating hydrogen for a hydrogen refuelling station.
APA, Harvard, Vancouver, ISO, and other styles
34

Storgärd, Per. "Grid Optimization Of Wind-Solar Hybrid Power Plants : Case Study Of Internal Grid Connections." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-319385.

Full text
Abstract:
Hybrid renewable energy systems (HRES) have proven to be a more stable and feasible source of energy than heir single source counterparts. The benefit of HRES is their ability to balance the stochastic behavior of wind and solar production. As result of this, they have been used as stand-alone systems with great success. Optimization studies in the field have shown optimum sizing of the components in the system to be a key element in order to increase feasibility. This paper focuses on the HRES impact on internal grid design and cost. The goal of the thesis is to create a mathematical function and graph on the internal grid design/cost relation for a virtual site with varying wind speed and solar irradiation. A secondary goal is to analyze how much Photovoltaics (PV) in Megawatt (MW) that can be connected to the internal grid post realization of the wind farm and to performed this analyze on the two specific case projects, Site A (17.25 MW) in Sweden and Site B (51.75 MW) in Italy. By utilizing a case study methodology, a mathematical model was created based on two case projects, both with potential to be a combined Wind-PV hybrid plants provided by the wind developer OX2. Identifiers for the two cases studied in this thesis where removed with respect to OX2’s ongoing projects. Hybrid renewable energy systems is a method of increasing the utilization of a regions RES, the system has an increase in overall power output compared to the single RES alternative. However, the internal grid cost was shown to be 3.85 % more expensive Site A and 5.3 % in Site B. This stood in direct correlation to the HRES in Site A using 8.6 % more cable for its internal grid and 29.7 % more in Site B, this is highly depending (depending on the location of the PV array). Furthermore, the case projects showed that the maximum PV to be connected post realization of the farm without major curtailment would be 11.5% of the wind farms rated power in the case of site A and 67.6 % in the case of Site B. Variations in wind speed and solar irradiation were shown to have some impact on grid cost. However, the results pointed out that grid cost in HRES is to a higher degree affected by total cable length in the internal grid than fluctuation in available energy sources. The extent of increase in cable length, the total grid investment cost rises up to 53.4 % for the two case projects.
APA, Harvard, Vancouver, ISO, and other styles
35

Amin, Mahmoud. "Efficiency and Power Density Improvement of Grid-Connected Hybrid Renewable Energy Systems utilizing High Frequency-Based Power Converters." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/600.

Full text
Abstract:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system’s high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
36

Tweedy, Phillip. "Analysis of Hybrid Electric Autonomous Tactical Support System." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/76877.

Full text
Abstract:
The modern day expeditionary warfighter faces extraordinary challenges in the battle field and being a beast of burden should not be one of them. Currently the dismounted warfighter is impeded with carrying over 100lbs of tactical gear and supplies for multiday missions in remote territory. Expeditionary forces are also facing an energy and logistical crisis getting water, fuel, and batteries to the tip of the spear. Finding ways to enable self-sufficiency and reducing resupply tethers for small unit operations is a high priority for the armed forces. The Hybrid Electric Autonomous Tactical Support System directly and efficiently tackles both problems head on by synergizing efforts to lighten the load and self sustaining base power by combining the capabilities of the Ground Unmanned Support Surrogate (GUSS) and the Experimental Forward Operating Base projects. Hybridization of the drivetrain of the GUSS vehicle will provide the reliable power for onboard autonomous systems and also enable silent operation modes. The hybrid onboard generator can efficiently provide generous amounts of exportable DC and AC power on demand and is an ideally sized backup/primary power system for small unit bases and forward command posts. The vehicle's onboard energy storage and generator system can also be linked with renewable energy sources to demonstrate the tactical smart mini grid concept. This thesis develops the power requirements for an autonomous system, GUSS mission derived hybrid electric drivetrain specifications, and Marine Corps small echelon bases for the development of the multifunction Hybrid Electric Autonomous Tactical Support System.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
37

Ghadirinejad, Nickyar. "Design of an off-grid renewable-energy hybrid system for a grocery store: a case study in Malmö, Sweden." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-36867.

