Journal articles on the topic 'HYBRID RESAMPLING'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'HYBRID RESAMPLING.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Lingyun, Fei Han, Qinghua Ling, et al. "Contribution-based imbalanced hybrid resampling ensemble." Pattern Recognition 164 (August 2025): 111553. https://doi.org/10.1016/j.patcog.2025.111553.
Full textArun, Pattathal V., and Sunil K. Katiyar. "A CNN based Hybrid approach towards automatic image registration." Geodesy and Cartography 62, no. 1 (2013): 33–49. http://dx.doi.org/10.2478/geocart-2013-0005.
Full textArun, Pattathal Vijayakumar. "A CNN BASED HYBRID APPROACH TOWARDS AUTOMATIC IMAGE REGISTRATION." Geodesy and Cartography 39, no. 3 (2013): 121–28. http://dx.doi.org/10.3846/20296991.2013.840409.
Full textAntonius Siagian, Novriadi, and Sardo Pardingotan Sipayung. "Handling Data Imbalance Problem in Hybrid Resampling Approach to Improve Accuracy of K-Nearest Neighbors Algorithm." Instal : Jurnal Komputer 16, no. 02 (2024): 78–87. http://dx.doi.org/10.54209/jurnalinstall.v16i02.207.
Full textGurcan, Fatih, and Ahmet Soylu. "Learning from Imbalanced Data: Integration of Advanced Resampling Techniques and Machine Learning Models for Enhanced Cancer Diagnosis and Prognosis." Cancers 16, no. 19 (2024): 3417. http://dx.doi.org/10.3390/cancers16193417.
Full textLee, Ernesto, Furqan Rustam, Wajdi Aljedaani, Abid Ishaq, Vaibhav Rupapara, and Imran Ashraf. "Predicting Pulsars from Imbalanced Dataset with Hybrid Resampling Approach." Advances in Astronomy 2021 (December 3, 2021): 1–13. http://dx.doi.org/10.1155/2021/4916494.
Full textZafar, Taimoor, Tariq Mairaj, Anzar Alam, and Haroon Rasheed. "Hybrid resampling scheme for particle filter-based inversion." IET Science, Measurement & Technology 14, no. 4 (2020): 396–406. http://dx.doi.org/10.1049/iet-smt.2018.5531.
Full textJentsch, Carsten, and Jens-Peter Kreiss. "The multiple hybrid bootstrap — Resampling multivariate linear processes." Journal of Multivariate Analysis 101, no. 10 (2010): 2320–45. http://dx.doi.org/10.1016/j.jmva.2010.06.005.
Full textSaputro, Dewi Retno Sari, Sulistyaningsih Sulistyaningsih, and Purnami Widyaningsih. "SPATIAL AUTOREGRESSIVE (SAR) MODEL WITH ENSEMBLE LEARNING-MULTIPLICATIVE NOISE WITH LOGNORMAL DISTRIBUTION (CASE ON POVERTY DATA IN EAST JAVA)." MEDIA STATISTIKA 14, no. 1 (2021): 89–97. http://dx.doi.org/10.14710/medstat.14.1.89-97.
Full textS, Karthikeyan, and Kathirvalavakumar T. "A Hybrid Data Resampling Algorithm Combining Leader and SMOTE for Classifying the High Imbalanced Datasets." Indian Journal of Science and Technology 16, no. 16 (2023): 1214–20. https://doi.org/10.17485/IJST/v16i16.146.
Full textIlham, Mohamad, Adi Winarno, Moch Lutfi, and Artanti Indrasetianingsih. "Handling Imbalanced Fraudulent Transaction Data Using SMOTE-Tomek and Random Forest: A Classification Approach." BEST : Journal of Applied Electrical, Science, & Technology 7, no. 1 (2025): 35–38. https://doi.org/10.36456/best.vol7.no1.10335.
Full textAbdullahi, Dauda Sani, Dr Muhammad Sirajo Aliyu, and Usman Musa Abdullahi. "Comparative analysis of resampling algorithms in the prediction of stroke diseases." UMYU Scientifica 2, no. 1 (2023): 88–94. http://dx.doi.org/10.56919/usci.2123.011.
Full textFadhilah, Rahmi, Heri Kuswanto, Dedy Dwi Prastyo, Dinda Ayu Safira, and M. Y. Matdoan. "COMPARISON OF RACOG AND RACOG-RUS FOR CLASSIFYING IMBALANCED DATA ON GRADIENT BOOSTING AND NAÏVE BAYES PERFORMANCE." Journal of Modern Applied Statistical Methods 24, no. 1 (2024): 89–104. https://doi.org/10.56801/jmasm.v24.i1.6.
Full textChen, Lingyun. "Implementing and evaluating simple resampling techniques in federated learning for imbalanced data." Applied and Computational Engineering 86, no. 1 (2024): 152–60. http://dx.doi.org/10.54254/2755-2721/86/20241578.
Full textDatta, Debaleena, Pradeep Kumar Mallick, Jana Shafi, Jaeyoung Choi, and Muhammad Fazal Ijaz. "Computational Intelligence for Observation and Monitoring: A Case Study of Imbalanced Hyperspectral Image Data Classification." Computational Intelligence and Neuroscience 2022 (April 30, 2022): 1–23. http://dx.doi.org/10.1155/2022/8735201.
Full textJadwal, Pankaj Kumar, Sonal Jain, and Basant Agarwal. "Clustering-based hybrid resampling techniques for social lending data." International Journal of Intelligent Systems Technologies and Applications 20, no. 3 (2021): 183. http://dx.doi.org/10.1504/ijista.2021.10044536.
Full textJadwal, Pankaj Kumar, Sonal Jain, and Basant Agarwal. "Clustering-based hybrid resampling techniques for social lending data." International Journal of Intelligent Systems Technologies and Applications 20, no. 3 (2021): 183. http://dx.doi.org/10.1504/ijista.2021.120495.
Full textErianto, Ongko, and Hartono. "Hybrid approach redefinition-multi class with resampling and feature selection for multi-class imbalance with overlapping and noise." Bulletin of Electrical Engineering and Informatics 10, no. 3 (2021): pp. 1718~1728. https://doi.org/10.11591/eei.v10i3.3057.
Full textShivanandappa, Manjunatha, and Malini M. Patil. "Extraction of image resampling using correlation aware convolution neural networks for image tampering detection." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (2022): 3033. http://dx.doi.org/10.11591/ijece.v12i3.pp3033-3043.
Full textManjunatha, Shivanandappa, and Shivanandappa Manjunatha. "Extraction of image resampling using correlation aware convolution neural networks for image tampering detection." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (2022): 3033–43. https://doi.org/10.11591/ijece.v12i3.pp3033-3043.
Full textOngko, Erianto, and Hartono Hartono. "Hybrid approach redefinition-multi class with resampling and feature selection for multi-class imbalance with overlapping and noise." Bulletin of Electrical Engineering and Informatics 10, no. 3 (2021): 1718–28. http://dx.doi.org/10.11591/eei.v10i3.3057.
Full textKarthikeyan, S., and T. Kathirvalavakumar. "A Hybrid Data Resampling Algorithm Combining Leader and SMOTE for Classifying the High Imbalanced Datasets." Indian Journal Of Science And Technology 16, no. 16 (2023): 1214–20. http://dx.doi.org/10.17485/ijst/v16i16.146.
Full textZhang, Xudong, Liang Zhao, Wei Zhong, and Feng Gu. "A novel hybrid resampling algorithm for parallel/distributed particle filters." Journal of Parallel and Distributed Computing 151 (May 2021): 24–37. http://dx.doi.org/10.1016/j.jpdc.2021.02.005.
Full textUstyannie, Windyaning, Emy Setyaningsih, and Catur Iswahyudi. "Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine and logistic regression." JURNAL INFOTEL 13, no. 4 (2021): 176–84. http://dx.doi.org/10.20895/infotel.v13i4.726.
Full textAarthi, Velishala, V. Sri Raghavendra, V. Deekshith Rao, and Mrs Hyma Birudaraju. "Leveraging Machine Learning for Improved Detection of Medicare Fraud." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–8. https://doi.org/10.55041/ijsrem.ncft031.
