Dissertations / Theses on the topic 'Hybridní materiál'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Hybridní materiál.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Neboha, Oksana. "Příprava struktur duplexního typu cestou mechanického legování a SPS." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416614.
Full textJetela, Václav. "Hybridní lepené spoje kovových a kompozitních materiálů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241199.
Full textMechref, Elias. "Synthèse, caractérisation et mise en œuvre d’un matériau hybride organique-inorganique photosensible de type résine positive : application à la fabrication de dispositifs de microfuidique par écriture Laser." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS071.
Full textIn recent decades, the organic / inorganic composite materials are the subject of many research works. Because of their unique properties and intermediate between inorganic and organic worlds, these materials are of great interest for many applications such as the area, optical, microfluidics, microelectronics ... The synthesis of this type of materials is carried out at a lower cost in two stages: The synthesis of inorganic network is made by sol-gel process, as well as the organic part of the negative and positive resin type compositions has the particularity of being photo-crosslinked under irradiation ( UV and visible).Meanwhile, the lithography by laser writing has appeared (spot a few microns). It is particularly appropriate for the development of a method for which small objects (a few microns) and small surfaces are to achieve because it eliminates the production of masks. This technique associated with negative resins, is not ideal for manufacturing large objects surfaces due to induced production time too long. It is, for example, be extremely complicated and expensive to use writing laser for producing microfluidic devices. Indeed, the creation of micron-sized channels requires a very large surface area to be exposed. It is therefore more appropriate to work on the combination of laser writing with a resin positive type. The main objective of this work is the synthesis, optimization and implementation of a photosensitive hybrid material resin positive type: Application to the fabrication of microfluidic sensors. Our choice fell on the poly(amic acid) PAA with molar mass of 2340 g/mol as an organic part, known for its good mechanical properties and high thermal stability.The work focuses on a part, on the synthesis of a positive photosensitive resin at the wavelength used (365 nm) based on the PAA polymer. In general, PAA are very soluble in an aqueous alkaline solution, due to the presence of carboxylic acid. In order to improve the contrast between the irradiated and unirradiated part after the development, an dissolution inhibitor 1,3,5-tris [(2-vinyloxy) ethoxy] benzene (TVEB) is grafted to the PAA via the vinyl ether function. This allows the reduction of the carboxylic acid content in the repeating unit of the polymer and as a consequence reduces the dissolution of the non-exposed part.On the other part, the synthesis of the hybrid material based on the optimized photosensitive resin is formed by grafting a precursor ORMOSIL 4-vinylether-phenyltriethoxysilane (VEPTES) pre-hydrolyzed by sol-gel method as the inorganic part to our polymer. In order to optimize the material, a structural study was conducted for the synthesis of the solution until the deposits and the creation of microfluidic channels. A significant improvement in mechanical and thermal properties is recorded at the polymer by adding an inorganic portion
Schlierf, Andrea. "Graphene organic hybrid materials." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF050/document.
Full textIn 2004, carbon, the basis of all known life on earth, has surprised once again: Researchers from University of Manchester, UK, extracted a completely new carbon material, graphene, from a piece of graphite such as is found in pencils. Using adhesive tape, they obtained a flake of carbon with a thickness of just one single atom, at a time when many believed it impossible for such thin crystalline materials to be stable. Pristine graphene is a mono-atomic sheet of, sp2 hybridized carbon atoms arranged in a honeycomb network; this particular chemical structure gives rise to its outstanding physical and chemical properties. Graphene rapidly became the most intensively studied among the ‘possibly revolutionary’carbon materials, with its potential applications reaching from microelectronics to composites, from renewable energy to medicine. In 2010, Geim and Novoselov were honored with the Nobel Prize in Physics for their “ground breaking experiments regarding the two-dimensional material graphene” that started a new era in the science of carbon materials.In this thesis we exploit and study the non-covalent chemistry of graphene to design, produce, process and characterize novel graphene organic hybrid materials. The scope of this work covers mechanistic aspects of graphene liquid phase exfoliation with dyes, fundamental aspects of graphene chromophore interactions in liquid and solid phase and the formulation of graphene hybrid suspensions towards application in organic electronics and functional polymer composite materials
Kročová, Blanka. "Částicové kompozity vyztužené krátkými vlákny." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2012. http://www.nusl.cz/ntk/nusl-216855.
Full textWehbi, Mohammad. "Fluoropolymers functionalized by phosphorous and silicon groups : syntheses, characterization and applications." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS134/document.
Full textFluorinated polymers are intresting macromolecules which due to their unique properties are often used in special applications in building industries, aerospace, chemical engineering, optics, textile treatment and microelectronics. This thesis focusses on the development of phosphorous and silane functional fluorinated polymers through the conventional radical co/terpolymerization of functional monomers with vinylidene difluoride (VDF). These functional monomers were prepared from the modification of 2-(Trifluoromethyl)acrylic acid (MAF) to prepare MAF-esters with the desired functional group. First a fundamental study regarding the kinetics of polymerization of VDF with MAF-TBE revealed that these monomer pair tends to cross propagate resulting in an alternating copolymer. Phosphonate functional MAF (MAF-DMP) was then prepared and its copolymerization with VDF led to phophonate functional PVDF, that after the consequent hydrolysis of the phosphonate group into phosphonic acid showed anticorrosion properties to steel. Following the same concept, a cyclic carbonate functional MAF monomer (MAF-cyCB) was also copolymerized with VDF. The cyclic carbonate groups in the obtained PVDF copolymer was then opened by aminopropyltriethoxysilane to introduce a silane group, that by its hydrolysis allowed the copolymer to adhere strongly onto substrates. Finally, a terpolymer based on PVDF functional with both a phosphonate and a triethoxysilane group is prepared. The silane group was then hydrolyzed and crosslinked to obtain a 3D network of polymers. Finally, the hydrolysis of the phosphonate group into phosphonic acid led to material that can be employed in Eu(III) ion extraction from water
Smrčková, Markéta. "Hybridní kompozity kombinující krátká houževnatá vlákna a částicové plnivo v polymerní matrici." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2011. http://www.nusl.cz/ntk/nusl-216678.
Full textRoleček, Jakub. "Příprava hybridních keramických materiálů metodou ice-templating." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2019. http://www.nusl.cz/ntk/nusl-408061.
Full textBurglova, Kristyna. "Design of easily accessible organosilanes for functional sol-gel hybrid materials." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2012. http://www.theses.fr/2012ENCM0021.
Full textOrganosilicates are attracting considerable attention, owing to the combined properties of the organic fragment and inorganic silica matrix. These hybrid materials have found application in catalysis, optics, electronics, etc. They can be prepared by the sol-gel hydrolysis of functional organosilanes with the desired properties. To apply these materials in industry, it is essential to make the preparation of these silylated precursors easier and more efficient by reducing the number of reaction steps. Therefore one of the aims of this thesis is to develop a universal, wide scope and selective method of preparation for trialkoxyorganosilanes. For this purposes the “CuAAC reaction”, known for its simple approach, has been adapted for water-sensitive substrates. Using a silylated azide or silylated alkyne with an organic counterpart, we were able to prepare a series of clicked sol-gel precursors. The reaction is quantitative, fast, and selective and tolerates a wide range of substrates. Moreover, new bissilylated alkynes and azides which can be clicked to various organic molecules were prepared. They represent new families of bridged organotrialkoxysilanes to which a desired organic molecule, bearing only one bonding site, can be incorporated as a pending group with a targeted functionality. Furthermore, a bissilylated precursor bearing a protected alkyne function was prepared, allowing the synthesis of bifunctional materials. Some of the prepared precursors were transformed into hybrid silicas by the sol-gel process. Those containing organic molecules known as active chiral ligands for enantioselective reactions were chosen. By this way, supported chiral ligands were formed and we tested their activity according to known reactions. Additionally, in this thesis the structuring of the materials was also attempted. Molecules bearing aromatic systems and urea functions, which are capable of self-organization thanks to the weak non-covalent bonding interactions, were designed and prepared. In some cases, especially Binol systems with urea function, regular nanostructures on localized areas have been observed. Overall, this thesis brings new possibilities in the synthesis of both trialkoxyorganosilanes precursors and hybrid materials with desired properties and applications
Bratton, G. J. "Silicate/silicon hybrid materials." Thesis, University of Greenwich, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234283.