Full text
Abstract:
On planet Earth, fossil fuels are the most important sources of energy. However, these resources are limited and being depleted dramatically throughout last decades. Finding feasible substitutes of these resources is an essential duty for humanity. Fortunately, Mother Nature is providing us a number of good solutions for this crucial threat against our planet. Solar irradiance, wind blowing, oceanic and maritime waves are natural resources of energy that are capable of completely covering the annual consumption of all inhabitants on the Earth. In this research a set of components including “Northern Power NPS 100-24” wind generators, “Kyocera KD 145 SX-UFU” PV arrays, “Gildemeister 10kW-40kWh Cellcube” battery bank and HOMER bi-directional converter system were considered and successfully applied on HOMER tool and Particle Swarm Optimization (PSO) method. The main design goals of the presented hybrid system are to use 100% renewable energy resources in the commercial sector, where all power is produced in the immediate vicinity of the business place, adding strong advertising values to the setup. In order to supply hourly required load for a grocery store   (1000 ) in Malmö city with 115 kW peak load and 2002 kWh/d with maximum 0.1% unmet, the system was optimized to achieve minimum Levelized Cost of Energy (LCOE) and the lowest Net Present Cost (NPC). The HOMER simulation for quantitative analysis, along with a Particle Swarm Optimization (PSO) solution method is proposed and the results are compared. The results show that an optimized hybrid system with 3.12  LCOE, and power production of 28.5% by PV arrays and 71.5% by wind generators, is the best practice for this case study.
De fossila bränslena är idag de viktigaste energikällorna på jorden. Dessa resurser är dock begränsade och har utarmats i en allt högre takt under de senaste decennierna. Att hitta möjliga ersättare för dessa resurser är därför viktigt. Lyckligtvis tillhandahåller naturen ett antal bra lösningar för detta avgörande hot mot vår planet. Solstrålning, vind, havsströmmar och -vågor är naturliga resurser av energi som kan täcka hela den årliga globala förbrukningen. I den här rapporten studeras ett hybridsystem bestående av Northern Power NPS 100-24 vindkraftverk, Kyocera KD 145 SX-UFU solcellerspaneler, Gildemeister 10kW-40kWh Cellcube batteribank och HOMER dubbelriktad växelriktare. Detta modellerades och optimerades dels i mjukvaran HOMER, dels via optimeringsmetoden Particle Swarm Optimaization (PSO). Det övergripande designkravet för det presenterade hybridsystemet är att använda 100% förnyelsebar energi i en kommersiell verksamhet, där all elektricitet produceras i närhet av verksamheten, vilket kan ge tydliga marknadsföringsvärden till installationen. För att kunna möta energibehovet varje timme för en livsmedelsbutik (1000 ) i Malmö med 115 kW toppförbrukning och 2002 kWh/dag, med maximalt 0,1% ej mött behov, optimerades systemet för att uppnå minimal energikostnad (Levelized Cost of Energy, LCOE) och lägsta nettonuvärde (Net Present Cost, NPC). En HOMER-simulering för kvantitativ analys, tillsammans med en PSO-optimering, har genomförts och resultaten har jämförts. Resultaten visar att ett optimerat hybridsystem med LCOE på 3,12 SEK/kWh, där solceller står för 28,5% av kraftproduktionen och vindkraftverk för 71,5%, är den bästa lösningen för denna fallstudie.
APA, Harvard, Vancouver, ISO, and other styles
38

Afifi, Sara Nader. "Impact of hybrid distributed generation allocation on short circuit currents in distribution systems." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15195.

Full text
Abstract:
The rapid development in renewable generation technologies and flexible distribution networks requires current infrastructure to be modified and developed to adapt high penetration levels of distributed generation. Existing distribution networks were not initially designed and anticipated to accommodate generators on large scale. Short circuit studies ensure the effectiveness of protection equipment settings and coordination is maintained in case of short circuit, despite any additional distributed generation is connected to the distribution network. This research aims to study and compare the different network fault situations for wind energy systems with induction generators, photovoltaic energy systems, and diesel generators connected to distribution networks. The simulation study will be conducted on the existing IEEE case study systems including 13 bus and 30 bus distribution test systems, using ETAP software. Short circuit analysis will be performed twice to include the ANSI/IEEE and the IEC methods for short circuit currents calculation. Simulated results showed that the wind energy systems have significant impact on the short circuit currents, whereas the photovoltaic energy systems are found to have inconsequential effect. The most moderate solution is found to be a distributed generation mix.
APA, Harvard, Vancouver, ISO, and other styles
39

Frisk, Malin. "Simulation and Optimization of a Hybrid Renewable Energy System for application on a Cuban farm." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317876.

Full text
Abstract:
This paper presents an analysis of the feasibility of utilizing a hybrid renewable energy system to supply the energy demand of a milk and meat farm in Cuba. The study performs simulation and optimization to obtain a system design of a hybrid renewable energy system for application on the farm Desembarco del Granma in the Villa Clara province in the central part of Cuba, for three different cases of biomass availability. The energy resources considered are solar PV, biogas, and wind. A field study is carried out to evaluate the energy load and the biomass resource available for biogas production of the farm Desembarco del Granma, and the feasibility of biogas electrification is evaluated for the three different scenarios of biomass availability. The field study methodology includes semi structured interviews and participant observation for information collection. The farm Desembrero del Granma is estimated to have a scaled annual average electrical load of 264 kWh/day with peak load 26.34 kW, while the scaled annual average deferrable load of the farm was estimated to be 76 kWh/day with a peak load 16 kW. The thermal load was find to consist primarily of energy for water heating and cooking. The thermal demand for cooking was estimate to be 4.5 kWh per day, while the thermal load for water heating was not estimated. The thermal energy need for water heating is assumed to be provided for by solar thermal energy, and is not included in the energy system models of this study. For the modeling, the thermal demand for cooking is assumed to be provided by combustion of biogas. System simulation and optimization in regard to energy efficiency, economic viability and environmental impact is carried out by applying the Hybrid Optimization Model for Electric Renewables (HOMER) simulation and optimization software tool. For two of the biomass scenarios, the optimized energy systems received in HOMER were identical; hence only two biomass scenarios were analyzed. The first one represents the current biomass collected and the biogas production capacity of the farm (including the one not yet utilized), and the second one represents the amount of biomass available if the animals would be gathered in the same place all of the time. A PV-wind hybrid energy system with 100 kW PV installed capacity, 30 kW wind power installed capacity consisting of 10 wind turbines of the size 3 kW, a battery bank of 100 batteries (83.4 Ah/24 V), and a 100 kW inverter is considered the most feasible solution for the current biomass scenario. For the increased biomass scenario, a PV-biogas hybrid energy system configuration of 5 kW PV installed capacity, a 60 kW biogas generator, and an inverter of the size 10 kW is considered the most feasible option. Biogas electrification is shown to not be economically feasible for the current biomass scenario during the conditions modeled in this study, but for the increased biomass scenario biogas electrification was shown to be a feasible option. If the farm would build more biodigestors, biogas electrification could thereby be effective from a financial point of view.
APA, Harvard, Vancouver, ISO, and other styles
40

Das, Barun Kumar. "Optimisation of stand-alone hybrid energy systems for power and thermal loads." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2018. https://ro.ecu.edu.au/theses/2150.

Full text
Abstract:
Stand-alone hybrid energy systems are an attractive option for remote communities without a connection to a main power grid. However, the intermittent nature of solar and other renewable sources adversely affects the reliability with which these systems respond to load demands. Hybridisation, achieved by combining renewables with combustion-based supplementary prime movers, improves the ability to meet electric load requirements. In addition, the waste heat generated from backup Internal Combustion Engines or Micro Gas Turbines can be used to satisfy local heating and cooling loads. As a result, there is an expectation that the overall efficiency and Greenhouse Gas Emissions of stand-alone systems can be significantly improved through waste heat recovery. The aims of this PhD project are to identify how incremental increases to the hardware complexity of hybridised stand-alone energy systems affect their cost, efficiency, and CO2 footprint. The research analyses a range of systems, from those designed to meet only power requirements to others satisfying power and heating (Combined Heat and Power), or power plus both heating and cooling (Combined Cooling, Heating, and Power). The majority of methods used focus on MATLAB-based Genetic Algorithms (GAs). The modelling deployed finds the optimal selection of hardware configurations which satisfy single- or multi-objective functions (i.e. Cost of Energy, energy efficiency, and exergy efficiency). This is done in the context of highly dynamic meteorological (e.g. solar irradiation) and load data (i.e. electric, heating, and cooling). Results indicate that the type of supplementary prime movers (ICEs or MGT) and their minimum starting thresholds have insignificant effects on COE but have some effects on Renewable Penetration (RP), Life Cycle Emissions (LCE), CO2 emissions, and waste heat generation when the system is sized meeting electric load only. However, the transient start-up time of supplementary prime movers and temporal resolution have no significant effects on sizing optimisation. The type of Power Management Strategies (Following Electric Load-FEL, and Following Electric and Following Thermal Load- FEL/FTL) affect overall Combined Heating and Power (CHP) efficiency and meeting thermal demand through recovered heat for a system meeting electric and heating load with response to a specific load meeting reliability (Loss of Power Supply Probability-LPSP). However, the PMS has marginal effects on COE. The Electric to Thermal Load Ratio (ETLR) has no effects on COE for PV/Batt/ICE but strongly affects PV/Batt/MGT-based hybridised CHP systems. The higher thermal than the electric loads lead to higher efficiency and better environmental footprint. Results from this study also indicate that for a stand-alone hybridised system operating under FEL/FTL type PMS, the power only system has lower cost compared to the CHP and the Combined Cooling, Heating, and Power (CCHP) systems. This occurs at the expense of overall energy and exergy efficiencies. Additionally, the relative magnitude of heating and cooling loads have insignificant effects on COE for PV/Batt/ICE-based system configurations, however this substantially affects PV/Batt/MGT-based hybridised CCHP systems. Although there are no significant changes in the overall energy efficiency of CCHP systems in relation to variations to heating and cooling loads, systems with higher heating demand than cooling demand lead to better environmental benefits and renewable penetration at the cost of Duty Factor. Results also reveal that the choice of objective functions do not affect the system optimisation significantly.
APA, Harvard, Vancouver, ISO, and other styles
41

Brka, Adel. "Optimisation of stand-alone hydrogen-based renewable energy systems using intelligent techniques." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2015. https://ro.ecu.edu.au/theses/1756.

Full text
Abstract:
Wind and solar irradiance are promising renewable alternatives to fossil fuels due to their availability and topological advantages for local power generation. However, their intermittent and unpredictable nature limits their integration into energy markets. Fortunately, these disadvantages can be partially overcome by using them in combination with energy storage and back-up units. However, the increased complexity of such systems relative to single energy systems makes an optimal sizing method and appropriate Power Management Strategy (PMS) research priorities. This thesis contributes to the design and integration of stand-alone hybrid renewable energy systems by proposing methodologies to optimise the sizing and operation of hydrogen-based systems. These include using intelligent techniques such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Neural Networks (NNs). Three design aspects: component sizing, renewables forecasting, and operation coordination, have been investigated. The thesis includes a series of four journal articles. The first article introduced a multi-objective sizing methodology to optimise standalone, hydrogen-based systems using GA. The sizing method was developed to calculate the optimum capacities of system components that underpin appropriate compromise between investment, renewables penetration and environmental footprint. The system reliability was assessed using the Loss of Power Supply Probability (LPSP) for which a novel modification was introduced to account for load losses during transient start-up times for the back-ups. The second article investigated the factors that may influence the accuracy of NNs when applied to forecasting short-term renewable energy. That study involved two NNs: Feedforward, and Radial Basis Function in an investigation of the effect of the type, span and resolution of training data, and the length of training pattern, on shortterm wind speed prediction accuracy. The impact of forecasting error on estimating the available wind power was also evaluated for a commercially available wind turbine. The third article experimentally validated the concept of a NN-based (predictive) PMS. A lab-scale (stand-alone) hybrid energy system, which consisted of: an emulated renewable power source, battery bank, and hydrogen fuel cell coupled with metal hydride storage, satisfied the dynamic load demand. The overall power flow of the constructed system was controlled by a NN-based PMS which was implemented using MATLAB and LabVIEW software. The effects of several control parameters, which are either hardware dependent or affect the predictive algorithm, on system performance was investigated under the predictive PMS, this was benchmarked against a rulebased (non-intelligent) strategy. The fourth article investigated the potential impact of NN-based PMS on the economic and operational characteristics of such hybrid systems. That study benchmarked a rule-based PMS to its (predictive) counterpart. In addition, the effect of real-time fuel cell optimisation using PSO, when applied in the context of predictive PMS was also investigated. The comparative analysis was based on deriving the cost of energy, life cycle emissions, renewables penetration, and duty cycles of fuel cell and electrolyser units. The effects of other parameters such the LPSP level, prediction accuracy were also investigated. The developed techniques outperformed traditional approaches by drawing upon complex artificial intelligence models. The research could underpin cost-effective, reliable power supplies to remote communities as well as reducing the dependence on fossil fuels and the associated environmental footprint.
APA, Harvard, Vancouver, ISO, and other styles
42

Alcoverro, Colom Pau. "A new energy model for the Lakshadweep islands : Change from a diesel-based model to a hybrid model with renewable energy systems considering the ecological fragility of the islands." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

SONG, CONGCONG. "Electricity generation from hybrid PV-wind-bio-mass system for rural application in Brazil." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211794.

Full text
Abstract:
Electrification of households in rural area and isolated regions plays a significant impact on the balanced economic development. Brazil grows with a high population growth rate, but still parts of rural area and isolated regions do not have the accessibility of electric power. This study focuses on the feasibility study of a hybrid PV-wind-biomass power system for rural electrification at Nazaré Paulista in southeast Brazil. This study was performed by using the hybrid renewable energy system software HOMER. The wind and solar data was collected from Surface meteorology and Solar Energy-NASA, and the biomass data was collected and estimated from other previous studies. The result shows, the hybrid PV-wind-biomass renewable system can meet 1,601 kWh daily demands and 360 kW peak load of the selected rural area. The power system composed of 200 kW PV panels, 200 kW biomass generator, 400 battery banks, and 200 kW converter. All the calculations were performed by Homer and the selection were based on the Net Present Cost (NPC) and Levelized cost of energy (COE). Because of the fossil fuels’ negative impacts on human health and environment, all the energy sources for this system are renewable energies which have less pollution.
APA, Harvard, Vancouver, ISO, and other styles
44

Cao, Xueshu. "The design of a highly penetrated hybrid renewable energy system for the Ha'apai Island group." Thesis, University of Canterbury. Electrical and Computer Engineering, 2015. http://hdl.handle.net/10092/10740.

Full text
Abstract:
Hybrid renewable energy systems (HRESs) have become increasingly popular, especially for isolated regions. This thesis describes the design of a HRES for the isolated Ha'apai Island group in Tonga following a devastating cyclone which happened in 2014. Several renewable power generation and storage possibilities were investigated; solar, wind and battery were found to be feasible for Ha'apai. The conceptual design of a new energy storage system, the Subterranean Ocean Energy Storage System (SOESS), is also discussed as a possible alternative to batteries and a more viable substitute for an ocean renewable energy storage (ORES) system. For the proposed Ha'apai system, the optimum system configuration (solar 450 kW, wind 550 kW, battery 1,216 kAh/4,864 kW) with 90% renewable penetration was obtained using the HOMER software. Based on the optimum system configuration, load flow simulations of both the previous system and the proposed HRES were performed in DIgSILENT PowerFactory. The results of the load flow analysis show that all the transformers and transmission lines in both systems operate safely in both peak and nominal load conditions, and that the voltage levels of all LV buses are within the acceptable range of ±5%. The detailed system topology of the proposed HRES is discussed from the system implementation point of view. A unique set point control algorithm for the start-up/shut-down of the diesel generators was developed. The system dynamic performance was simulated according to the control logic during the three main switching events in DIgSILENT PowerFactory. The dynamic simulation results indicate that the proposed system would operate safely with acceptable voltage and frequency oscillations. This thesis could be used as a template for the design of other isolated HRESs with high renewable penetrations.
APA, Harvard, Vancouver, ISO, and other styles
45

Wilson, Jason Clifford. "A techno-economic environmental approach to improving the performance of PV, battery, grid-connected, diesel hybrid energy systems : A case study in Kenya." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-28542.

Full text
Abstract:
Backup diesel generator (DG) systems continue to be a heavily polluting and costly solution for institutions with unreliable grid connections. These systems slow economic growth and accelerate climate change. Photovoltaic (PV), energy storage (ES), grid connected, DG – Hybrid Energy Systems (HESs) or, PV-HESs, can alleviate overwhelming costs and harmful emissions incurred from traditional back-up DG systems and improve the reliability of power supply. However, from project conception to end of lifetime, PV-HESs face significant barriers of uncertainty and variable operating conditions. The fit-and-forget solution previously applied to backup DG systems should not be adopted for PV-HESs. To maximize cost and emission reductions, PV-HESs must be adapted to their boundary conditions for example, irradiance, temperature, and demand. These conditions can be defined and monitored using measurement equipment. From this, an opportunity for performance optimization can be established. The method demonstrated in this study is a techno-economic and environmental approach to improving the performance of PV-HESs. The method has been applied to a case study of an existing PV-HES in Kenya. A combination of both analytical and numerical analyses has been conducted. The analytical analysis has been carried out in Microsoft Excel with the intent of being easily repeatable and practical in a business environment. Simulation analysis has been conducted in improved Hybrid Optimization by Genetic Algorithms (iHOGA), which is a commercially available software for simulating HESs. Using six months of measurement data, the method presented identifies performance inefficiencies and explores corrective interventions. The proposed interventions are evaluated, by simulation analyses, using a set of techno-economic and environment key performance indicators, namely: Net Present Cost (NPC), generator runtime, fuel consumption, total system emissions, and renewable fraction. Five corrective interventions are proposed, and predictions indicate that if these are implemented fuel consumption can be reduced by 70 % and battery lifetime can be extended by 28 %, net present cost can be reduced by 30 % and emissions fall by 42 %. This method has only been applied to a single PV-HES; however, the impact this method could have on sub-Saharan Africa as well as similar regions with unreliable grid connections is found to be significant. In the future, in sub-Saharan Africa alone, over $500 million dollars (USD) and 1.7 billion kgCO2 emissions could be saved annually if only 25 % of the fuel savings identified in this study were realized. The method proposed here could be improved with additional measurement data and refined simulation models. Furthermore, this method could potentially be fully automated, which could allow it to be implemented more frequently and at lower cost.
APA, Harvard, Vancouver, ISO, and other styles
46

Althomali, Khalid. "Energy Management System Modeling of DC Data Center with Hybrid Energy Sources Using Neural Network." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1701.

Full text
Abstract:
As data centers continue to grow rapidly, engineers will face the greater challenge in finding ways to minimize the cost of powering data centers while improving their reliability. The continuing growth of renewable energy sources such as photovoltaics (PV) system presents an opportunity to reduce the long-term energy cost of data centers and to enhance reliability when used with utility AC power and energy storage. However, the inter-temporal and the intermittency nature of solar energy makes it necessary for the proper coordination and management of these energy sources. This thesis proposes an energy management system in DC data center using a neural network to coordinate AC power, energy storage, and PV system that constitutes a reliable electrical power distribution to the data center. Software modeling of the DC data center was first developed for the proposed system followed by the construction of a lab-scale model to simulate the proposed system. Five scenarios were tested on the hardware model and the results demonstrate the effectiveness and accuracy of the neural network approach. Results further prove the feasibility in utilizing renewable energy source and energy storage in DC data centers. Analysis and performance of the proposed system will be discussed in this thesis, and future improvement for improved energy system reliability will also be presented.
APA, Harvard, Vancouver, ISO, and other styles
47

Peñalvo, López Elisa. "Metodología de Evaluación y Optimización de Sistemas Renovables Híbridos para Electrificación de Zonas Aisladas de la Red." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/82308.