Full textRoseline, S. Abijah, Rakesh Chandrashekar, Jothi Prabha Appadurai, et al. "Hybrid resampling technique with HWSO based temporal convolution network for credit card fraud detection." Journal of Autonomous Intelligence 7, no. 5 (2024): 1568. http://dx.doi.org/10.32629/jai.v7i5.1568.
Full textRose Mary Mathew, Et al. "A Hybrid Resampling Approach for Multiclass Skewed Datasets and Experimental Analysis with Diverse Classifier Models." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 10 (2023): 1108–14. http://dx.doi.org/10.17762/ijritcc.v11i10.8631.
Full textHartono, Hartono, and Erianto Ongko. "Avoiding Overfitting dan Overlapping in Handling Class Imbalanced Using Hybrid Approach with Smoothed Bootstrap Resampling and Feature Selection." JOIV : International Journal on Informatics Visualization 6, no. 2 (2022): 343. http://dx.doi.org/10.30630/joiv.6.2.985.
Full textMalek, Nur Hanisah Abdul, Wan Fairos Wan Yaacob, Yap Bee Wah, Syerina Azlin Md Nasir, Norshahida Shaadan, and Sapto Wahyu Indratno. "Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data." Indonesian Journal of Electrical Engineering and Computer Science 29, no. 1 (2023): 598–608. https://doi.org/10.11591/ijeecs.v29.i1.pp598-608.
Full textJimmy, alexander Cortés Osorio, Andrés Chaves Osorio José, and David López Robayo Cristian. "Hybrid algorithm for the detection of Pixel-based digital image forgery using Markov and SIFT descriptors." Revista Facultad de Ingeniería, Universidad de Antioquia, no. 105 (November 2, 2021): 111–21. https://doi.org/10.17533/udea.redin.20211165.
Full textSnieder, Everett, Karen Abogadil, and Usman T. Khan. "Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy." Hydrology and Earth System Sciences 25, no. 5 (2021): 2543–66. http://dx.doi.org/10.5194/hess-25-2543-2021.
Full textZhao, Zixue, Tianxiang Cui, Shusheng Ding, Jiawei Li, and Anthony Graham Bellotti. "Resampling Techniques Study on Class Imbalance Problem in Credit Risk Prediction." Mathematics 12, no. 5 (2024): 701. http://dx.doi.org/10.3390/math12050701.
Full textA, Krishnapriya, and al. et. "Machine Learning For Medicare Fraud Detection: Tackling Class Imbalance With SMOTE-ENN." International Journal of Computational Learning & Intelligence 4, no. 4 (2025): 716–24. https://doi.org/10.5281/zenodo.15251088.
Full textShyam, P. "Credit Card Fraud Detection Using Ensemble (Stacking and Voting Classifiers) with Hybrid Techniques." International Journal for Research in Applied Science and Engineering Technology 13, no. 5 (2025): 6555–65. https://doi.org/10.22214/ijraset.2025.71710.
Full textSeetan, Raed, Jacob Bible, Michael Karavias, Wael Seitan, and Sam Thangiah. "Radiation Hybrid Mapping: A Resampling-based Method for Building High-Resolution Maps." Advances in Science, Technology and Engineering Systems Journal 2, no. 3 (2017): 1390–400. http://dx.doi.org/10.25046/aj0203175.
Full textHameed, Faisal, Sumesh Manjunath Ramesh, and Hoda Alkhzaimi. "Improved Hybrid Bagging Resampling Framework for Deep Learning-Based Side-Channel Analysis." Computers 13, no. 8 (2024): 210. http://dx.doi.org/10.3390/computers13080210.
Full textCao, Lu, and Hong Shen. "Imbalanced data classification based on hybrid resampling and twin support vector machine." Computer Science and Information Systems 14, no. 3 (2017): 579–95. http://dx.doi.org/10.2298/csis161221017l.
Full textMalek, Nur Hanisah Abdul, Wan Fairos Wan Yaacob, Yap Bee Wah, Syerina Azlin Md Nasir, Norshahida Shaadan, and Sapto Wahyu Indratno. "Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data." Indonesian Journal of Electrical Engineering and Computer Science 29, no. 1 (2022): 598. http://dx.doi.org/10.11591/ijeecs.v29.i1.pp598-608.
Full textWerner, Mirco, Vincent Schüßler, and Carsten Dachsbacher. "ReSTIR Subsurface Scattering for Real-Time Path Tracing." Proceedings of the ACM on Computer Graphics and Interactive Techniques 7, no. 3 (2024): 1–19. http://dx.doi.org/10.1145/3675372.
Full textVangaru, Uday Sai Kiran. "Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image and Video Forgeries." International Journal for Research in Applied Science and Engineering Technology 12, no. 10 (2024): 105–7. http://dx.doi.org/10.22214/ijraset.2024.64450.
Full textWang, Xiaohui, Hao Zhang, Shengzhou Bai, and Yuxian Yue. "Design of agile satellite constellation based on hybrid-resampling particle swarm optimization method." Acta Astronautica 178 (January 2021): 595–605. http://dx.doi.org/10.1016/j.actaastro.2020.09.040.
Full textBarhdadi, M., B. Benyacoub, and M. Ouzineb. "A hybrid variable neighborhood search with bootstrap resampling technique for credit scoring problem." Mathematical Modeling and Computing 11, no. 1 (2024): 109–19. http://dx.doi.org/10.23939/mmc2024.01.109.
Full textErsa Budi Sutanto, Ghytsa Alif Jabir, Nadhifan Humam Fitrial, Ni Luh Putu Yayang Septia Ningsih, Siti Andhasah Siti Andhasah, and Rani Nooraeni. "Faktor-Faktor yang Memengaruhi Pernikahan Dini pada Wanita Usia 20-24 di Indonesia Tahun 2017: Penerapan Metode Regresi Logistik Biner dengan Penyesuaian Resampling Data Imbalance." Jurnal Statistika dan Aplikasinya 3, no. 1 (2019): 39–49. http://dx.doi.org/10.21009/jsa.03105.
Full textNieto-del-Amor, Félix, Gema Prats-Boluda, Javier Garcia-Casado, et al. "Combination of Feature Selection and Resampling Methods to Predict Preterm Birth Based on Electrohysterographic Signals from Imbalance Data." Sensors 22, no. 14 (2022): 5098. http://dx.doi.org/10.3390/s22145098.
Full textWongvorachan, Tarid, Surina He, and Okan Bulut. "A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining." Information 14, no. 1 (2023): 54. http://dx.doi.org/10.3390/info14010054.
Full textWang, Qiang. "A Hybrid Sampling SVM Approach to Imbalanced Data Classification." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/972786.
Full textRestrepo, John, Nelson Correa-Rojas, and Jorge Herrera-Ramirez. "Speckle Noise Reduction in Digital Holography Using a DMD and Multi-Hologram Resampling." Applied Sciences 10, no. 22 (2020): 8277. http://dx.doi.org/10.3390/app10228277.
Full textHaberlandt, U., A. D. Ebner von Eschenbach, and I. Buchwald. "A space-time hybrid hourly rainfall model for derived flood frequency analysis." Hydrology and Earth System Sciences Discussions 5, no. 4 (2008): 2459–90. http://dx.doi.org/10.5194/hessd-5-2459-2008.
Full textNajeeb, Miftah Asharaf, and Alhaam Alariyibi. "Imbalanced Dataset Effect on CNN-Based Classifier Performance for Face Recognition." International Journal of Artificial Intelligence & Applications 15, no. 1 (2024): 25–41. http://dx.doi.org/10.5121/ijaia.2024.15102.
Full textSukamto, Hadiyanto, and Kurnianingsih. "A Hybrid Resampling Method with K-Nearest Neighbour (FHR-KNN) for Imbalanced Preeclampsia Dataset." Ingénierie des systèmes d information 28, no. 2 (2023): 483–90. http://dx.doi.org/10.18280/isi.280225.
Full text