Full textŽák, Tomáš. "Využití hybridní technologie Laser-TIG pro svařování rozdílných materiálů používáných v energetice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400985.
Full textLin, Qiqiao. "Luminescent hybrid materials for LED lighting." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX036.
Full textThis thesis aimed at designing and synthesizing organic-inorganic hybrid materials with controlled luminescence and at investigating them as phosphors for LED lighting. The final goal was to obtain a white source of light. Indeed, commercial white LEDs are made up of a blue emitting device covered with a yellow phosphor. Combining these two colors yields white light. However, this light is not of good quality as it lacks some red component. This results in a bad rendering of the colors of objects illuminated by these sources of light. In our work, conjugated polymers with different emission colors have successfully been obtained. In particular, several single white emitters have been isolated.In this PhD thesis, not only the synthetic procedures and chemical characterizations are presented in detail, but also the studies of the photophysical properties of the polymers, either in solution or in the solid state. Solid state studies were performed on the bulk polymers and on the polymers dispersed into a polymeric matrix. These studies have lead to identify the limiting factors that could hamper the use of the materials. Solutions have been proposed to improve the materials performance and stability. Furthermore, 2,2’-bipyrimidine has been introduced as a new synthon for designing and developing conjugated polymers
Romanenko, Iuliia. "Preparation of well-defined Ir(I)-NHC based catalytic material for the hydrogenation of functional olefins." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10262/document.
Full textAlkene hydrogenation is a key in many bulk and fine chemicals production processes. Major efforts were therefore directed towards the preparation of ever more productive and selective catalysts. Among the large number of homogeneous and heterogeneous catalysts, promising Iridium (I) organometallic complexes were prepared since the discovery of the well-known Crabtree’s catalyst, [Ir(COD)(py)(PCy3)]BF4, to address selectivity issues in homogeneous asymmetric hydrogenation or hydrogenation of highly hindered tetrasubstituted olefins. However, the industrial use of Ir organometallic complexes as catalysts is limited by their fast decomposition leading to the formation of highly stable and inactive polynuclear iridium hydridebridged complexes. The goal of this PhD project was to elaborate supported Ir(I)-NHC catalytic material to prevent such bimolecular deactivation processes. The targeted supported Ir complexes were based on hybrid organic-inorganic material containing regularly distributed imidazolium units along the pore-channels of the silica framework. Beside the Ir-site isolation on the silica support, this catalytic system was also expected to ease catalyst recovery at the end of the hydrogenation. The preparation of the final systems relies on the preparation of supported silver carbenes first, and further transmetallation with an Ir-precursor, namely [Ir(COD)Cl]2. The materials were characterized by several techniques as for example advanced solid state NMR using Dynamic Nuclear Polarization to gain insight into the molecular structure of the Ir surface sites. Catalytic performances of the supported Ir-NHC complexes were tested in alkene hydrogenation and compared to those of homogeneous homologues. Several different substrates and reaction conditions were tested. The results showed that the supported catalyst was much more stable and 50 times more active in term of rate and productivity. A polymer supported Ir-complex was also elaborated using a telechelic polyethylene iodide as support. The polymeric materials were fully characterized by NMR and MALDI-TOF experiments and their catalytic performances were compared to those of molecular analogues and those of silica supported systems
Hrubý, Jakub. "Příprava a charakterizace hybridních materiálů na grafenové bázi." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318708.
Full textBen, Sghaier Asma. "Hybrides polymer materials organic/inorganic nanoparticule." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1163.
Full textDiazonium interface chemistry has progressed over the last few years and practically involved in all areas of materials science and engineering. The rationale for employing diazonium salts is that they attach to surfaces with remarkable bond energies, particularly on sp² carbon materials, making them an ideal coupling agent for polymers to surfaces In this context, novel CNT-polytriazole (CNT-PTAz) and CNT-dye nanohybrids were designed and thoroughly characterized. First, CNT-PTAz nanohybrid was prepared by click polymerization: multiwalled carbon nanotubes (CNTs) were modified with azidophenyl groups (CNT-N3) from 4-azidobenzenediazonium precursor and served as nanoscale platform for the surface confined polyaddition. The CNT-PTAz nanohybrid was characterized by TGA, XPS, IR, and Raman. The robust CNT-PTAz is robust and has potential in developing heavy metal adsorbents, nanosupport for catalysts or for gas storage. In the second major part, we grafted CNT with diazotized Neutral red (NR), Azure A (AA) and Congo Red (CR) dyes by simple, spontaneous reaction of the diazonium salts and CNTs in water, at RT. A thorough investigation of the nanohybrids showed that the adhesion is strong (CNT-dye C-C bond energy higher than 150 kJ/mol), and the layer is uniform. These nanohybrids further served to reinforce ethylene-vinyl acetate (EVA) an elastomeric matrix. The reinforced matrix is flexible and serves as optothermal actuators where the grafted dye catches the light to induce mechanical changes in the matrix monitored by dynamic mechanical analysis. CNT/dye-reinforced EVA is a promising flexible composite for developing new types of visual-aid tablet for visually impaired people. The versatile CNT-dye nanohybrids are also unique chemiresistive gas sensors for the molecular recognition of acetone vapours. In a final application, CNT-CR nanohybrid was investigated as an electrocatalyst for the Direct Oxidation of Methanol. Interesting results were obtained with these nanohybrids but significant improvements (3-fold) of the electrocatalytic properties were achieved with CNT-CR decorated with gold nanoparticles. The newly designed electrocatalytic system could be regarded for different promising applications most likely as for sensors, biosensors, heterogeneous catalysts for fuel cells and for nanotechnology To summarize, newly designed CNT-based nanohybrids have unique performances ascribed to the versatility of the diazonium interface chemistry in efficiently attaching functional molecular and macromolecular layers. The novel nanohybrids serve as building blocks for designing high performance nanocomposite materials relevant to challenging timely social economic issues, namely environment, biomedicine and energy
Evlyukhin, Egor. "Synthèse avancée de matériaux hybrides pHEMA-TiO₂ par méthode sol-gel et polymérisation induite par hautes pressions, analyse de leurs propriétés optiques." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD060.
Full textThe specific functional properties of the organic-inorganic hybrid materials depend on their microstructure and the nature of the interface between their organic and inorganic components. The production of hybrid materials with an optimum combination of mechanical and functional properties is a major problem in hybrid materials science. In this thesis we adress this issue by studing and proposing a new approach for synthesizing of photosensitive pHEMA-TiO₂ hybrid materials in wich inorganic nanoparticles are dispersed in a polymer. The method that we propose is based on the high pressure (HP) induced polymerization of the organic phase in the absence of a chemical initiator. We first observed the spontaneous polymerization of HEMA under static pressure. The polimerization process takes place in pressure range below the glass transition point (0.1-1.6 GPa) and after 41 days monomer conversion yield (CY) does not exceed 28%. The reaction may be significantly accelerated when the pressurized sample is irradiated in the UV range. We then developed an original approach based on compression-decompression cycle. During the compression step (>6.5 GPa) the biradicals formed from the excited monomers HEMA (T1) lead to the formation of small oligomers. The polimerization occurs in the second step when the sample decompressed at pressures between 0.1 and 2 GPa. The CY of 90% in less than 5 min is achieved. The new HP approach allows multiply by a factor of 3 the contration of nanoparticles in hybrids without damaging of their polimerization state. These hybrids exhibit a quantum efficiency of photoinduced charge separation of 15% and an electron storage capacity of 50%
Halttunen, Niki. "Nouvelle approche dans l'élaboration de cellules photovoltaïques : réseaux interpénétrés hybrides oxyde-polymère pour hétérojonctions p,n en volume." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066416/document.
Full textRecent advances in the field of photovoltaics have led to the emergence of new solar cell technologies. Among them can be found the hybrid solar cells, unfortunately the way such cells are built is still a source of problems. The aim of this phd is to develop two new approaches in the synthesis of hybrid materials as bulk heterojunctions. In first place the titanium dioxide component vas prepared by sol-gel process and its mesostructure was studied, low temperature crystallization was also investigated. Those results were used in order to prepare hybrid materials from preformed polymers. The behavior of polythiophènes with hexyl and carboxylic acid functions were used as well as copolymers bearing both functions. Hybrids without macrosegregations phenomena were obtained using acid bearing homopolymers as well as copolymers. The second approach was about investigating the electrochemical behavior of ferrocene and copper ions inside the mesoporosity, this first study was followed by a study of the electropolymerization of mot and edot inside the porosity in order to prepare hybrid materials. The obtained hybrids were studied in solar cells by measuring the I/V curve as well as the external quantum efficiency, fill factors and efficiencies were also obtained. To conclude, both approaches leaded to hybrid materials with measurable photovoltaic properties
Forconi, Mattia. "Experimental analysis of a hybrid composite material." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textHendon, Christopher Holman. "Hybrid semiconductors : design rules and material applications." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.683540.
Full textScott, Felicia Yi Xia. "Controlled Hybrid Material Synthesis using Synthetic Biology." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/86147.
Full textPh. D.
Pana, Cristina. "Development of new carbon hybrid materials for Li+ and Na+ ion batteries applications." Thesis, Mulhouse, 2018. http://www.theses.fr/2018MULH0541.
Full textDuring the last years a lot of research has been focused on batteries to satisfy their increasing demand for a broad application. Metal-based/carbon hybrid materials received great attention as anodes for Li and Na ion batteries due to their higher capacity compared to graphite/hard carbons anodes. However, the metal particle size expansion and the high irreversible capacity during cycling are the main inconvenients to be overcome and represent the main goal of this thesis. Three type of hybrids were studied(C@Sn and C@SiO2for LIBs, and C@Sb for NIBs) and original synthesis pathways were developed which allowed to obtain materials with small and homogeneous distributed particles in the carbon network. Several experimental parameters were tuned leading to a large pallet of materials exhibiting different porosities, structures and particle size/distribution. The temperature and the particle loading were found to be the main parameters affecting the porosity and the particle size and further the electrochemical performances. The increase of both temperature and particle loading lead to smaller porosity which successfully allowed to diminish the irreversible capacity and to improve the reversible capacity. In the same time, the long-term cycling was negatively affected due to the formation of un-confined and agglomerated particles. The extent of particle agglomeration and consequently of capacity fading was found to depend on the type of metal and synthesis route. A compromise between the carbon loading/porosity/structure was determined for each system and the electrochemical mechanisms addressed based on post-mortem analyses
Pourcin, Florent. "Synthèse de nanoparticules de forme, taille et dispersion contrôlées pour l'élaboration de couches composites aux propriétés optiques modulables." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0365/document.
Full textNanoparticles of noble metals have unexpected optical properties. Under the effect of light, they are able to resonate, generating localized surface plasmon resonances that are used in many applications. These plasmons absorb and scatter the light at the wavelengths of these resonances and are highly dependent on the shape, the size and the environment of the nanoparticles. In this thesis, they are applied for the design of stealth materials for military purposes. For this, controlled shapes of silver nanoparticles were blended within a polymer to develop new hybrid materials that are solution-processed as thin layers. A quasi-perfect absorber (98,8%) in a precise range of wavelengths has been obtained by maintaining well-dispersed nanoparticles in the layer, while an effective broadband absorber (~90%) over the entire visible range has been achieved by triggering the aggregation of the nanoparticles. Microscopy and spectroscopy qualitative studies performed on the density and organization of the nanoparticles within the thin layers revealed the presence of plasmonic couplings of different natures and intensities as a function of the spacing between the cubes. It has been shown that the optical properties measured are independent of the nature of the substrates used and independent of the angle of the incident light on a wide angular range. Finally, solution-processing of multilayers systems was explored to extend the absorption of the layers to the near infrared by the addition of other materials such as tungsten oxide
Johnson, Bret J. S. "Hybrid materials constructed from polyoxometalate /." Diss., ON-CAMPUS Access For University of Minnesota, Twin Cities Click on "Connect to Digital Dissertations", 2001. http://www.lib.umn.edu/articles/proquest.phtml.
Full textHolmstrom, Stewart. "Self-assembled bioinorganic hybrid materials." Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492556.
Full textBurwood, Ryan Paul. "Towards semiconducting hybrid framework materials." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648156.
Full textAmarante, Tatiana Ribau. "New oxomolybdenum(VI) hybrid materials." Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12298.
Full textIn this thesis, 2,2’-bipyridine (bipy), di-tert-butyl-2,2’-bipyridine (di-t-Bubipy), 2,2’-bipyridine-5,5’-dicarboxylic acid (H2bpdc), 2-[3(5)-pyrazolyl]pyridine (pzpy) and 2-(1-pentyl-3-pyrazolyl)pyridine (pent-pp) ligands were used as the N,N-chelate ligands in the formation of discrete [MoO2Cl2L]-type complexes. These complexes were employed as precursors for the preparation in aqueous media of oxomolybdenum(VI) products with a wide range of structural diversity. Three distinct heating methods were studied: hydrothermal, reflux or microwave-assisted synthesis. An alternative reaction with the inorganic molybdenum(VI) trioxide (MoO3) and the ligands di-t-Bu-bipy, H2bpdc and pzpy was also investigated under hydrothermal conditions. The distinct nature of the N,N-chelate ligands and/or the heating method employed promoted the isolation of a series of new oxomolybdenum(VI) hybrid materials that clearly reflected the strong structure-directing influence of these ligands. Thus, this thesis describes the synthesis and characterization of the discrete mononuclear [MoO2Cl2(pent-pp)], the dinuclear [Mo2O6(di-t-Bu-bipy)2] and the octanuclear [Mo8O22(OH)4(di-t-Bu-bipy)4] complexes as well as the highly unique polymeric materials {[MoO3(bipy)][MoO3(H2O)]}n, (DMA)[MoO3(Hbpdc)]·nH2O, [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n (fine structural details of compound [Mo2O6(pent-pp)]n are presently unknown; however, characterization data strongly pointed toward a polymeric oxide hybrid compound). The catalytic behaviour of the discrete complexes and the polymeric compounds was tested in olefin epoxidation reactions. Compounds [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n acted as sources of soluble active species that where identified as the oxodiperoxido complexes [MoO(O2)2(pzpy)] and [MoO(O2)2(pent-pp)], respectively. The majority of the compounds here presented were fully characterized by using solid-state techniques, namely elemental analyses, thermogravimetry, FT-IR, solid-state NMR, electron microscopy and powder X-ray diffraction (both from laboratory and/or synchrotron sources).
Nesta tese as moléculas 2,2’-bipiridina (bipy), di-tert-butil-2,2’-bipiridina (di-t-Bu-bipy), ácido 2,2’-bipiridina-5,5’-dicarboxílico (H2bpdc), 2-[3(5)-pirazolil]piridina (pzpy) e 2-(1-pentil-3-pirazolil)piridina (pent-pp) foram utilizadas como ligandos bidentados de azoto para a formação de complexos do tipo [MoO2Cl2L], no intuito de investigar a diversidade estrutural de compostos pertencendo à família oxomolibdénio(VI). Foram estudados três métodos de aquecimento: o método hidrotérmico, de refluxo e por microondas. Foi também estudada sob condições hidrotérmicas a reacção alternativa envolvendo a utilização do composto inorgânico trióxido de molibdénio (MoO3) com os ligandos di-t-Bu-bipy, H2bpdc e pzpy. A natureza dos ligandos bidentados de azoto e/ou o método utilizado promoveram a formação de uma série de novos híbridos do tipo oxomolibdénio(VI) que claramente reflectiram a influência estruturante dos ligandos. Assim, esta tese descreve a síntese e caracterização do complexo mononuclear [MoO2Cl2(pent-pp)] , dinuclear [Mo2O6(di-t-Bu-bipy)2] e octanuclear [Mo8O22(OH)4(di-t-Bu-bipy)4] assim como dos materiais poliméricos {[MoO3(bipy)][MoO3(H2O)]}n, (DMA)[MoO3(Hbpdc)]·nH2O, [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n (embora os detalhes estruturais deste polímero sejam ainda desconhecidos, os dados da sua caracterização remetem para um oxo-híbrido polimérico). O comportamento catalítico dos complexos e dos compostos poliméricos foi testado na reacção de epoxidação de olefinas. Os compostos [Mo3O9(pzpy)]n e [Mo2O6(pent-pp)]n deram origem a espécies activas solúveis respectivamente identificadas como os complexos oxodiperoxido [MoO(O2)2(pzpy)] e [MoO(O2)2(pent-pp)]. A maioria dos compostos aqui apresentados foram caracterizados através da utilização de técnicas de caracterização do estado sólido, nomeadamente análise elementar, análise termogravimétrica, FT-IV, RMN de estado sólido, microscopia electrónica e difracção de raio-X de pós (tanto de fontes do laboratório e/ou de sincrotrão).
Almeida, José Carlos Martins de. "Hybrid materials for biomedical applications." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/15973.
Full textThe increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.
O aumento da longevidade dos seres humanos e a procura de uma melhor qualidade de vida têm conduzido a uma pesquisa contínua de novos materiais para implantes. O desenvolvimento científico, juntamente com uma crescente multidisciplinaridade entre as ciências dos materiais e as ciências da vida deram origem a novas abordagens, como a medicina regenerativa e a engenharia de tecidos. A busca de um material com propriedades mecânicas próximas das do osso humano produziu uma nova família de materiais híbridos que tiram partido da sinergia entre os domínios inorgânicos de sílica (SiO4), com base em composições de vidros bioativos obtidos por sol-gel, e os domínios orgânicos de polidimetilsiloxano, PDMS ((CH3)2.SiO2)n. Vários estudos têm demonstrado que os materiais híbridos baseados no sistema PDMS-SiO2 constituem um grupo de biomateriais promissores com várias aplicações potenciais tais como a regeneração de tecido ósseo e a recuperação do tecido cerebral, passando por revestimentos bioativos e sistemas de libertação controlada de fármacos. O objetivo do presente trabalho foi preparar materiais híbridos para aplicações biomédicas com base no sistema PDMS-SiO2 e contribuir para uma melhor compreensão das relações entre as condições de processamento sol-gel, as estruturas químicas, a microestrutura e as propriedades macroscópicas. Para alcançar tal objetivo, foram usadas diferentes técnicas de caracterização: espectroscopia de infravermelho por transformada de Fourier, ressonância magnética nuclear no estado sólido e no estado líquido, difração de raios-X, dispersão de raios-X de baixo ângulo, dispersão de neutrões de baixo ângulo, análise da área de superfície pelo método de Brunauer–Emmett–Teller, microscopia eletrónica de varrimento e microscopia eletrónica de transmissão. A rugosidade e a molhabilidade das superfícies foram analisadas por perfilometria óptica 3D e por medidas de ângulo de contacto, respectivamente. A bioatividade in vitro foi avaliada através de testes de imersão em plasma sintético e posterior observação da superfície dos materiais e análise do líquido sobrenadante por espectrometria de emissão atômica por plasma acoplado Indutivamente. A biocompatibilidade in vitro foi avaliada usando células osteoblásticas MG63. Materiais do sistema PDMS-SiO2-CaO foram inicialmente preparados usando o nitrato como fonte de cálcio. Para eliminar os resíduos de nitrato no produto final, devido à sua potencial toxicidade, é necessária uma etapa de tratamento térmico (acima dos 400° C). A fim de aumentar a estabilidade térmica dos materiais submetidos a altas temperaturas, foi adicionado titânio ao sistema híbrido. Obteve-se assim um material híbrido contendo cálcio, sem vestígios de nitrato, mantendo-se uma quantidade significativa de grupos metilo. A dificuldade de obter amostras monolíticas de híbridos PDMS-SiO2-CaO por síntese sol-gel e posterior tratamento térmico para eliminação de nitratos, criou um novo objetivo: a procura de fontes alternativas de cálcio. Novas fontes de cálcio foram avaliadas para substituir o nitrato tendo-se escolhido o acetato de cálcio devido à sua boa solubilidade em água. Estabeleceram-se protocolos de preparação por sol-gel a partir dos quais se obtiveram amostras monolíticas homogéneas. Além de melhorar a bioatividade, o titânio e o zircónio influenciam as características estruturais e microestruturais dos sistemas binários SiO2-TiO2 e SiO2-ZrO2, bem como dos sistemas PDMS-TiO2 e PDMS-ZrO2. Neste contexto, foram estudadas diferentes condições experimentais no processo sol-gel, de modo a compreender o papel destes aditivos no sistema SiO2-PDMS. Concluiu-se que o titânio e o zircónio influenciam a cinética do processo sol-gel devido à diferente reatividade dos despectivos alcóxidos, conduzindo à obtenção de xerogéis híbridos com diferentes características e morfologias. O isopropóxido de titânio, menos reativo do que o propóxido de zircónio, foi escolhido como fonte de titânio, usado como aditivo no sistema PDMS-SiO2CaO. Dois procedimentos diferentes de preparação por sol-gel foram seguidos, utilizando a mesma composição de base e o acetato de cálcio como fonte de cálcio. Foram obtidas diferentes microestruturas muito hidrofóbicas e ambas mostraram ser biocompatíveis após serem testadas com células osteoblásticas MG63. Finalmente, foi avaliado o papel do estrôncio (conhecido nos biovidros por favorecer a formação de tecido ósseo e reduzir a sua reabsorção) no sistema híbrido PDMS-CaO-SiO2-TiO2. O material produzido revelou-se biocompatível, através de testes com células osteoblásticas MG63, e com a capacidade de libertar estrôncio dentro dos limites considerados adequados para a reparação do tecido ósseo.
Prévôt, Marianne. "Démonstrateurs des potentialités applicatives des clustomésogènes." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S164/document.
Full textClustomesogens are a new class of hybrid liquid crystals developed since 2008 in our laboratory. They are a combination of an inorganic core, namely transition metal clusters, linked with promesogenic organic ligands through covalent or electrostatic interactions. These hybrid materials associate liquid crystals self-assembling abilities to the metallic clusters intrinsic properties. This work present octahedral molybdenum cluster based clustomesogens, emitting, through phosphorence mechanisms, in the deep red area and exhibiting 10% to 50% quantum efficiency. These materials are produced via an ionic approach by replacing the alkali cations of the ternary solid state compounds with tailored promesogenic organic ones. The ambition of this work is to rationalize the structures-properties relationship to control, at the nanometric scale, the clustomesogens organization. This approach allows us to observe nematic liquid crystalline phases over a wide range of temperatures. As these compounds are miscible with commercial nematic liquid crystals, we could envision their use as emissive species in the design of electroswitchable luminescent liquid crystal cells. By changing the type and concentration of commercial liquid crystals, we could adjust the operating temperature range as well as the viscosity of the mixture. We also establish that it is possible to modulate the clustomesogens' photoluminescence by 50% by applying an alternative electric field, as in display devices. In the last part of this work, we study the integration of clustomesogens as the emissive species into electroluminescent diodes. Being able to control their structure should allow their use in lighting devices. These works pave the way for using Molybdenum clustomesogens as an alternative to inorganic compounds presently used as red light emitters
Huo, Zhaohui. "Polyoxometalate - porphyrin hybrids systems : application for the photocurrent generation and the photocatalysis." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF032/document.
Full textPolyoxometalates-porphyrin hybrid films were synthesized based on covalent or electrostatic interactions. Copolymeric polyoxometalate–porphyrin films were obtained by the electro-oxidation of zinc octaethylporphyrin (ZnOEP) or 5,15-ditolyl porphyrin (H2T2P) in the presence of a different type of polyoxometalates (POMs) bearing two pyridyl groups (py-POM-py). Three type of py-POM-py have been used: i) a tris-alkoxo functionalized Lindqvist polyoxovanadate, ii) an organosilyl functionalized Keggin-type [PW11Si2O40C26H16N2]3- and Dawson-type [P2W17Si2O62C26H16N2]6-, and iii) a bis-pyridine-substituted organo-polyoxometallic bricks using [P2W15V3O62]9− diolamide-grafting method with various geometries of the pendant group. All are applied for photocurrent generation and photocatalytical recovery of metals (Ag and Pt). Electrostatic POM-porphyrin films were also prepared by incorporated Preyssler type polyanion [NaP5W30O110]14- onto the electropolymerized polycationic porphyrin (poly-ZnOEP) with viologen or bis-viologen as spacers. [NaP5W30O110]14- as an efficient electron shuttle between the excited ZnOEP and viologen (or bis-viologen) which effectively retarded the fast charge pair recombination and enhanced the photocurrent magnitude. Later, we introduced nanoparticles POM@MNPs to a bis-porphyrin copolymer through metathesis reaction to further improve the efficiency of the photocurrent generation in which the localized surface plasmon resonance that occurs at the surface of silver nanoparticles has substantially enhanced the electronic excitation of surface-anchored porphyrin
Dedecker, Kevin. "Multifunctional Hybrid materials for the capture and detection of volatile organic Compounds : Application to the preservation of cultural heritage objects." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV003.
Full textDuring their storage or their exhibition, the cultural heritage objects undergo physicochemical alteration processes related to their environment and in particular to the action of primary (e.g. sulfur dioxide, nitric oxides), secondary (ozone) pollutants or Volatile Organic Compounds (VOCs). It has been demonstrated that these gases/vapors are involved in hydrolysis and oxidation reactions. Among the most common VOCs encountered in museums, Acetic acid has a significant and recognized role in the deterioration of cultural heritage objects such as photographic films. In order to face this issue, this Ph.D. thesis focused on the design of new porous multifunctional hybrid materials denoted « Metal-Organic Frameworks » (MOFs) for the selective capture of acetic acid in the presence of moisture (40% relative humidity) and at room temperature. The remarkable adsorption properties (sensitivity, selectivity and capacity) and the great versatility of MOFs (hydrophicity/hydrophobicity balance, size/shape of pores,…) were used to preconcentrate selectively the acetic acid in humid conditions. The most performing materials were then prepared as nanoparticles and then used for the elaboration of high optical quality thin films in order to study the coadsorption (acetic acid/water) properties of MOFs by ellipsometry. The incorporation of plasmonic metal nanoparticles was then carried out in order to design a colorimetric sensor. The final objective is to devise a novel type of adsorbent that integrates a high VOC adsorption capacity and selectivity under humid conditions and an easy on-line monitoring of their saturation capacityin order to anticipate its replacement and therefore ensure the preservation of the stored and exhibited objects in museums
Togonal, Alienor. "Silicon Nanowires for Photovoltaics : from the Material to the Device." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX032/document.
Full textSilicon Nanowire (SiNW) based solar cells offer an interesting choice towards low-cost and highly efficient solar cells. Indeed solar cells based on SiNWs benefit from their outstanding optical properties such as extreme light trapping and very low reflectance. In this research project, we have fabricated disordered SiNWs using a low-cost top-down approach named the Metal-Assisted-Chemical-Etching process (MACE). The MACE process was first optimized to reduce the strong agglomeration observed at the top-end of the SiNWs by tuning the wettability properties of both the initial substrate and the SiNWs surface. By combining the MACE process with the nanosphere lithography, we have also produced ordered SiNW arrays with an accurate control over the pitch, diameter and length. The optical properties of these SiNW arrays were then investigated both theoretically and experimentally in order to identify the geometrical configuration giving the best optical performance. Disordered and ordered SiNW arrays have been integrated into two types of solar cells: heterojunction with intrinsic thin layer (HIT) and hybrid devices. SiNW based HIT devices were fabricated by RF-PECVD and the optimization of the process conditions has allowed us to reach efficiency as high as 12.9% with excellent fill factor above 80%. Hybrid solar cells based on the combination of SiNWs with an organic layer have also been studied and characterized. The possible transfer of this concept to the thin film technology is finally explored
Crivoi, Dana Georgiana. "Hybrid materials: discovering properties and mechanisms." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/386445.
Full textTodo lo que nos rodea es quiral, por lo tanto, una de las propiedades más importantes que subyace en la disposición y la acción de fármacos está dada por la quiralidad de la sustancia activa. En consecuencia, la estereoquímica representa un campo activo, cambiante y desafiante que combina diferentes disciplinas de las ciencias naturales que conducen a los resultados más espectaculares. En este contexto, la presente tesis se centra en: i) el desarrollo de nuevos sistemas catalíticos para la producción de sustancias quirales, ii) la comprensión de los mecanismos de reacción posteriores, y iii) el diseño de procesos más ecológicos sostenibles. Bio-nanohíbridos con una alta variedad de propiedades se obtuvieron mediante la inmovilización de L-leucina y poli-L-leucina en el espacio entre capas de materiales del tipo hidrotalcita. Estos catalizadores son ecológicos, fáciles de sintetizar y no requieren pre-activación. Sustancias con una aplicación potencial en la industria química y farmacéutica se obtuvieron utilizando estos nanohíbridos como catalizadores, empleando un único reactor, en la reacción de adición aldólica y la reacción de condensación de Claisen-Schmidt /epoxidación Juliá-Colonna. La cooperación entre la ciencia de superficies y la catálisis permitió revelar al verdadero mecanismo de Juliá-Colonna mediante el análisis con micro-balanza de cristal de cuarzo con disipación (QCM-D). Por último, pero no menos importante, los reactores híbridos de membrana catalítica se pueden emplear en la transformación de reacciones complejas en otras más triviales, como la producción de peróxido de hidrógeno in-situ y posterior epoxidación de la calcona.
Everything around us is chiral, thus, one of the most important properties which underlies the drug disposition and action is given by the chirality of the active substance. Consequently, stereochemistry represents an active, changing, and challenging field which combines different disciplines of natural sciences that lead to the most spectacular findings. In this context, the present thesis focuses on: i) the development of new catalytic systems for the production of chiral substances, ii) the understanding of the subsequent reaction mechanisms, and iii) the design of greener sustainable processes. Bio-nanohybrid materials with a high variety of properties were obtained by immobilizing L-leucine and poly-L-leucine in the interlayer space of hydrotalcite-type materials. These catalysts are eco-friendly, are facile to synthesize, and no pre-activation is required. Substances with potential application in pharmaceutical or fine chemical industries were obtained using these nanohybrids as catalysts in the aldol addition reaction and the one-pot Claisen-Schmidt condensation / Juliá-Colonna epoxidation reaction. Cooperation between surface science and catalysis revealed the real Juliá-Colonna mechanism by using quartz crystal microbalance with dissipation (QCM-D) analysis. Last but not the least, hybrid catalytic membrane reactors can be employed in transforming complex reactions into simpler ones, like the production of hydrogen peroxide in-situ and subsequent epoxidation of chalcone.
Benge, Kathryn Ruth. "Hybrid Solid-State Hydrogen Storage Materials." The University of Waikato, 2008. http://hdl.handle.net/10289/2320.
Full textLi, Zhi. "Electronic Structure Characterization of Hybrid Materials." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5060.
Full textDel, Rosso Maria Girolama. "Exploring supramolecular Interactions in hybrid materials." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF028/document.
Full textThis work was aimed at exploring supramolecular interactions as a tool in the fields of host-guest chemistry, nanomaterials and in general nanotechnology, in order to achieve different goals. First, a classical host-guest interaction was studied by means of the ITC technique, then we exploited supramolecular interactions in order to harness the production of liquid-phase exfoliated graphene, with a particular focus on improving the quality and quantity of material produced. Finally, we extended the use of supramolecular chemistry to a real device by functionalization of gold electrodes with photochromic molecules, hence paving the way towards multifunctional organic devices and in prospective to graphene based light-controlled multifunctional devices
Nicholls, Jennifer. "New inorganic and hybrid framework materials." Thesis, University of Liverpool, 2012. http://livrepository.liverpool.ac.uk/6233/.
Full textGuodong, Xu. "Fibre-cement hybrid composites." Thesis, University of Surrey, 1994. http://epubs.surrey.ac.uk/844012/.
Full textLopes, Leandro. "Étude et caractérisation de matrices hybrides polyether-siloxane utilisées pour la libération contrôlée de Diclofenac de Sodium et de complexes à base de Platine." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112146/document.
Full textThe capacity of hydrophilic (POE) or hydrophobic (POP) siloxane-polyether hybrid matrixes to incorporate platinum based compounds like platinum (IV) tetrachloride (PtCl₄), cisplatin (CisPt), Zeise salt and sodium diclofenac (SDF) was studied. These compounds present academic interest and are applied in cancer disease treatment (CisPt) or catalysis (Zeise salt).The decrease in melting temperature of the semi-crystalline POE1900 hybrid and the decrease of the Tg values together with the Raman results confirm the interactions between SDF and the POE chains of the hybrid matrix. The coexistence of a crystalline and amorphous hybrid phase was clearly evinced by the bimodal drug release pattern achieved for the POE1900 matrix. Optimum amounts for the preparation of homogeneous matrix with CisPt are 5.4% m/m and with PEO1900 1.8% m/m with PPO2000. The local structure of CisPt inside the matrices is preserved. SAXS measurements show that the intensity of the correlation peak between siloxane crosslinks is affected by the CisPt incorporation in the matrix. The observed decrease in intensity without shift in position is interpreted as resulting from the filling of the space between the SiO2 nodes by CisPt. The release profiles of PEO1900 matrices show that the release is independent of the CisPt concentration and that the swelling of the matrix is the dominant process for explaining the release mechanism.For hybrids incorporating (PtCl₄), it has been shown the existence of two Pt entities, a Pt(II) species and a Pt (IV) ones. The Pt(II) species is identified as(PtCl₄)²⁻ whereas the Pt(IV) species is (PtCl₄) dissolved in the matrix. The ratio of Pt(II) and Pt(IV) species is dependent on the matrix nature: The Pt(II) species is dominant for the PEO-based matrices whereas Pt(II) and Pt(IV) proportions are almost equal for matrices based on PPO. It is proposed that the (PtCl₄)²⁻ species interact with the urea groups located at the ends of the polymeric chain and with the by ether groups of the polymer chains. These interactions are facilitated by the anionic nature of the species Pt(II). The neutral species PtCl₄ interact with the matrix in the same way that the CisPt, ie by filling the empty space between the polymer chains. During release essays, the neutral PtCl₄ species is easily released in aqueous solution, the anionic Pt (II) species remaining embedded inside the matrix. As PtCl₄, the Zeise salt is soluble in matrixes giving rise to homogeneous and transparent samples. Raman spectroscopy and EXAFS show that if the Pt-Cl bonds of the hybrid are identical to those found in the Zeise salt,Pt-C₂H₄ vibrations are only identified in the samples after a ageing period. For PEO1900 hybrid matrix loaded with Zeise salt, the formation of metallic platinum was observed during the release essays.The correlation of the structural results gained on the matrices incorporating different platinum molecules with the results of the release assays evidences that the weak interaction of neutral molecules with the matrix is responsible to the fact that the release of CisPt is mainly controlled by the swelling properties of the matrix. The incorporation of anionic Pt species, as (PtCl₄)²⁻ or Zeise salt, gives rise to samples for which the amount of released Pt species are significantly lower than the one obtained for hybrids loaded with CisPt. The strong interactions between the matrix and the anionic species are responsible for the fact that the anionic species is not easily released in solution
Moussawi, Mhamad aly. "Assemblages à base de polyoxométallates : des interactions fondamentales aux matériaux hybrides supramoléculaires." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV078/document.
Full textIn this work, we report in the first part the substitution of molybdenum by tungsten within Keplerate-type anions [{Mo6}12Mo30O312E60(AcO)30]42- (E = O or S). Introducing tungsten to the synthesis medium resulted in the isolation of a series of compounds, [{WxMo6- x}12Mo30O312E60(AcO)30]42, with variable metal content within their pentagonal units {M6}. An outstanding observation revealed the selective occupation of the central position in the pentagonal unit by the W atoms. This revelation was stretched to reach other historical structures as Mo-blue wheel [Mo154O462H14(H2O)70]14- and Krebs [Mo36O112(H2O)16]8- anions that also showed the same preferential occupation of W atoms for the heptacoordinated site. In the second part, we focus on the fabrication of a three-component hybrid material based on polyoxometalates (POMs), metallic clusters and -cyclodextrin ( -CD). Investigation of such material has been conducted using bottom-up approach by investigating the specific interactions between CD and both types ofinorganic units. Finally, the three componentsassociate together to give a well orderedpolymer-like hybrid chain that is derived ashydrogel and single crystals. In the last part, we extend the CD-POMinvestigation to reach giant POM structures asthe Mo-blue ring. A non-conventional complexation results from this interaction explained by the encapsulation of the organic macrocycle within the inorganic torus. Increasing the complexity of the system by introducing a third species provoked the formation of a hierarchical hybrid assembly
Delchet, Carole. "Matériaux hybrides pour la décontamination et le confinement d'éléments mobiles : application au Césium." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20251/document.
Full textNuclear industry produced, nowadays, a wide range of liquid radioactive waste containing cesium. Materials based on cyanométallates exhibit a very high affinity for the inclusion of this element in a wide range of pH and a good resistance to ionising radiation which makes them very interesting for decontamination. Every year, at La Hague, several hundred m3 of radioactive waste are treated by a nickel ferrocyanide preformed precipitate in bulk form (PPFeNi, general formula K2xNi2-x [Fe (CN) 6] with 0,5> x> 1,1). This process shows a good decontamination but it's difficult to implement and it produces a sludge that must then be treated by waste channel available.The purpose of this thesis is to find a material for the decontamination of Cs which have a good capacity, selectivity, adapted for continuous decontamination process (column) and compatible with conventional waste (cement or glass). To achieve this goal, we have several objectives:i) The study of solid materials based on cyanometallate to improve knowledge on the mechanism of fixation of cesium on these compounds by varying the nature of transition metal and the presence or not of potassium in the crystal structure,ii) Synthesis of nanocomposites containing cyanometallate nanoparticles incorporated into inorganic matrices which are mesostructured silica and porous glass. Silica is used as a template, whereas the porous glass shaping ball will be used for a decontamination process.Bulk materials containing potassium in the structure present the greater sorption capacity toward Cs. Hybrid materials containing cyanometallate nanoparticles have a lesser absolute capacity than the respective bulk materials, however, based on the amount of sorbent particles, the maximum sorption capacity of hybrid materials is higher than bulk materials. However, the selectivity is comparable for hybrid and bulk materials with a distribution coefficient about 104 to 105 mL.g-1.The performance of the hybrid materials were evaluated on real effluents. These materials are very promising for the decontamination of effluents from a treatment process in column one hand they have a high selectivity towards cesium and despite high salinity of the solution to decontaminate and other formatting (glass beads) adapted to this type of process
Bandiera, Nicholas Graham. "Hybrid inkjet and direct-write multi-material additive manufacturing." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/111774.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 77-79).
Recently there has been a trend towards combining multiple forms of additive manufacturing together for increased functionality, freedom and efficiency. In this work, two forms of multiple-material additive manufacturing technologies - inkjet and direct-ink writing - are combined in a hybrid system. Several advantages are realized due to the increased material library and geometric freedom as a result of new printing modalities. Initially, models of each process are reviewed and the processes are evaluated for compatibility. Then, the precision machine design of a passively-indexed, carousel-style, syringe tool holder is completed. An error budget employing Homogeneous Transformation Matrices was maintained to estimate the tooltip errors. In order to register these two non-contact printing processes, a unique approach to their registration to a common global origin was necessary. A single non-contact optical CCD micrometer is used to register the three spatial coordinates of the syringe tooltip. Measurements are performed to characterize the repeatability of the nozzle registration scheme and the constructed gantry and carousel system, which well exceeds the requirements and the predictions from the conservative error budget. This novel system can print with a wide array of inks, including those that solidify via polymerization or crosslinking, two part chemistries, solvent evaporation or sintering, as well as liquids, gels and pastes. These materials can have a wide range of mechanical properties and functionalities, for example electrical conductivity or force sensitive resistivity. Models for the extrudate flow rate are used alongside experimental determination of the extrudate cross-section to ensure accurate process congruence. Finally, printed results demonstrate the various printing techniques, highlight the expanded material library, and display novel assemblies not possible with conventional additive processes. One such example is a fully printed pressure sensor array.
by Nicholas Graham Bandiera.
S.M.
Bandiera, Nicholas Graham. "Hybrid inkjet and direct-write multi-material additive manufacturing." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111774.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 77-79).
Recently there has been a trend towards combining multiple forms of additive manufacturing together for increased functionality, freedom and efficiency. In this work, two forms of multiple-material additive manufacturing technologies - inkjet and direct-ink writing - are combined in a hybrid system. Several advantages are realized due to the increased material library and geometric freedom as a result of new printing modalities. Initially, models of each process are reviewed and the processes are evaluated for compatibility. Then, the precision machine design of a passively-indexed, carousel-style, syringe tool holder is completed. An error budget employing Homogeneous Transformation Matrices was maintained to estimate the tooltip errors. In order to register these two non-contact printing processes, a unique approach to their registration to a common global origin was necessary. A single non-contact optical CCD micrometer is used to register the three spatial coordinates of the syringe tooltip. Measurements are performed to characterize the repeatability of the nozzle registration scheme and the constructed gantry and carousel system, which well exceeds the requirements and the predictions from the conservative error budget. This novel system can print with a wide array of inks, including those that solidify via polymerization or crosslinking, two part chemistries, solvent evaporation or sintering, as well as liquids, gels and pastes. These materials can have a wide range of mechanical properties and functionalities, for example electrical conductivity or force sensitive resistivity. Models for the extrudate flow rate are used alongside experimental determination of the extrudate cross-section to ensure accurate process congruence. Finally, printed results demonstrate the various printing techniques, highlight the expanded material library, and display novel assemblies not possible with conventional additive processes. One such example is a fully printed pressure sensor array.
by Nicholas Graham Bandiera.
S.M.
Zhang, Weiwei. "Hybrid Integration of Er-doped Materials and CNTs on Silicon for Light Emission and Amplification." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS001/document.
Full textThis thesis is a contribution to the hybrid integration of active materials including Erbium-doped and carbon nanotubes rich layers on silicon for on-chip light emission.In a first step, we designed, fabricated, and characterized within the silicon-on-insulator and silicon nitride platforms a range of photonic structures including strip/slot waveguides, micro disks, strip/slot ring resonators, and micro cavities aiming at preparing a set of passive device building blocks needed for hybrid integration on Si. Silicon slot waveguides and slot ring add-drop resonators filled with index liquids with linear propagation losses 2-7 dB/cm and Q-factors up to 30,000, have been demonstrated around wavelength=1.55µm. Propagation loss of silicon nitride slot waveguides were minimized down to ~4dB/cm for compact spiral structures (2cm long, within ~500µm×500µm area). Air-band mode Nano beam cavities were also investigated, leading to Nano cavities with mode volumes V ~0.03(wavelength/n)^3 and Q-factors ~70,000 when filled with soft materials.In a second step, hybrid integration of Erbium doped materials and semiconducting single-wall carbon nanotubes (SWCNTs) was investigated for light emission under optical pumping.Integration of Erbium-doped materials was studied within the framework of two collaborations: Prof. Daming Zhang’s team, in State Key Laboratory on Integrated Optoelectronics, Jilin University, China, and Prof. Zhipei Sun, in Department of Micro- and Nanosciences, Aalto University, Finland. Erbium doped layers coming from Jilin were composed of Er3+ and Yb3+ co-doped core {shell} nanoparticles which were copolymerized with methyl methacrylate (MMA) to synthesize nanocomposite (PMMA-NPs: Er3+/Yb3+). We conducted the experimental characterization that led to the demonstration of an internal net gain up to 10-17dB/cm at wavelength=1.53µm in Erbium doped polymer rib waveguides fabricated in Jilin. The second Erbium doped material available during this thesis was based on Er2O3/Al2O3 atomic layers, grown in Aalto University. This collaboration was devoted to integrate high Erbium ion concentration (10E21/cm3) in oxide cladding layers on top of silicon nitride slot waveguides, which were fabricated in our group for the demonstration of on-chip optical net gain. The carried out experiments have conducted to the demonstration of 1.5-22.8dB/cm gain for sub millimeter length waveguides.In another direction, hybrid integration of SWCNTs emitting at wavelengths around 1.3 µm on ring resonators and Nano beam cavities has been investigated. First, we studied the coupling of SWCNTs photoluminescence (PL) in silicon micro-ring resonators and compared it with the PL intensity coupled into the bus waveguide . It has been shown that the pump beam polarization controls the light coupling into the straight bus waveguide. We demonstrated an enhancement of the PL intensity of 20dB at resonance. We also explored CNT hybrid integration with ultra-small mode volume Nano beam optical cavities, and hence with larger Purcell-like Q/V factors in comparison with the one obtained in micro-ring resonators. The results revealed that the PL resonance enhancement due to Nano beam cavity field confinement exhibited a nonlinear growth as a function of the pump power. It was also shown that the resonance of the PL peak intensity grows faster with the pump power than the PL background, which is accompanied by a line width narrowing of the resonance PL peak. This result is the first step to achieve an integrated laser based on carbon nanotubes
Ayingone, Mezui Charyle. "Synthèses et caractérisations électrochimiques de matériaux hybrides à base de polyoxométallates." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS513/document.
Full textPolyoxometalates (POMs) may be considered as molecular oxides containing transition metals. They form a family of inorganic molecular clusters with a variety of properties and a myriad of applications. They are used in different fields such as catalysis, biology or medicine. Carbon nanomaterials are a new class of materials known for their high surface area and enhanced electrical conductivity. This thesis focuses on the synthesis and study of different electro-catalytic molecular systems based on polyoxometalates and carbon materials (such as carbon nanotubes and graphene) for water oxidation or nitrogen oxides reduction. The first part of this thesis is devoted to the synthesis, physicochemical characterisation (infrared and UV-Vis spectroscopies, TGA) and the electrochemical study (cyclic voltammetry, coulometry, electrochemistry coupled with microbalance) of several poly-tungstic complexes sandwiching transition metals such as cobalt and/or manganese. Two of them, selected for the study of their electro-catalytic properties, show good electro-catalytic activity for nitrogen oxides reduction and water oxidation. The second part of this thesis is devoted to the optimisation of the electrochemical properties of POMs. For this, POMs are immobilised on structured carbon materials (graphene or single wall carbon nanotubes), and the composite materials obtained are characterised by different analytical techniques: X-ray photoelectron spectroscopy, infrared spectroscopy, cyclic voltammetry and coulometry
Stark, Sebastian. "Hybride Materialmodellierung für ferroelektroelastische Keramiken." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217239.
Full textFerroelectroelastic ceramics are used in sensor and actuator applications due to their electromechanical coupling properties. In order to predict the behavior of components or to assess their strength, material models are required. In the present work, a multi-axial, rate-independent material model for ferroelectroelastic ceramics is elaborated. This includes the development of efficient numerical solution methods. By incorporating ideas from known macroscopic phenomenological and micro-electromechanical phenomenological models into the novel model, it is attempted to combine the advantages of both approaches. In a first example, it is shown that the hybrid model can reproduce the experimentally observed material response of barium titanate ceramics. In a second example, the model is applied to morphotropic PZT ceramics. In this context, the recently discovered monoclinic phase as well as the hierarchical structure of micro-domains and nano-domains observed by means of electron microscopy are taken into account in a simplified way. Based on the assumptions made, the experimentally measured material response of the morphotropic PZT ceramic PIC151 (PI Ceramic GmbH, Lederhose, Germany) is predicted with reasonable accuracy for selected load cases
Patti, Alessandro. "Molecular Modeling of Self-Assembling Hybrid Materials." Doctoral thesis, Universitat Rovira i Virgili, 2007. http://hdl.handle.net/10803/8551.
Full textEl presente estudio tiene como principal objetivo estudiar bajo cuales condiciones los sistemas formados por un surfactante, un precursor inorgánico y un solvente, se auto-organizan para dar lugar a estructuras híbridas muy ordenadas. En particular nos proponemos individuar cuales son las características más importantes que los precursores inorgánicos deberían tener para poder observar la formación de materiales mesoporosos ordenados.
Simulaciones Monte Carlo en el colectivo canónico han sido utilizadas para analizar la agregación de los surfactantes en estructuras complejas, como micelas, cilindros organizados en forma hexagonal, o laminas, a partir de configuraciones totalmente desordenadas. Con particular interés hemos analizado el rango de condiciones que llevan a la formación de las estructuras cilíndricas, y estas mismas estructuras han sido comparadas en función de algunas importantes características morfológicas, como el tamaño de poro, el grosor de las paredes, la presencia y accesibilidad de los grupos funcionales en los poros. El modelo usado representa las moléculas de surfactante y de precursor inorgánico como cadenas de segmentos en una red tridimensional que discretiza el espacio en sitios de volumen unitario. Este modelo no entra en el detalle de las características físicas y químicas de las moléculas, pero permite reproducir su agregación en estructuras complejas en un tiempo de cálculo muy razonable. La separación de fase ha sido también evaluada recorriendo a una teoría de campo medio, la quasi-chemical theory, que, aunque no pueda predecir la formación de estructuras ordenadas, ha sido muy útil para confirmar los resultados de las simulaciones, sobretodo cuando no se observa formación de fases ordenadas.
El estudio de surfactantes distintos, uno modelado por una cadena lineal y otro con una cabeza ramificada, nos ha permitido evaluar algunas diferencias estructurales de los materiales obtenidos. La ramificación de la cabeza, que merecería un estudio más profundo del que hemos descrito en este trabajo, ha evidenciado unas interesantes consecuencias en el tamaño de los poros. Este mismo surfactante con cabeza ramificada ha sido elegido para la síntesis de agregados cilíndricos utilizados como templates en la formación, agregación, y condensación de una capa de sílica modelada a través de un modelo atomístico. En particular, hemos aislado uno de los cilindros presentes en los cristales líquidos de estructura hexagonal, y a su alrededor hemos simulado la formación de una capa de sílica utilizando un modelo atomístico. De esta forma, hemos obtenido un poro típico de una estructura mesoporosa más realista, sin necesidad de asumir una forma mas o menos cilíndrica del template, por ser este generado de la auto-agregación del surfactante.
Surfactants are amphiphilic molecules with a solvophilic head and a solvophobic tail. When the surfactant concentration in a given solution is high enough, the molecules aggregate between them to shield the solvophobic part from the contact with the solvent. Such aggregates can show very different sizes and shapes, according to the surfactant and the conditions of the system. The surfactants self-assembly, being due to an energetic and entropic compromise of their molecular structure, is fundamental to observe the formation of very ordered liquid crystals. In the presence of an inorganic precursor and depending on the interactions established between such a precursor and the surfactant, it is possible to synthesize a hybrid material. Hybrid materials are the key step for the formation of periodic ordered mesoporous materials, which can be obtained by eliminating the organic soft matter (the surfactants) from the inorganic framework. Periodic ordered mesoporous materials represent an important family of porous materials as they find a large number of applications in several industrial fields, such as separations, catalysis, sensors, etc. In the last decade, the range of potential applications has increased with the possibility of functionalizing the pore walls by incorporating organic groups during the synthesis, or with post-synthesis treatments.
In this work, we are interested in studying the formation of ordered materials when hybrid organic-inorganic precursors are used. Lattice Monte Carlo simulations in the NVT ensemble have been used to study the equilibrium phase behavior and the synthesis of self-assembling ordered mesoporous materials formed by an organic template with amphiphilic properties and an inorganic precursor in a model solvent. Three classes of inorganic precursors have been modeled: terminal (R-Si-(OEt)3) and bridging ((EtO)3-Si-R-Si-(OEt)3)) organosilica precursors (OSPs), along with pure silica precursors (Si-(OEt)4). Each class has been studied by analyzing its solubility in the solvent and the solvophobicity of the inorganic group.
At high surfactant concentrations, periodic ordered structures, such as hexagonally-ordered cylinders or lamellas, can be obtained depending on the OSPs used. In particular, ordered structures were obtained in a wider range of conditions when bridging hydrophilic OSPs have been used, because a higher surfactant concentration was reached in the phase where the material was formed. Terminal and bridging OSPs produced ordered structures only when the organic group is solvophilic. In this case, a partial solubility between the precursor and the solvent or a lower temperature favored the formation of ordered phases.
With particular interest, we have analyzed the range of conditions leaving to the formation of cylindrical structures, which have been evaluated according to the pore size distribution, the pore wall thickness, the distribution and the accessibility of the functional organic groups around the pores. The phase behavior has been also evaluated by applying the quasi-chemical theory, which cannot predict the formation of ordered structures, but was very useful to confirm the results of simulations, especially when no ordered structures were observed.
The study of the phase and aggregation behavior of two different surfactants, one modeled by a linear chain of head segments and the other modeled by a branched-head, permitted us to evaluate some structural differences of the materials obtained.
Herigstad, Matthew Omon. "Hybrid Particle-Nonwoven Membrane Materials for Bioseparations." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-04042009-120426/.
Full textHan, Yung-Hoe. "Characterisation of organic-inorganic hybrid coating materials." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603637.
Full textKim, Dae-Wook. "Machining and drilling of hybrid composite materials /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/7041.
Full textOcchi, Luca. "PEDOT:PSS-based hybrid materials for optoelectronics applications." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/61335.
Full text