Full text
Abstract:
The objective of this thesis is the definition and development of a comprehensive methodology of energy planning for areas isolated from the mains, considering not only the energy context of the country and its development towards a sustainable scenario, but also studying the potential of renewable generation in the remote area under study, the ability for demand management and the socio-economic aspects involved in the final decision on what renewable energy solution would be the most appropriate in accordance with the characteristics of the location. The research work is organized into three major phases. The first one defines the algorithm of analysis of the context energy of the country and its evolution towards a future energy scenario based on renewable energies. A second phase which analyzes the best configurations of hybrid renewable systems capable of responding to energy needs in the area, sorting them based on their net present value. And a third one introducing the method of multi-criteria analysis which allows to select, from among all possible configurations identified in the previous stage, the most appropriate to the needs and characteristics of the area to study, taking into account not only economic or technical aspects, but also sociological, political, and environmental criteria. Finally, the developed methodology is applied to a case concrete as example of its potential. An isolated community in the Democratic Republic of the Congo has been selected since 90% of the population living in areas isolated from the mains, and being one of the African countries with the greatest potential for renewable energy generation.
El objetivo de esta tesis es la definición y desarrollo de una metodología integral de planificación energética para zonas aisladas de la red eléctrica que considere no solo el contexto energético del país y su desarrollo hacia un escenario sostenible, sino también el estudio del potencial de generación renovable en la zona remota a estudiar, la capacidad de gestión de la demanda y los aspectos socio-económicos que intervienen en la decisión final sobre qué solución energética renovable sería la más apropiada de acuerdo con las características de la ubicación. El trabajo de investigación se organiza en tres grandes etapas. La primera donde se define el algoritmo de análisis del contexto energético del país y su evolución hacia un escenario energético futuro basado en energías renovables. Una segunda fase donde se analizan las mejores configuraciones de sistemas renovables híbridos capaces de responder a las necesidades energéticas de la zona, clasificándolas en base a su valor neto actual. Y una tercera donde se describe el método de análisis multi-criterio que permite seleccionar, de entre todas las posibles configuraciones identificadas en la etapa anterior, la más adecuada para las necesidades y características de la zona a estudiar, teniendo en cuenta no solo aspectos económicos o técnicos, sino también criterios sociológicos, políticos y medioambientales. Finalmente, se aplica la metodología a un caso concreto en la República Democrática del Congo como ejemplo de su aplicación. Para el análisis del caso de estudio, se ha seleccionado una comunidad aislada en la República Democrática del Congo ya que el 90% de la población vive en zonas aisladas de la red eléctrica, y es uno de los países de África con mayor potencial de generación con energías renovables.
L'objectiu d'aquesta tesi és la definició i desenvolupament d'una metodologia integral de planificació energètica per a zones aïllades de la xarxa elèctrica que considere no solament el context energètic del país i el seu desenvolupament cap a un escenari sostenible, sinó també l'estudi del potencial de generació renovable en la zona remota a estudiar, la capacitat de gestió de la demanda i els aspectes soci-econòmics que intervenen en la decisió final sobre quina solució energètica renovable seria la més apropiada d'acord amb les característiques de la ubicació. El treball de recerca s'organitza en tres grans etapes. La primera on es defineix l'algorisme d'anàlisi del context energètic del país i la seua evolució cap a un escenari energètic futur basat en energies renovables. Una segona fase on s'analitzen les millors configuracions de sistemes renovables híbrids capaços de respondre a les necessitats energètiques de la zona, classificant-les sobre la base del seu valor net actual. I una tercera on es descriu el mètode d'anàlisi multi-criteri que permet seleccionar, d'entre totes les possibles configuracions identificades en l'etapa anterior, la més adequada per a les necessitats i característiques de la zona a estudiar, tenint en compte no sol aspectes econòmics o tècnics, sinó també criteris sociològics, polítics i mediambientals. Finalment, s'aplica la metodologia a un cas concret en la República Democràtica del Congo com a exemple de la seua aplicació. Per a l'anàlisi del cas d'estudi, s'ha seleccionat una comunitat aïllada en la República Democràtica del Congo ja que el 90% de la població viu en zones aïllades de la xarxa elèctrica, i és un dels països d'Àfrica amb major potencial de generació amb energies renovable.
Peñalvo López, E. (2017). Metodología de Evaluación y Optimización de Sistemas Renovables Híbridos para Electrificación de Zonas Aisladas de la Red [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/82308
TESIS
APA, Harvard, Vancouver, ISO, and other styles
48

Louw, Rudolph Petrus. "Design optimisation and costing analysis of a renewable energy hydrogen system / Rudolph Petrus (Rudi) Louw." Thesis, North-West University, 2012. http://hdl.handle.net/10394/9518.

Full text
Abstract:
The South African Department of Science and Technology is striving to develop a means of producing hydrogen gas in remote and civil areas through the use of renewable energy sources. For the purposes of creating such mobile hydrogen production facilities, a small-scale hydrogen production system based on renewable energy sources needs to be developed and modelled. This system is to serve as a pilot plant for further development of a large scale mobile hydrogen production facility. This work focuses on the characterisation of sizing algorithms for renewable energy sources which can determine component configurations that satisfy power requirements of the system. Additionally, optimal sizing techniques must be developed which can output an optimal plant configuration to a user based on cost and efficiency. To this end, a literature study was done on all the components that make up a renewable energy hydrogen system. The techniques researched were then applied to create algorithms capable of correctly sizing the required components of such a plant. These techniques were integrated into an application created in the LabVIEW environment, which is capable of outputting an optimal plant configuration based on the specific needs of a client. A case study was defined with which the results of the simulation models were verified. Using this work, a future, more comprehensive system may be developed and commercialised, building from the techniques implemented here.
Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
APA, Harvard, Vancouver, ISO, and other styles
49

Alkhwaildi, Hassan. "TRADE-OFF BETWEEN COST AND CO2 EMISSION IN OPTIMIZATION OF HYBRID RENEWABLE ENERGY SYSTEMS: A CASE STUDY IN SAUDI ARABIA." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2789.

