Academic literature on the topic 'Hydrated antimonate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrated antimonate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrated antimonate"

1

Cornelis, G., B. Etschmann, T. Van Gerven, and C. Vandecasteele. "Mechanisms and modelling of antimonate leaching in hydrated cement paste suspensions." Cement and Concrete Research 42, no. 10 (2012): 1307–16. http://dx.doi.org/10.1016/j.cemconres.2012.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Firsova, Olga A., Elena M. Filonenko, Yulia A. Lupitskaya, Hurshid N. Bozorov, and Anatoly V. Butakov. "Ion-exchange properties of solid solutions based on hydrated forms of monovalent metals antimonate-tungstates." Butlerov Communications 62, no. 6 (2020): 74–79. http://dx.doi.org/10.37952/roi-jbc-01/20-62-6-74.

Full text
Abstract:
The research of tungsten-antimony crystalline acid (TACA) structural transformations in the condition of ion-exchange and thermolysis of its substituted M+, H+-forms (M+ – Li, Na, K, Ag) were conducted. The data of thermogravimetric and qualitative X-ray phase analyses made it possible to conclude that the thermolysis of TACA and its derivatives proceeds in a wide temperature range from 300 to 1150 K being accompanied by the removal of crystalline water molecules with the formation of phases mixture containing complex antimony oxides of the ( -,  - Sb2O4) modification and WO3. It was shown that compounds based on hydrated forms of monovalent metal antimonates-tungstates are stable up to 1023 K with a pyrochlore-type structure. For pyrochlore-like phases, a monotonic dependence of unit cell parameter a on ion-exchange degree α and the ionic radius of metals r was revealed indicating the formation of solid solutions Мх(Н3О)1–хWSbO6 nН2О (M+ – Li, Na, K, Ag; 0.0≤х<1.0; 0.0≤n<2.0) with a limited range of solubility from the crystal chemistry point of view. Within the framework of the Fd-3m space group, based on the data of X-ray diffraction analysis (Rietveld method), the structural characteristics of TACA and its substituted M+, H+-forms were refined, and a model for populating the corresponding metal ions by crystallographic positions of the pyrochlore-type structure was proposed. Using a complex of physicochemical methods (thermogravimetric, X-ray diffraction analyses and IR spectroscopy), a correlation between the composition of the obtained compounds, structural disorder, and ion-exchange properties were determined. According to the data of thermogravimetry and IR spectroscopy, it follows that the degree of compounds hydration analyzed depends on the nature of the alkaline ion. This allows to conclude that lithium and sodium ions are located in 16d– positions, dragging neutral water molecules into the structure occupying 8b-positions. In this case, potassium ions can partially occupy both 16d- and 8b-positions of the structure.
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Jen-Hui, Thomas Doert та Michael Ruck. "The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres". Zeitschrift für Kristallographie - Crystalline Materials 235, № 8-9 (2020): 255–61. http://dx.doi.org/10.1515/zkri-2020-0013.

Full text
Abstract:
AbstractYellow prismatic crystals of rubidium bromido-antimonate(III) Rb7Sb3Br16 and of two different modifications of thallium bromido-bismuthate(III) Tl7Bi3Br16 were obtained by solvent-free synthesis and by precipitation from acidic aqueous solutions. X-ray diffraction analyses revealed the Tl7Bi3I16-type for α-Tl7Bi3Br16 (orthorhombic, Cmcm, a = 2324.31(8) pm, b = 1346.69(4) pm, c = 3460.0(1) pm; Pearson symbol oC312) and a new structure type for β-Tl7Bi3Br16 (monoclinic, C2/c, a = 2331.87(5) pm, b = 1343.33(3) pm, c = 3546.01(7) pm, β = 102.708(1)°; mC312). The antimonate Rb7Sb3Br16 adopts the Tl7Bi3I16-type, too (orthorhombic, Cmcm, a = 2347.16(3) pm, b = 1357.89(5) pm, c = 3539.47(9) pm; oC312). The crystal structures of α- and β-Tl7Bi3Br16 comprise alternating slabs of isolated [BiBr6]3– octahedra and [Bi2Br10]4– octahedra pairs. Both structure types are hierarchically organized and can be regarded as sphere close packing with the same stacking sequence, if octahedra and octahedra pairs are replaced by spheres of equal size. The structural relationship between the Tl7Bi3I16-type and the hydrate Na7Bi3Br16 · 18H2O, which comprises similar structural features, is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Kovalenko, Liliya Yu, Vladimir A. Burmistrov та Dmitrii A. Zakhar’evich,. "Состав и структура фаз, образующихся при термолизе твердых растворов замещения H2Sb2-xVxO6·nH2O". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, № 1 (2020). http://dx.doi.org/10.17308/kcmf.2020.22/2507.

Full text
Abstract:
В соединениях, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m) общей формулы А2В2X6X’, на месте катионов A могут находиться двух- или трёхзарядные ионы, на месте B – четырёх- или пятизарядные ионы. В большом количестве работ рассматриваются вопросы формирования таких структур в зависимости от природы и размеров катионов A и B, мало внимания уделяется определению температурных интервалов их устойчивости. Поэтому целью данной работы являлось исследование термолиза твердых растворов замещения H2Sb2–xVxO6·nH2Oв интервале температур 25–700 °С, определение влияния природы катиона B (Sb, V) на устойчивость структуры типа пирохлора при нагревании.Твердые растворы замещения были получены методом соосаждения. В качестве объектов исследования выбраны образцы H2Sb2–xVxO6·nH2O, содержащие по данным элементного анализа 0; 5 (x = 0.10); 15 (x = 0.30); 20 (x = 0.40); 24 (x = 0.48) ат.% ванадия. С помощью метода ИК-спектроскопии анализировали изменение протонгидратной подрешетки в образцах, содержащих различное количество V+5. Рентгенофазовый и термогравиметрический анализ образцов позволил смоделировать процесс термолиза и определить состав фаз на каждой стадии.Показано, что при температурах 25–400 °С происходит удаление протонсодержащих группировок из гексагональных каналов структуры типа пирохлора. Увеличение количества ионов V+5 в твердых растворах изменяет энергию связи протонов с ионами кислорода [BO3]–-октаэдра, что приводит к смещению границ стадий: ионы оксония и молекулы воды удаляются при более высоких температурах, а гидроксид-ионы при более низких температурах. Повышениетемпературы выше 500 °С приводит к разрушению структуры по причине удаления кислорода из [BO3]–-октаэдров.Предложена модель заполнения атомами кристаллографических позиций структуры типа пирохлора для фаз, которые образуются при термолизе H2Sb2–xVxO6·nH2O при температурах 25–400 °С.Установлены структурные формулы твердых растворов - (H3O)Sb2-xVxO5(OH)·nH2O, где 0 < x≤ 0.48, 0 <n≤ 1.1. Показано, что на температурные интервалы стадий термолиза влияет энергия связи протонов с ионами кислорода [BO3]–-октаэдров, где B = V, Sb, формирующих каркас структуры. При этом в рамках структуры типа пирохлора исследуемые твердые растворы устойчивы до 400 °С.
 
 
 
 
 ЛИТЕРАТУРА
 
 Subramanian M. A., Aravamudan G., Rao G. V. S. Oxide pyrochlores — A review. Progress in Solid State Chemistry. 1983;15(2): 55–143. DOI: https://doi.org/10.1016/0079-6786(83)90001-8
 Krasnov A. G., Piir I. V., Koroleva M. S., Sekushin N. A., Ryabkov Y. I., Piskaykina M. M., Sadykov V. A., Sadovskaya E. M., Pelipenko V. V., Eremeev N. F. The conductivity and ionic transport of doped bismuth titanate pyrochlore Bi1.6МxTi2O7–d (М– Mg, Sc, Cu). Solid State Ionics. 2017;302: 118–125. DOI: https://doi.org/10.1016/j.ssi.2016.12.019
 Cherednichenko L. A., Moroz Ya. A. Catalytic properties of heteropolytungstates with 3d elementsand their thermolysis products. Kinetics and Catalysis. 2018;59(5): 572–577. DOI: https://doi.org/10.1134/S0023158418050038
 Krasnov A. G., Kabanov A. A., Kabanova N. A., Piir I. V., Shein I. R. Ab initio modeling of oxygen ionmigration in non-stoichiometric bismuth titanate pyrochlore Bi1.5Ti2O6.25. Solid State Ionics. 2019;335: 135–141. DOI: https://doi.org/10.1016/j.ssi.2019.02.023
 Farlenkov A. S., Khodimchuk A. V., Eremin V. A., Tropin E. S., Fetisov A. V., Shevyrev N. A., Leonidov I. I., Ananyev M. V. Oxygen isotope exchange in doped lanthanum zirconates. Journal of Solid State Chemistry. 2018;268: 45–54. DOI: https://doi.org/10.1016/j.jssc.2018.08.022
 Rejith R. S., Thomas J. K., Solomon S. Structural, optical and impedance spectroscopic characterizations of RE2Zr2O7 (RE = La, Y) ceramics. Solid State Ionics. 2018;323: 112–122. DOI: https://doi.org/10.1016/j.ssi.2018.05.025
 Егорышева А. В., Эллерт О. Г., Гайтко О. М., Берсенева А. А., Максимов Ю. В., Дудкина Т. Д. Магнитные свойства твердых растворов со структурой типа пирохлора Pr2-xFe1+xSbO7, Bi2–xLnxFeSbO7 (Ln = La, Pr). Неорганические материалы. 2016;52(10): 1106–1115. DOI: https://doi.org/10.7868/S0002337X16100079
 Rau J. G., Gingras M. J. P. Frustrated quantum rare-earth pyrochlores. Annual Review of Condensed Matter Physics. 2019;10(1): 357-386. DOI: https://doi.org/10.1146/annurev-conmatphys-022317-110520
 Ломанова Н. А., Томкович М. В., Соколов В. В., Уголков В. Л. Формирование и термическое поведение нанокристаллического Bi2Ti2O7. Журнал общей химии. 2018;88(12): 1937–1942. DOI: https://doi.org/10.1134/S0044460X18120016
 Liu X., Huang L., Wu X., Wang Z., Dong G., Wang C., Liu Y., Wang L. Bi2Zr2O7 nanoparticles synthesized by soft-templated sol-gel methods for visiblelight-driven catalytic degradation of tetracycline. Chemosphere. 2018;210: 424–432. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.040
 Weller M. T., Hughes R. W., Rooke J., Knee Ch. S., Reading J. The pyrochlore family – a potential panacea for the frustrated perovskite chemist. Dalton Transactions. 2004;19: 3032–3041. DOI: https://doi.org/10.1039/B401787K
 Knop O., Brisse F., Meads R. E., Brainbridge J. Pyrochlores. IV. Crystallographic and mossbauer studies of A2FeSbO7 pyrochlores. Canadian Journal of Chemistry. 1968;46: 3829–3832. DOI: https://doi.org/10.1139/v68-635
 Sadykov V. A., Koroleva M. S., Piir I. V., Chezhina N. V., Korolev D. A., Skriabin P. I., Krasnov A. V., Sadovskaya E. M., Eremeev N. F., Nekipelov S. V., Sivkov V. N. Structural and transport properties of doped bismuth titanates and niobates. Solid State Ionics. 2018;315: 33–39. DOI: https://doi.org/10.1016/j.ssi.2017.12.008
 Егорышева А. В., Попова Е. Ф., Тюрин А. В., Хорошилов А. В., Гайтко О. М., Светогоров Р. Д. Сложные танталаты РЗЭ с пирохлороподобной структурой: синтез, структура и термические свойства. Журнал неорганической химии. 2019;64(11):1154–1165. DOI: https://doi.org/10.1134/S0044457X19110059
 McCauley R. A. Structural characteristics of pyrochlore formation. Journal of Applied Physics. 1980;51(1): 290–294. DOI: https://doi.org/10.1063/1.327368
 Лупицкая Ю. А., Бурмистров В. А. Фазообразование в системе K2CO3–Sb2O3–WO3 при нагревании. Журнал неорганической химии. 2011; 56 (2): 329–331. Режим доступа: https://www.elibrary.ru/download/elibrary_15599328_91286141.pdf
 Piir I. V., Koroleva M. S., Korolev D. A., Chezina N. V., Semenov V. G., Panchuk V. V. Bismuth iron titanate pyrochlores: Thermostability, structure and properties. Journal of Solid State Chemistry. 2013;204: 245–250. DOI: https://doi.org/10.1016/j.jssc.2013.05.031
 Лупицкая Ю. А., Калганов Д. А., Клюева М. В. Образование cоединений в системе Ag2O-Sb2O3-MoO3 при нагревании. Неорганические материалы. 2018;54(3): 252–256. DOI: https://doi.org/10.7868/S0002337X18030053
 Lomakin M. S., Proskurina O. V., Danilovich D. P., Panchuk V. V., Semenov V. G., Gusarov V. V. Hydrothermal synthesis, phase formation and crystal chemistry of the pyrochlore/Bi2WO6 and pyrochlore/a-Fe2O3 composites in the Bi2O3–Fe2O3–WO3 system. Journal of Solid State Chemistry. 2019. DOI: https://doi.org/10.1016/j.jssc.2019.121064
 Yang J., Han Y., Shahid M., Pan W., Zhao M., Wu W., Wan C. A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7. Scripta Materialia. 2018;149: 49–52. DOI: https://doi.org/10.1016/j.scriptamat.2018.02.005
 Коваленко Л. Ю., Бурмистров В. А., Лупицкая Ю. А., Ковалев И. Н., Галимов Д. М. Синтез твёрдых растворов H2Sb2–xVxO6·nH2O со структурой типа пирохлора. Бутлеровские сообщения. 2018;55(8): 24–30. ROI: jbc-01/jbc-01/18-55-8-24
 Коваленко Л. Ю., Бурмистров В. А. Диэлектрическая релаксация и протонная проводимость полисурьмяной кислоты, допированной ионами ванадия. Конденсированные среды и межфазные границы. 2019;21(2): 204–214. DOI: https://doi.org/10.17308/kcmf.2019.21/758
 Трофимов В. Г., Шейнкман А. И., Клещев Г. В. О пятиокиси сурьмы в кристаллическом состоянии. Журнал структурной химии. 1973;14(2): 275–279.
 Коваленко Л. Ю., Ярошенко Ф. А., Бурмистров В. А., Исаева Т. Н., Галимов Д. М. Термолизгидрата пентаоксида сурьмы. Неорганические материалы. 2019;55(6): 628–634. DOI: https://doi.org/10.1134/S0002337X19060083
 Chen J., Chen Z., Zhang X., Li X., Yu L., Li. D. Antimony oxide hydrate (Sb2O5·3H2O) as a simple and high effi cient photocatalyst for oxidation of benzene. Applied Catalysis B: Environmental. 2018;210: 379–385. DOI: https://doi.org/10.1016/j.apcatb.2017.04.004
 Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Yaroshenko F. A., Filonenko E. M., Bulaeva E. A. Ion exchange of H+/Na+ in polyantimonic acid, doped with vanadium ions. Pure and Applied Chemistry. 2019. DOI: https://doi.org/10.1515/pac-2019-0112
 Юхневич Г. В. Успехи в применении ИК-спектроскопии для характеристики ОН-связей. Успехи химии. 1963;32(11): 1397–1423. DOI: https://doi.org/10.1070/RC1963v032n11ABEH001370
 Тарасова Н. А., Анимица И. Е. Влияние природы галогена на локальную структуру и интеркалацию воды в оксигалогенидах Ba2InO3X (X = F, Cl, Br). Оптика и спектроскопия. 2018;124(2): 167–170. DOI: https://doi.org/10.21883/OS.2018.02.45518.171-17
 Дерягин Б. В., Чураев Н. В., Овчаренко Ф. Д., Тарасевич Ю. И., Букин В. А., Сарвазян А. П., Харакоз Д. П., Саушкин В. В. Вода в дисперсных системах. М.: Химия; 1989. 288 с.
 Ферапонтов Н. Б., Вдовина С. Н., Гагарин А. Н., Струсовская Н. Л., Токмачев М. Г. Свойства воды в гелях гидрофильных полимеров. Конденсированные среды и межфазные границы. 2011; 13(2): 208–214. Режим доступа: http://www.kcmf.vsu.ru/resources/t_13_2_2011_015.pdf
 Frenkel L. S. Nuclear magnetic resonance method for determining the moisture holding capacity of cation exchange resins as a function of temperature. Analytical Chemistry. 1973;45(8): 1570–1571. DOI: https://doi.org/10.1021/ac60330a052
 Карговский А. В. Водные кластеры: структуры и оптические колебательные спектры. Известия вузов. Прикладная нелинейная динамика. 2006;14(5): 110–119. DOI: https://doi.org/10.18500/0869-6632-2006-14-5-110-119
 Eisenberg D., Kauzmann W. The structure and properties of water. Oxford: Oxford University Press; 1969. 296 p.
 Yu T., Zhang H., Cao H., Zheng G. Understanding the enhanced removal of Bi(III) using modifi ed crystalline antimonic acids: creation of a transitional pyrochlore-type structure and the Sb(V)-Bi(III) interaction behaviors. Chemical Engineering Journal. 2019;360: 313–324. DOI: https://doi.org/10.1016/j.cej.2018.11.209
 Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds: Part A: Theory and applications inorganic chemistry (Sixth ed.). New York: John Wiley & Sons; 2009. 419 p. DOI: https://doi.org/10.1002/9780470405840
 Birchall T., Sleight A. W. Oxidation states in vanadium antimonate (“VSbO4”). Inorganic Chemistry. 1976;15(4): 868–870. DOI: https://doi.org/10.1021/ic50158a026
 Guerrero-Pérez M. O. V-containing mixed oxide catalysts for reduction–oxidation-based reactions with environmental applications: A short review. Catalysts. 2018;8(11): 564. DOI: https://doi.org/10.3390/catal8110564
 Котов В. Ю., Ярославцев А. Б. Протонная подвижность в неорганических гидратах кислот и кислых солей. Известия Академии наук. Серия химическая. 2002;4: 515–528.
 Полинг Л. Природа химической связи. М.:Ленинград: Госхимиздат; 1947. 116 с.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hydrated antimonate"

1

Bahfenne, Silmarilly. "Single crystal Raman spectroscopy of selected arsenite, antimonite and hydroxyantimonate minerals." Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/46234/1/Silmarilly_Bahfenne_Thesis.pdf.

Full text
Abstract:
This thesis concentrates on the characterisation of selected arsenite, antimonite, and hydroxyantimonate minerals based on their vibrational spectra. A number of natural arsenite and antimonite minerals were studied by single crystal Raman spectroscopy in order to determine the contribution of bridging and terminal oxygen atoms to the vibrational spectra. A series of natural hydrated antimonate minerals was also compared and contrasted using single crystal Raman spectroscopy to determine the contribution of the isolated antimonate ion. The single crystal data allows each band in the spectrum to be assigned to a symmetry species. The contribution of bridging and terminal oxygen atoms in the case of the arsenite and antimonite minerals was determined by factor group analysis, the results of which are correlated with the observed symmetry species. In certain cases, synthetic analogues of a mineral and/or synthetic compounds isostructural or related to the mineral of interest were also prepared. These synthetic compounds are studied by non-oriented Raman spectroscopy to further aid band assignments of the minerals of interest. Other characterisation techniques include IR spectroscopy, SEM and XRD. From the single crystal data, it was found that good separation between different symmetry species is observed for the minerals studied.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography