Dissertations / Theses on the topic 'Hybridní algoritmus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Hybridní algoritmus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Stacha, Radek. "Optimalizace kogeneračního systému." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231502.
Full textHrabec, Dušan. "Mathematical Programs for Dynamic Pricing - Demand Based Management." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-263401.
Full textŠandera, Čeněk. "Hybridní model metaheuristických algoritmů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234259.
Full textHachimi, Hanaa. "Hybridations d'algorithmes métaheuristiques en optimisation globale et leurs applications." Phd thesis, INSA de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00905604.
Full textHoráková, Pavla. "Optimalizace pro registraci obrazů založená na genetických algoritmech." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219505.
Full textNaldi, Murilo Coelho. "Agrupamento híbrido de dados utilizando algoritmos genéticos." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07112006-080351/.
Full textClustering techniques have been obtaining good results when used in several data analysis problems, like, for example, gene expression data analysis. However, the same clustering technique used for the same data set can result in different ways of clustering the data, due to the possible initial clustering or the use of different values for the free parameters. Thus, the obtainment of a good clustering can be seen as an optimization process. This process tries to obtain good clustering by selecting the best values for the free parameters. For being global search methods, Genetic Algorithms have been successfully used during the optimization process. The goal of this research project is to investigate the use of clustering techniques together with Genetic Algorithms to improve the quality of the clusters found by clustering algorithms, mainly the k-means. This investigation was carried out using as application the analysis of gene expression data, a Bioinformatics problem. This dissertation presents a bibliographic review of the issues covered in the project, the description of the methodology followed, its development and an analysis of the results obtained.
Gomes, Wellison José de Santana. "Estudo do efeito de incertezas na otimização estrutural." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23032010-092000/.
Full textIn this study the effects of uncertainty on optimum structural design are investigated, by comparing three distinct formulations of a structural optimization problem. Such effects can be quantified in terms of failure probabilities and risk, or expected costs of failure. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation do not consider explicitly parameter uncertainty and its effects on structural safety. As a consequence, safety of the optimum structure can be compromised, in comparison to safety of the original structure. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probability used as constraint in the analysis. Risk optimization increases the scope of the problem, by addressing the compromising goals of economy and safety, and allowing one to find a proper point of balance between these goals. This is accomplished by quantifying the costs associated to construction, operation and maintenance of the structure, as well as the monetary consequences of failure. Experience shows that structural optimization problems can have multiple local minima. With the objective of finding the global minimum in all studied problems, two heuristic optimization methods are used in this study: genetic algorithms and particle swarm optimization. Aiming at efficiency, two methods with mathematical foundations are also considered: the methods of Powel and Polak-Ribiere. Finally, looking for a compromise between reliability (capacity to find the global minimum) and efficiency, four hybrid algorithms are constructed, combining the four methods just cited. The study investigates the effects of uncertainty on optimum structural design by comparing solutions obtained via the different formulations of the optimization problem. The paper presents some case studies, highlighting the differences in the optimum designs obtained with each formulation. The study leads to a better understanding of the limitations of each formulation in the solution of structural optimization problems. The investigation shows that, in general, the optimum structure can only be found by the most comprehensive formulation: risk optimization or RBRO. The study shows that DDO only leads to the optimum structure if an optimum safety coefficient is used as constraint for each individual failure mode. In a similar way, the investigation shows that when the costs associated to distinct failure modes are different, the RBDO formulation only leads to the optimum structural design if an optimum failure probability is specified as constraint for each failure mode of the structure.
Rebreyend, Pascal. "Algorithmes génétiques hybrides en optimisation combinatoire." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 1999. http://tel.archives-ouvertes.fr/tel-00010950.
Full textRebreyend, Pascal. "Algorithmes genetiques hybrides en optimisation combinatoire." Lyon, École normale supérieure (sciences), 1999. http://www.theses.fr/1999ENSL0108.
Full textVladimir, Lončar. "Hybrid parallel algorithms for solving nonlinear Schrödinger equation." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=104931&source=NDLTD&language=en.
Full textNumerički metodi i algoritmi za rešavanje parcijalnih diferencijalnih jednačina, naročito paralelni algoritmi, predstavljaju izuzetno značajnu oblast istraživanja, uzimajući u obzir veoma široku primenljivost u svim oblastima nauke. Veliki napredak informacione tehnologije otvara nove mogućnosti za razvoj bržih al-goritama i numeričkih simulacija visoke rezolucije. Ovo se ostvaruje kroz para-lelizaciju na različitim nivoima koju poseduju praktično svi moderni računari. U ovoj tezi razvijeni su paralelni algoritmi za rešavanje jedne vrste parcijalnih diferencijalnih jednačina poznate kao nelinearna Šredingerova jednačina sa inte-gralnim konvolucionim kernelom. Jednačine ovog tipa se javljaju u raznim oblas-tima fizike poput nelinearne optike, fizike plazme i fizike ultrahladnih atoma, kao i u ekonomiji i kvantitativnim finansijama. Teza se bavi posebnim oblikom nelinearne Šredingerove jednačine, Gros-Pitaevski jednačinom sa dipol-dipol in-terakcionim članom, koja karakteriše ponašanje ultrahladnih atoma u stanju Boze-Ajnštajn kondenzacije.U tezi su predstavljeni novi paralelni algoritmi za numeričko rešavanje Gros-Pitaevski jednačine za širok spektar modernih računarskih platformi, od sis-tema sa deljenom memorijom i specijalizovanih hardverskih akceleratora u ob-liku grafičkih procesora, do heterogenih računarskih klastera. Za sisteme sa deljenom memorijom, razvijen je algoritam i implementacija namenjena više-jezgarnim centralnim procesorima korišćenjem OpenMP tehnologije. Ovaj al-goritam je proširen tako da radi i u okruženju grafičkih procesora korišćenjem CUDA alata, a takođe je razvijen i predstavljen hibridni, heterogeni algoritam koji kombinuje OpenMP i CUDA pristupe i koji je u stanju da iskoristi sve raspoložive resurse jednog računara.Imajući u vidu inherentna ograničenja raspoložive memorije koju pojedinačan računar poseduje, razvijen je i algoritam za sisteme sa distribuiranom memorijom zasnovan na Message Passing Interface tehnologiji i prethodnim algoritmima za sisteme sa deljenom memorijom. Da bi se maksimalizovale performanse razvijenih hibridnih implementacija, parametri koji određuju raspodelu podataka i računskog opterećenja su optimizovani korišćenjem genetskog algoritma. Poseban izazov je vizualizacija povećane količine izlaznih podataka, koji nastaju kao rezultat efikasnosti novorazvijenih algoritama. Ovo je u tezi rešeno kroz inte-graciju implementacija sa najsavremenijim alatom za vizualizaciju (VisIt), što je omogućilo proučavanje dva primera koji pokazuju kako razvijeni programi mogu da se iskoriste za simulacije realnih sistema.
Collins, Joshua Stewart. "Rekernelisation Algorithms in Hybrid Phylogenies." Thesis, University of Canterbury. Mathematics and Statistics, 2009. http://hdl.handle.net/10092/2852.
Full textEtancelin, Jean-Matthieu. "Couplage de modèles, algorithmes multi-échelles et calcul hybride." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM072/document.
Full textIn this work, we investigate the implementation of hybrid methods on heterogeneous computers in order to achieve numerical simulations of multi-scale problems. The hybrid numerical method consists of coupling methods of different natures to solve the physical and numerical characteristics of the problem. It is based on a remeshed particle method that combines the advantages of Lagrangian and Eulerian methods. Particles are pushed by local velocities and remeshed at every time-step on a grid using high order interpolation formulas. This forward semi-lagrangian method takes advantage of the regular mesh on which particles are reinitialized but is not limited by CFL conditions.We derive a class of high order methods for which we are able to prove convergence results under the sole stability constraint that particle trajectories do not intersect.In the context of high performance computing, a strong portability constraint is applied to the code development in order to handle the rapid evolution of architectures and their heterogeneous nature. An analysis of the numerical efficiency of the GPU implementation of the method is performed and extended to multi-GPU platforms. The hybrid method is applied to the simulation of the transport of a passive scalar in a 3D turbulent flow. The two sub-problems of the flow and the scalar calculations are solved simultaneously on multi-CPU and multi-GPU architectures
Bachelet, Vincent. "Métaheuristiques parallèles hybrides : application au problème d'affection quadratique." Lille 1, 1999. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1999/50376-1999-397.pdf.
Full textAbdelkafi, Omar. "Métaheuristiques hybrides distribuées et massivement parallèles." Thesis, Mulhouse, 2016. http://www.theses.fr/2016MULH9578/document.
Full textMany optimization problems specific to different industrial and academic sectors (energy, chemicals, transportation, etc.) require the development of more effective methods in resolving. To meet these needs, the aim of this thesis is to develop a library of several hybrid metaheuristics distributed and massively parallel. First, we studied the traveling salesman problem and its resolution by the ant colony method to establish hybridization and parallelization techniques. Two other optimization problems have been dealt, which are, the quadratic assignment problem (QAP) and the zeolite structure problem (ZSP). For the QAP, several variants based on an iterative tabu search with adaptive diversification have been proposed. The aim of these proposals is to study the impact of: the data exchange, the diversification strategies and the methods of cooperation. Our best variant is compared with six from the leading works of the literature. For the ZSP two new formulations of the objective function are proposed to evaluate the potential of the zeolites structures founded. These formulations are based on reward and penalty evaluation. Two hybrid and parallel genetic algorithms are proposed to generate stable zeolites structures. Our algorithms have now generated six stable topologies, three of them are not listed in the SC-JZA website or in the Atlas of Prospective Zeolite Structures
Guimarans, Serrano Daniel. "Hybrid algorithms for solving routing problems." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96386.
Full textAn important component of many distribution systems is routing vehicles to serve customers. The Vehicle Routing Problem (VRP) provides a theoretical framework for approaching this class of logistics problems dealing with physical distribution. Because of its complexity and applicability, this class of logistics problems is among the most popular research areas in combinatorial optimization. This PhD. Thesis is aimed to introduce three different yet related hybrid methodologies to solve the VRP. These methodologies have been especially designed for being flexible in the sense that they can be used, with minor adaptations, for solving different variants of the VRP present in industrial application cases. In the three methodologies described in this work, different technologies are used to achieve the desired flexibility, efficiency, and robustness. Constraint Programming (CP) has been chosen as the modeling paradigm to describe the main constraints involved in the VRP. CP provides the pursued flexibility for the three methodologies, since adding side constraints present in most real application cases becomes a modeling issue and does not affect the search algorithm definition. In the first two hybrid methodologies, the CP model is used to check solution's feasibility during search. The third methodology presents a richer model for the VRP capable of tackling different problem variants. In this case, the search is performed and controlled from a CP perspective. Lagrangian Relaxation (LR) and a probabilistic version of the Clarke and Wright Savings (CWS) heuristic are used for specific purposes within the proposed methodologies. The former is used for minimizing the total traveled distance and the latter to provide a good initial solution. Both methods provide an efficient approach to the respectively faced problems. Moreover, the use of LR permits reducing the computational complexity of the performed local search processes and therefore reduces the required computational time to solve the VRP. All methodologies are based on the so-called Variable Neighborhood Search (VNS) metaheuristic. The VNS is formed by a family of algorithms that exploits systematically the idea of neighborhood changes both in the search phase to find a local minimum, and in perturbation phase, to escape from the corresponding valley. Although it is an extended method, there are few examples of its application to the VRP. However, interesting results have been obtained even applying the simplest VNS algorithms to this problem. The present thesis is aimed to contribute to the current research on the application of the VNS metaheuristic to the VRP. It has been chosen as the framework where the mentioned techniques are embedded. Hence, the metaheuristic is used to guide the search, while the desired efficiency is provided by the composing methods. On the other hand, using CP as the modeling paradigm provides the required flexibility. This characteristic is enhanced in the last described methodology. In this case, the CP search is guided by a combination of the VNS and the Large Neighborhood Search (LNS) metaheuristics. This methodology represents an initial approach for tackling efficiently more complex and richer VRP, similar to real application cases.
Lee, David Alexander James. "Hybrid algorithms for distributed constraint satisfaction." Thesis, Robert Gordon University, 2010. http://hdl.handle.net/10059/509.
Full textYu, Chia Woo. "Improved algorithms for hybrid video coding." Thesis, University of Warwick, 2007. http://wrap.warwick.ac.uk/3841/.
Full textDoerner, Karl, Richard F. Hartl, and Marc Reimann. "A hybrid ACO algorithm for the full truckload transportation problem." SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 2001. http://epub.wu.ac.at/74/1/document.pdf.
Full textSeries: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Nieländer, N. Ulf. "CHEOPS: Das Chemnitzer hybrid-evolutionäre Optimierungssystem." Doctoral thesis, Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901000.
Full textSmaoui, Salma. "Réseaux possibilistes hybrides : représentation des interventions et algorithmes." Artois, 2007. http://www.theses.fr/2007ARTO0407.
Full textThis thesis aims to study the causality notion and to develop propagation algorithms in the possibilistic networks framework. Intervention is a crucial notion to insure an efficient causal analysis in the sense that it facilitates causality ascriptions. We propose to introduce the do operator to represent interventions in possibilistic networks. We show that using such operator in the possibilistic framework reveals, in some cases, more interesting than its application for Bayesian networks especially for the propagation efficiency when reasoning with interventions. A possibilistic causal model based on possibilistic networks and allowing handling interventions is provided. This model proposes a typology of the forms that causal relationships can take in the possibilistic framework. Handling observation and dealing with interventions are unified through the propagation and conditioning process. We propose to improve propagation algorithms by taking advantages of possibility theory. Our approach consists of combining two representation tools in the possibility framework: possibilistic logic and possibilistic networks. These two alternatives both provide compact representations of possibility distributions. Hence, uncertainty at the level of nodes is represented in terms of possibilistic knowledge bases instead of possibility distributions. A propagation algorithm using the new representation, called hybrid, is proposed. Experimental results confirm the contribution of this new algorithm
Ediger, David. "Analyzing hybrid architectures for massively parallel graph analysis." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47659.
Full textEl-Mihoub, Tarek A. "New hybrid genetic algorithms for parameter search." Thesis, Nottingham Trent University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442088.
Full textMapfaira, Herbert. "Assembly line balancing using hybrid genetic algorithms." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268500.
Full textKhan, Wali. "Hybrid multiobjective evolutionary algorithms based on decomposition." Thesis, University of Essex, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549297.
Full textRubio, Juan Carlos Campos. "Projeto, construção e avaliação de microposicionadores para usinagem de ultraprecisão." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-11072018-153521/.
Full textIn general, actual requirements such as high performance and small sizes of mechatronic systems, has led modern industry to design positioning systems with good characteristics of acceleration and positioning accuracy. The increasing demand of components with better metrological and finish characteristics, as X-ray and infra-red lens, has allowed the development of a number of types of micropositioning systems that are able to move machine elements to very small distances with high levels of accuracy. In this work it is proposed the use of a new type of actuator that applies the properties of electromagnetic strain of certain metallic alloys (magnetostrictive actuators). lt is also proposed the application of a digital control system that uses a control algorithm which is based on fuzzy logic and artificial neural networks for the micropositioning control. Design principles and methodologies related to precision engineering are discussed with the purpose of aiding the development of two prototypes of positioners for ultraprecision rnachining, experimental results show that micropositioner driven by magnetostrictive actuators have better dynamics behaviours. This allows the use of such actuators as an valid alternative for positioning in submicrometer range.
Karray, Asma. "Contribution à l’ordonnancement d’ateliers agroalimentaires utilisant des méthodes d’optimisation hybrides." Thesis, Ecole centrale de Lille, 2011. http://www.theses.fr/2011ECLI0024/document.
Full textThe purpose of our works is the implementation of methodologies for the resolution of the agro-food industry scheduling problem. Three new approaches based on genetic algorithms are proposed to solve multi-objectives scheduling problems: sequential genetic algorithms (SGA), parallel genetic algorithms (PGA) and parallel sequential genetic algorithms (PSGA). Two high-level hybrid algorithms, SH_GA/TS et SH_GA/SA, are also proposed. The purpose in this hybridization is to benefit the exploration of the solution space by a population of individuals with the exploitation of solutions through a smart search of the local search algorithm
Shen, Gang. "Shadow Price Guided Genetic Algorithms." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/cs_diss/64.
Full textHinnenthal, Kristian [Verfasser]. "Models and algorithms for hybrid networks and hybrid programmable matter / Kristian Hinnenthal." Paderborn : Universitätsbibliothek, 2021. http://d-nb.info/1241183112/34.
Full textIdrissi, Aouad Maha. "Conception d'algorithmes hybrides pour l'optimisation de l'énergie mémoire dans les systèmes embarqués et de fonctions multimodales." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10029/document.
Full textRésumé en anglais : Memory is considered to be greedy in energy consumption, a sensitive issue, especially in embedded systems. The global optimization of multimodal functions is also a difficult problem because of the large number of local optima of these functions. In this thesis report, I present various new hybrid and distributed algorithms to solve these two optimization problems. These algorithms are compared with conventional methods used in the literature and the results obtained are encouraging. Indeed, these results show a reduction in memory energy consumption by about 76% to more than 98% on our benchmarks on one hand. On the other hand, in the case of global optimization of multimodal functions, our hybrid algorithms converge more often to the global optimum solution. Distributed and cooperative versions of these new hybrid algorithms are also proposed. They are more faster than their respective sequential versions
Kabalan, Bilal. "Systematic methodology for generation and design of hybrid vehicle powertrains." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1048.
Full textTo meet the vehicle fleet-wide average CO2 targets, the stringent pollutant emissions standards, and the clients’ new demands, the automakers realized the inevitable need to offer more hybrid and electric powertrains. Designing a hybrid powertrain remains however a complex task. It is an intricate system involving numerous variables that are spread over different levels: architecture, component technologies, sizing, and control. The industry lacks frameworks or tools that help in exploring the entire design space and in finding the global optimal solution on all these levels. This thesis proposes a systematic methodology that tries to answer a part of this need. Starting from a set of chosen components, the methodology automatically generates all the possible graphs of architectures using constraint-programming techniques. A tailored representation is developed to picture these graphs. The gearbox elements (clutches, synchronizer units) are represented with a level of details appropriate to generate the new-trend dedicated hybrid gearboxes, without making the problem too complex. The graphs are then transformed into other types of representation: 0ABC Table (describing the mechanical connections between the components), Modes Table (describing the available modes in the architectures) and Modes Table + (describing for each available mode the global efficiency and ratio of the power flow between all the components). Based on these representations, the architectures are filtered and the most promising ones are selected. They are automatically assessed and optimized using a general hybrid model specifically developed to calculate the performance and fuel consumption of all the generated architectures. This model is inserted inside a bi-level optimization process: Genetic Algorithm GA is used on the sizing and components level, while Dynamic Programming DP is used on the control level. A case study is performed and the capability of the methodology is proven. It succeeded in automatically generating all the graphs of possible architectures, and filtering dismissed architectures that were then proven not efficient. It also selected the most promising architectures for optimization. The results show that the proposed methodology succeeded in finding an architecture better than the ones proposed without the methodology (consumption about 5% lower)
Shaikh, Mohammad Shahid. "Optimal control of hybrid systems : theory and algorithms." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85095.
Full textIn this thesis we first formulate a class of hybrid optimal control problems (HOCPs) for systems with controlled and autonomous location transitions and then present necessary conditions for hybrid system trajectory optimality. These necessary conditions constitute generalizations of the standard Minimum Principle (MP) and are presented for the cases of open bounded control value sets and compact control value sets. These conditions give information about the behaviour of the Hamiltonian and the adjoint process at both autonomous and controlled switching times.
Such proofs of the necessary conditions for hybrid systems optimality which can be found in the literature are sufficiently complex that they are difficult to verify and use; in contrast, the formulation of the HOCP given in Chapter 2 of this thesis, together with the use of (i) classical variational methods and more recent needle variation techniques, and (ii) a local controllability condition, called the small time tubular fountain (STTF) condition, make the proofs in that chapter comparatively accessible. We note that the STTF condition is used to establish the adjoint and Hamiltonian jump conditions in the autonomous switchings case.
A hybrid Dynamic Programming Principle (HDPP) generalizing the standard dynamic programming principle to hybrid systems is also derived and this leads to hybrid Hamilton-Jacobi-Bellman (HJB) equation which is then used to establish a verification theorem within this framework. (Abstract shortened by UMI.)
Moursli, Omar. "Scheduling the hybrid flowshop : branch and bounnd algorithms." Université catholique de Louvain, 1999. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11262003-101952/.
Full textCoulthurst, David James. "Ray tracing methods fo hybrid global illumination algorithms." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.555616.
Full textSun, Jianyong. "Hybrid estimation of distribution algorithms for optimization problems." Thesis, University of Essex, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423548.
Full textTorres, Reynier Hernández. "Vibration-based damage identification using hybrid optimization algorithms." Instituto Nacional de Pesquisas Espaciais (INPE), 2017. http://urlib.net/sid.inpe.br/mtc-m21b/2017/08.18.16.12.
Full textO problema inverso da identificação de danos estruturais é abordado nesta tese. A solução inversa é obtida resolvendo um problema de otimização usando diferentes algoritmos híbridos. O modelo direto estrutural é resolvido pelo Método dos Elementos Finitos. Código FORTRAN desenvolvido pelo grupo de pesquisa do Laboratório Associado de Computação e Matemática Aplicada (LAC) do Instituto Nacional de Pesquisas Espaciais (INPE) foi aplicado em alguns problemas e, para outros experimentos numéricos, o software NASTRAN foi empregado. O histórico de tempo de aceleração, velocidade ou deslocamento pode ser usado como dados experimentais nesta metodologia. A função objetivo é formulada como a soma da diferença quadrática entre o deslocamento medido e os dados calculados pelo modelo direto. Diferentes metaheurísticas híbridas são testadas, usando uma abordagem em duas etapas. A primeira etapa realiza a exploração em todo o espaço de busca, e a segunda etapa realiza a intensificação a partir da melhor solução encontrada pela primeira etapa. Uma abordagem de otimização combina o Algoritmo de Colisão de Múltiplas Partículas (MPCA) com o método de busca direta Hooke-Jeeves (HJ). O MPCA é melhorado usando diferentes mecanismos derivados da Aprendizagem Baseada na Oposição, como são a Amostragem Baseada no Centro, e a Aprendizagem Baseada em Rotação. Outro otimizador aplicado é o novo q-gradiente, que também é hibridado com o método HJ. A metodologia é testada em estruturas com diferentes complexidades. Supõe-se que os danos são invariante no tempo para gerar as medidas experimentais sintéticas. Dados sem ruído e com diferentes níveis de ruído foram considerados em testes usando modelos implementados em FORTRAN. A maioria dos experimentos foi realizada usando um conjunto completo de dados, de todos os nós possíveis, e um dos experimentos foi feito usando um conjunto incompleto de dados, com um baixo nível de ruído. Para os experimentos utilizando o NASTRAN, foram considerados dados sintéticos sem ruído, e foi utilizado o conjunto completo de dados. Em geral, boas estimativas para localização e gravidade do dano foram alcançadas. Alguns falsos positivos apareceram nas estimativas, mas os danos presentes nos sistemas foram bem identificados.
Connor, Andrew Miles. "The synthesis of hybrid mechanisms using genetic algorithms." Thesis, Liverpool John Moores University, 1996. http://researchonline.ljmu.ac.uk/5570/.
Full textKrivosheev, Evgeny. "Crowd and Hybrid Algorithms for Cost-Aware Classification." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/263787.
Full textAssunção, Cláudio Fernando Sequeira. "Hybrid link-state path-vector protocol ++." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/7561.
Full textO protocolo usado actualmente na Internet para realizar encaminhamento inter-domínio é o BGP (Border Gateway Protocol). Este protocolo foi desenhado para obter acessibilidade dos domínios e não está preparado para todos os requisitos das redes modernas, sofrendo de problemas graves, como convergência lenta e escalabilidade limitada. O protocolo HLP (Hybrid Link-state Path-vector) foi proposto como uma possível solução para estes problemas. Nesta dissertação é avaliado o desempenho do HLP face ao BGP para a Internet real. Também é avaliada a sua compatibilidade com o modelo de negócios da Internet. O estudo do HLP revelou que não é compatível com o actual modelo de negócios da Internet, tendo sido desenvolvido o HLP++, um novo protocolo que corrige esta limitação. A implementação do HLP++ foi realizada no simulador de redes 2 (ns-2). É efectuado um estudo sobre a natureza topológica da Internet, por forma a melhor compreender as relações entre os ASes. Deste estudo resultou uma topologia (um subconjunto da rede Internet) utilizada nas experiências realizadas com os protocolos avaliados, conseguindo assim resultados mais próximos da realidade. Os resultados mostram que o protocolo HLP++ não está adaptado à topologia da Internet, tendo um desempenho inferior quando comparado com o BGP. Apenas tem bom desempenho numa rede hierárquica.
Ait-Hammouda, Islam. "Modélisation hybride des algorithmes d'anti-blocage des roues (ABS)." Paris 11, 2007. http://www.theses.fr/2007PA112075.
Full textIn this thesis we were interested on the problem of longitudinal control of vehicles, and more particularly on anti-lock brake algorithms or ABS. The main objective is to model and to study a category of anti-lock brake systems similar to those used in industry (based on deceleration thresholds). Starting from the analysis of the system's trajectories, we will propose conditions on the deceleration thresholds that optimize the braking force of the vehicle. Then, we will be interested in the impact of discontinuous transitions of road characteristics on the system's dynamic. An ABS algorithm that deals with this type of phenomena is proposed and studied. It will be also useful to analyze, using simulations, the impact of vertical force variation on the ABS algorithms performances. Nowadays, The safety systems interaction offers new advisabilities to increase vehicle performances and to improve the driver's comfort. This pushed us to study the interaction between the ABS algorithms of the four wheels. Some solutions that deal with problems such as: the increase of efforts at the wheel, the lack of satisfactory conditions to the estimate the vehicle's speed (to guarantee at least one wheel in the stable zone of the tire), are proposed. The last part of this thesis is devoted to the trajectory following of a vehicle with point of vision. Feedback static controllers (Saturation Type) are proposed. The objective of this part being to introduce the study of a driver model, which will be useful for the analysis of the of the performances of ABS algorithms performances
Potarusov, Roman. "Разработка и исследование бионических методов упаковкиUne approche hybride parallèle pour le problème du conditionnement unidimensionnel." Artois, 2008. http://www.theses.fr/2008ARTO0205.
Full textOne-dimensional Bin Packing Problem (BPP) is well known combinatorial optimization problem. BPP in its general form is P-hard in the strong sense, so there is a little hope of finding even pseudo-polynomial time optimization algorithm for it. BPP is an interesting topic of research, because BPP is encountered in many industries, such as steel, glass and paper manufacturing. There are many other industrial problems that seem to be different, but have a very similar structure, such as capital budgeting, processor scheduling and VLSI design. BPP models several practical problems in computer science. Some examples are: table formatting, prepaging, file allocation. In this thesis the Hybrid Parallel Genetic Algorithm to solve 1-D BPP has been presented. Two evolution models (de Vries’ evolution model and Lamarck’s evolution model) have been adapted to solve the BPP. New problem-oriented genetic operators have also been developed. They never decrease the quality of solution and allow obtaining valid BPP solutions. Two effective local search algorithms are proposed. They allow improving of BPP solutions to get quasi-optimal and optimal packings. Computational experiments show that the presented algorithm gives quasi-optimal and optimal solutions for all benchmark instances in an acceptable amount of computing time, clearly showing the robustness of the proposed approach. In the case of quasi-optimal solutions the absolute deviation from reference solution is at most one bin. Future work could explore the possibility of designing more sophisticated architectures of genetic search with migration and applying the proposed approach to solve the Vehicle Routing Problem with Multiple Routes. BPP approach seems to be effective to distribute routes to vehicles
Sbihi, Abdelkader. "Les Méthodes Hybrides en Optimisation Combinatoire :Algorithmes Exacts et Heuristiques." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2003. http://tel.archives-ouvertes.fr/tel-00012188.
Full textmodélisation et de la résolution algorithmique. Dans cette thèse, nous étudions deux variantes
NP-difficiles de problèmes de type sac-à-dos. Plus précisément, nous traitons le problème de
la distribution équitable (le Knapsack Sharing Problem : KSP) et le problème du sac-à-dos
généralisé à choix multiple (le Multiple-choice Multidimensional Knapasck Problem : MMKP).
Dans la première partie de cette thèse, nous nous intéressons au développement d'algorithmes
approchés pour les deux variantes évoquées du problème de type sac-à-dos. La deuxième partie
traite essentiellement de la résolution exacte du problème du sac-à-dos généralisé à choix multiple.
L'approche exacte que nous proposons est de type séparation et évaluation s'appuyant
principalement sur : (i) le calcul des bornes inférieure et supérieure et (ii) l'utilisation de la
stratégie par le meilleur d'abord en développant des branches à double noeuds fils et frère.
La première partie porte sur l'étude et la résolution approchée des deux problèmes KSP et
MMKP. Concernant le problème de la distribution équitable, nous proposons dans un premier
temps, une première version de l'algorithme exploitant certaines caractéristiques de la
recherche tabou. Dans un deuxième temps, nous développons une deuxième version de l'algorithme dont l'idée principale consiste à tenter de combiner l'intensification de la recherche dans l'espace des solutions et la diversification de la solution obtenue. Nous soulignons la rapidité
de la première version et l'efficacité de la deuxième. Ensuite nous nous intéressons au problème
de sac-à-dos généralisé à choix multiple. Nous proposons deux heuristiques de recherche locale
itérative. Le premier algorithme s'appuie sur une “recherche guidée”. Le deuxième algorithme
est une recherche locale que nous appelons réactive avec stratégies de déblocage et de dégradtion améliorantes de la solution et basées sur l'inter-change local.
Dans la deuxième partie de cette thèse, nous proposons une méthode de résolution exacte de type séparation et évaluation pour le problème du sac-à-dos généralisé à choix multiple. D'une part, nous nous proposons la réduction du problème initial au problème auxiliaire MMKPaux qui n'est autre que le problème de sac-à-dos à choix multiple MCKP. Nous calculons une borne supérieure pour le MMKPaux et nous établissons le résultat théorique pour lequel une borne supérieure pour le MMKPaux est une borne supérieure pour le MMKP. D'autre part, nous proposons le calcul d'une borne supérieure ainsi qu'une borne inférieure de départ pour le problème étudié qui sont nécessaires pour la réduction de l'espace de recherche. L'étude expérimentale montre l'efficacité de la méthode proposée sur différents groupes d'instances de petite et moyenne taille.
Nous expliquons enfin pourquoi cet algorithme exact atteint ses limites de résolution, dˆues
principalement à la complexité intrinsèque du modèle étudié. D'autant la résolution dépend de
la taille et la densité des instances traitées.
Rondepierre, Aude. "Algorithmes hybrides pour le contrôle optimal des systèmes non linéaires." Phd thesis, Grenoble INPG, 2006. http://tel.archives-ouvertes.fr/tel-00112203.
Full textAndersson, Martin. "Industrial scheduling with evolutionary algorithms using a hybrid representation." Thesis, Högskolan i Skövde, Institutionen för teknik och samhälle, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-5348.
Full textCamacho, Navarro Jhonatan. "Robust structural damage detection by using statistical hybrid algorithms." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667239.
Full textEsta tesis presenta los resultados de la aplicación de un enfoque híbrido estadístico para el monitoreo de salud estructural utilizando señales piezoeléctrica. Donde, al combinar procesamiento estadístico basado en análisis de componentes principales (PCA), funciones de correlación cruzada y métodos de reconocimiento de patrones fue posible detectar, clasificar y localizar daños en diferentes condiciones ambientales y posibles fallas en los sensores. La metodología desarrollada consiste en primero transmitir ondas guiadas a lo largo de la superficie de la estructura monitorizada mediante el uso de dispositivos piezoeléctricos (PZT). Luego, las señales de correlación cruzada calculadas sobre las mediciones piezoeléctricas se representan estadísticamente por medio de un modelo de línea base obtenido mediante PCA. Posteriormente, los daños se identifican mediante índices de error calculados a partir del modelo estadístico de referencia. Finalmente, se utilizan métodos de aprendizaje no supervisado y gráficos de dispersión para verificar el rendimiento del algoritmo propuesto. En esta tesis se presentan nuevas técnicas o versiones mejoradas para lograr un diagnóstico más confiable con alta robustez y buen rendimiento. Específicamente, se utilizan algoritmos genéticos diferenciales para ajustar automáticamente los parámetros en un algoritmo de clasificación y detección de daños basado en PCA y Mapas auto-organizados (SOM). Además, se analiza Ensemble Learning como un enfoque para obtener un diagnóstico más eficiente con mejores fronteras de separación entre condiciones con y sin daño, combinando diferentes algoritmos de aprendizaje construidos a partir de PCA no lineal y lineal así como un esquema activo de multiactuación de piezodiagnóstico. Adicionalmente, se implementa una versión modificada del algoritmo de reconstrucción para la inspección probabilística de daños (RAPID) para estimar la localización del daño. La metodología propuesta se validó experimentalmente en diferentes estructuras, como un circuito de tubería de acero al carbono, una placa laminada, alas de avión y un generador de viento a escala, entre otros; donde se estudiaron diferentes escenarios de daños, incluidos escenarios de fugas, agregación de masa y grietas. Se demuestra la efectividad de la metodología propuesta para detectar, localizar y clasificar daños en diferentes condiciones ambientales y operativas. Del mismo modo, la viabilidad del monitoreo continuo se valida implementando el código del algoritmo propuesto en un sistema embebido, cuya capacidad para detectar daños estructurales se demostró. Como resultado, la combinación del enfoque de piezodiagnóstico, análisis de correlación cruzada, análisis de componentes principales, técnicas de aprendizaje no supervisado y Ensemble Learning se obtiene una solución prometedora en el campo del monitoreo de la salud estructural y específicamente para lograr una solución robusta para la detección de daños y la ubicación.
Ryan, Mark Desmond Charles. "Hybrid genetic algorithms for real world combinatorial optimization problems." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393303.
Full textJin, Yan. "Hybrid metaheuristic algorithms for sum coloring and bandwidth coloring." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0062/document.
Full textThe minimum sum coloring problem (MSCP) and the bandwidth coloring problem (BCP) are two important generalizations of the classical vertex coloring problem with numerous applications in diverse domains, including VLSI design, scheduling, resource allocation and frequency assignment in mobile networks, etc. Since the MSCP and BCP are NP-hard problems, heuristics and metaheuristics are practical solution methods to obtain high quality solutions in an acceptable computing time. This thesis is dedicated to developing effective hybrid metaheuristic algorithms for the MSCP and BCP. For the MSCP, we present two memetic algorithms which combine population-based evolutionary search and local search. An effective algorithm for maximum independent set is devised for generating initial solutions. For the BCP, we propose a learning-based hybrid search algorithm which follows a cooperative framework between an informed construction procedure and a local search heuristic. The proposed algorithms are evaluated on well-known benchmark instances and show highly competitive performances compared to the current state-of-the-art algorithms from the literature. Furthermore, the key issues of these algorithms are investigated and analyzed
Knowles, Joshua D. "Local-search and hybrid evolutionary algorithms for Pareto optimization." Thesis, University of Reading, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394429.
Full textAlluhaibi, Osama. "Hybrid precoding algorithms for millimeter-wave massive MIMO systems." Thesis, University of Kent, 2018. https://kar.kent.ac.uk/67007/.
Full textWakelam, Mark. "Intelligent hybrid approach for integrated design." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263942.
Full textSilva, Maurício Rodrigues. "Um novo método híbrido aplicado à solução de sistemas não-lineares com raízes múltiplas." Universidade do Estado do Rio de Janeiro, 2009. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1559.
Full textThis paper aims to present solutions for nonlinear systems with multiple roots, using a hybrid algorithm. For this purpose was developed and implemented an algorithm based on random search method proposed by Luus and Jaakola (1973) as a step in search of random starting points, which will be refined through the algorithm of Hooke and Jeeves. The differential of this work is to propose a hybrid algorithm, using the characteristics of the Luus-Jaakola algorithm and Hooke and Jeeves as a search and refinement stages respectively. For this, the above algorithms are encapsulated in functions in the hybrid algorithm. Besides these two steps, the hybrid algorithm has two other important characteristics, which is the execution repeated until to reach a sufficient number of distinct solutions, which is then undergo a process of classification of solutions by interval, where each interval generates a set solutions to close, which in turn is subject to the final stage of minimization, resulting in only one value per class of solution. Thus each class provides a unique solution, which is part of the final set of solutions of the problem, because this algorithm is applied to problems with multiple solutions. So, the hybrid algorithm developed was tested, with the standard, several problems of classical non-linear programming, in particular the unrestricted problems with multiple solutions. After the tests, the results were compared with algorithm Luus-Jaakola, and the Interval Newton/Generalized Bisection method (IN/GB), in order to obtain a quantitative and qualitative analysis of their performance. Finally it was found that the hybrid algortimo achieved higher when compared to the others.