Full text
Abstract:
Renewable energy sources (RESs) are considered as the most reliable option in the terms of reducing CO2 emission. RESs are known by their low operation and maintenance (O&M) cost and easier installation. In the previous years, their reliability was less due to their uncertainty; however, in the modern days, it is possible to limit RES fluctuations by recently developed technologies such as optimization tools and precise forecasting algorithms. RESs are not always preferred in case studies where the fossil fuels are extremely cheap. In such countries, investors prefer to implement gas turbines or diesel generators regardless of the penalty associated with their negative impacts of such plants on the environmental. Many countries that have low fuel cost are going forward with expanding the conventional power systems with a low growth towards the hybrid renewable power system. This would increase the reliance on sources such as fossil fuels which diminish over time. Moreover, many environmental benefits of the hybrid renewable energy systems (HRES) would not be achieved in which it will be harmful to the environment. Therefore, a trade-off solution is proposed towards solving this problem in which it would make a balance between cost and CO2 emissions. To this end, in this thesis, the objective is to find a reasonable solution (i.e., trade-off) between the cost and the emission. To find such a trade-off, an optimization software called “HOMER Pro” is utilized to identify the optimal design. A compromised solution will be identified with low CO2 emission and low net present cost (NPC). Saudi Arabian Wasit Gas Plant (WGP) owned by Saudi Aramco Company, which is located in a remote area of the country, is chosen as the case study of this thesis. A photovoltaic (PV), wind turbine, reformer, battery, hydrogen tank, and fuel cells are considered to be implemented on the investigated case study.
APA, Harvard, Vancouver, ISO, and other styles
50

Chotia, Imran. "Electrical performance and economic feasibility analyses of hybrid and battery storage devices used in remote area islanded renewable energy systems." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/22933.

Full text
Abstract:
South Africa has the fifth largest coal based utility grid in the world, unfortunately many regions in the country are simply too remote for connection with this grid thus have no electricity access [1]. Many remote areas possess high wind speeds and solar irradiance exposure, which makes them ideal for Renewable Energy Systems (RES) but the electrical and economic viability of this deployment, is still in question. Based on these observations, an electrical performance analysis and economic feasibility study based on islanded RES deployment in remote areas of SA is conducted. RES growth is restricted to the effectiveness of its energy management strategy. Pumped Hydro Storage (PHS) is the cheapest islanded large scale storage option but its assignment is restricted to applicable an landscape and terrain [2], [3]. After conducting a critical review, the Lead Acid Battery Storage System (BSS) and Hybrid Battery Supercapacitor Storage (HBS) were over the PHS. A theory development study on established generations systems and storage models was used to compare software designs which resulted in the selection of Matlab software for electric performance analysis and HOMER for the economic feasibility study. The electric performance analysis was divided into three case studies based on the input power supply, viz. ideal voltage source, Solar Photo Voltaic (PV) and Wind Energy Conversion System (WECS), with each case being connected to a BSS and HBS. A load profile and solar and wind resource investigation was conducted using the NASA, Wind Atlas of South Africa (WASA) and Solar GIS database. Electrical cases were modelled in Matlab and evaluated in terms of power security, load matching, power response and charge algorithm accuracy. The results showed that deploying an islanded RES in South Africa is indeed electrically feasible based on the high power security, load matching accuracy, and disturbance response seen in the solar-RES cases. The wind-RES maintained an uninterruptable power supply but failed to match the load as accurately. Cases which used the HBS showed improvements in power stability; load fluctuation response and an extension of storage device lifespan when compared to the BSS connected cases. This was due to the supercapacitor high power density which made it ideal for the compensation of RES and load fluctuations. Three new cases were established for the economic study as follows; solar, wind and hybrid solar-wind generation all tested under BSS and HBS conditions once again. A socio economic study established the region of deployment, natural resources, terrain, landscape as well as the price of WECS, PV, storage, and converter components. These findings were used in HOMER to construct an optimised combination of components required for the supply of a 5MWh/d average load. This was followed by a sensitivity analysis which conducted 14 different optimisations at loads ranging from 1-10MWh/d. Economic benefits of the supercapacitor power density was uncovered through a reduction of the required RES Peak Operating Reserve (POR) capacity. This is especially significant in islanded RES, as they demand large POR in order to maintain autonomous power supply. This amounted to substantial NPC savings ranging from $1 - $7.5 million for the 25 year project. What was more interesting was the hybrid wind-solar generation results of the last case which extended total NPC savings, by up to $10 million. The hybrid-HBS does show some POR reductions which brought the COE to 0.3$/kWh on average, with the hybrid-BSS at 0.35$/kWh. The hybrid-BSS is slightly more expensive but has a reduced complexity which can be more inviting to project engineers therefore both hybrid cases are exceptionally feasible for local RES deployment. Single source RES is indeed electrically and economically feasible and shows extended sizing and performance benefits when implementing HBS. However, the cost reductions and performance benefits of hybrid generation make it the most practical solution to islanded RES in South Africa.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography