Academic literature on the topic 'Hydraulic pump'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydraulic pump.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydraulic pump"
Zagar, Philipp, Helmut Kogler, Rudolf Scheidl, and Bernd Winkler. "Hydraulic Switching Control Supplementing Speed Variable Hydraulic Drives." Actuators 9, no. 4 (December 4, 2020): 129. http://dx.doi.org/10.3390/act9040129.
Full textWang, Hua Bing, and Jun Ke Hu. "Durability Testing System with Power Recycle for the Variable Displacement Closed-Loop Hydraulic Pumps." Applied Mechanics and Materials 241-244 (December 2012): 1333–37. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.1333.
Full textAzzam, Israa, Keith Pate, Jose Garcia-Bravo, and Farid Breidi. "Energy Savings in Hydraulic Hybrid Transmissions through Digital Hydraulics Technology." Energies 15, no. 4 (February 13, 2022): 1348. http://dx.doi.org/10.3390/en15041348.
Full textZhang, Tianxiao, and Nong Zhang. "Vibration Modes and the Dynamic Behaviour of a Hydraulic Plunger Pump." Shock and Vibration 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/9679542.
Full textUłanowicz, Leszek, Grzegorz Jastrzębski, Michał Jóźko, Ryszard Sabak, and Paweł Szczepaniak. "Hydraulic plunger pump contamination sensitivity evaluation." Journal of KONBiN 48, no. 1 (December 1, 2018): 371–83. http://dx.doi.org/10.2478/jok-2018-0061.
Full textChumakov, Pavel V., Alexei V. Martynov, Alexander V. Kolomeychenko, Ismail H. Hasan, and Alla S. Kolomeychenko. "Evaluation of Technical Condition of Round Gear Hydraulic Pumps of Tractor Mounted Hydraulic Systems." Engineering Technologies and Systems 30, no. 3 (September 30, 2020): 426–47. http://dx.doi.org/10.15507/2658-4123.030.202003.426-447.
Full textAkanova, G., A. Sadkowski, S. Podbolotov, A. Kolga, and I. Stolpovskikh. "Ways to reduce hydraulic losses in multistage centrifugal pumping equipment for mining and oil-producing industries." Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 6 (2021): 77–84. http://dx.doi.org/10.33271/nvngu/2021-6/077.
Full textBreidi, Farid, Jordan Garrity, and John Lumkes. "Design and Testing of Novel Hydraulic Pump/Motors to Improve the Efficiency of Agricultural Equipment." Transactions of the ASABE 60, no. 6 (2017): 1809–17. http://dx.doi.org/10.13031/trans.11557.
Full textJing, Bao De, Bin Bin Lv, Zeng Jun Pan, Long Yi, Zhu Ge Gang, and Jian Yu Jiang. "A Research Based on the Deep Self-Balanced Hydraulic Pump." Advanced Materials Research 305 (July 2011): 411–15. http://dx.doi.org/10.4028/www.scientific.net/amr.305.411.
Full textPietrzyk, Tobias, Markus Georgi, Sabine Schlittmeier, and Katharina Schmitz. "Psychoacoustic Evaluation of Hydraulic Pumps." Sustainability 13, no. 13 (June 30, 2021): 7320. http://dx.doi.org/10.3390/su13137320.
Full textDissertations / Theses on the topic "Hydraulic pump"
Rampen, William Hugh Salvin. "The digital displacement hydraulic piston pump." Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/12829.
Full textKulikov, O., and J. Kozachenko. "Reduction of hydraulic losses in a piston pump." Thesis, Sumy State University, 2020. https://essuir.sumdu.edu.ua/handle/123456789/77834.
Full textLee, Seong-Ryeol, Florian Schoemacker, Christian Stammen, and Katharina Schmitz. "Numerical and experimental study on novel hydraulic pump concept." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71110.
Full textDean, Patrick T. "Modern control design for a variable displacement hydraulic pump." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4647.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 21, 2009) Includes bibliographical references.
Davoodi, Mehdi. "High performance repair materials in hydraulic structures and machines." Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285358.
Full textKasaragadda, Suresh Babu. "The theoretical flow ripple of an external gear pump /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418037.
Full textEffrece, Frank. "The dynamic controls of a hydraulic press by controlling the pump motor." Ohio : Ohio University, 1987. http://www.ohiolink.edu/etd/view.cgi?ohiou1183044178.
Full textXu, Xin Ping. "Experimental modeling of a hydraulic load sensing pump using neural networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23892.pdf.
Full textKleynhans, S. H. "Physcial hydraulic model investigation of critical submergence for raised pump intakes." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20304.
Full textENGLISH ABSTRACT: Various design guidelines have been published over the past four decades to calculate the minimum submergence required at pump intakes to prevent vortex formation. These design guidelines also require the suction bell to be located not higher than 0.5 times the suction bell diameter (D) above the floor. Sand trap canals are an integral part of large river abstraction works, with the pump intakes located at the end of the sand trap canals. The canals need to be flushed by opening a gate, typically 1.5 m high, that is located downstream of the pump intake. This requires the suction bell be raised to not interfere with the flushing operation, which leads to the question – what impact does the raising of the suction bell have on the minimum required submergence? A physical hydraulic model constructed at 1:10 scale was used to determine the submergence required to prevent types 2, 5 and 6 vortices for prototype suction bell inlet velocities ranging from 0.9 m/s to 2.4 m/s, and for suction bells located at 0.5D, 1.0D and 1.5D above the floor. The tests were undertaken for four suction bell configurations with a conventional flat bottom suction bell, fitted with a long radius bend, being the preferred suction bell configuration in terms of the lowest required submergence levels. The experimental test results of the preferred suction bell configuration were compared against the published design guidelines to determine which published formula best represents the experimental test results for raised pump intakes. It became evident from the experimental test results that the required submergence increased markedly when the suction bell was raised higher than a certain level above the floor. It was concluded that this “discontinuity” in the required submergence occurred for all the suction bell configuration types when the ratio between the prototype bell inlet velocity and the approach canal velocity was approximately 6.0 or higher. It is recommended that, for pump intakes with a similar geometry to that tested with the physical hydraulic model, critical submergence is calculated using the equation published by Knauss (1987), i.e. S = D(0.5 + 2.0Fr), if the prototype bell inlet velocity/approach canal velocity ratio is less than 6.0, and that the equation published by the Hydraulic Institute (1998), i.e. S = D(1 + 2.3Fr), can be used where the ratio, as determined with Knauss’ (1987) equation, exceeds 6.0. It is also recommended that prototype bell inlet velocities be limited to 1.5 m/s.
AFRIKAANSE OPSOMMING: Oor die afgelope vier dekades is verskeie ontwerpriglyne vir die berekening van minimum watervlakke, om werwelvorming by pompinlate te voorkom, gepubliseer. Hierdie ontwerpriglyne vereis dat die klokmond van die pompinlaat nie hoër as 0.5 keer die deursnee van die klokmond (D) bokant die kanaalvloer geleë moet wees nie. Sandvang kanale vorm ‘n integrale deel van groot riveronttrekkingswerke, met pompinlate wat aan die einde van hierdie kanale geleë is. Die kanale word aan die stroomaf kant van die pompinlaat voorsien met sluise sodat die kanale gespoel kan word. Hierdie sluise is tipies 1.5 m hoog. Dit is derhalwe nodig om die hoogte onder die klokmond dieselfde te maak as die hoogte van die sluis sodat die klokmond die spoelwerking nie beïnvloed nie. Die vraag is egter – wat is die impak op die minimum vereiste watervlakke indien die klokmond op ‘n hoër vlak installeer word? ‘n Fisiese hidrouliese model met ‘n 1:10 skaal is gebruik om die minimum watervlakke te bepaal waar tipes 2, 5 en 6 werwels aangetref word vir prototipe inlaatsnelhede van 0.9 m/s tot 2.4 m/s en klokmond hoogtes van 0.5D, 1.0D en 1.5D bokant die kanaalvloer. Vier klokmond konfigurasies is getoets. Die minimum vereiste watervlakke was die laagste vir die tradisionele plat klokmond met ‘n lang radius buigstuk en was dus die voorkeur klokmond. Die eksperimenttoetsresultate vir die voorkeur klokmond is met die gepubliseerde ontwerpriglyne vergelyk om te bepaal watter van die ontwerpsriglyne van toepassing sal wees vir verhoogde klokmond installasies. Uit die eksperimenttoetsresultate is dit duidelik dat die vereiste watervlakke skielik verhoog sodra die klokmond installasie ‘n seker hoogte bokant die kanaal vloer oorskry. Daar is bevind dat hierdie verskynsel by al vier klokmond konfigurasies voorkom sodra die verhouding tussen die prototipe klokmond inlaatsnelheid teenoor die snelheid in die kanaal hoër as 6.0 is. Daar word aanbeveel dat die minimum vereiste watervlak vir pompinlate met dieselfde geometrie as die fisiese model, met Knauss (1987) se vergelyking bereken word, naamlik S = D(0.5 + 2.0Fr), waar die snelheidsverhouding tussen die klokmond en kanaal 6.0 nie oorskry nie, en dat die vergelyking gepubliseer deur die Hydraulic Institute (1998), S = D(1 + 2.3Fr), gebruik word waar die snelheidsverhouding 6.0, so bereken met Knauss (1987) ser vergelyking, wel oorskry. Die prototipe klokmond inlaatsnelheid moet ook beperk word tot 1.5 m/s.
Law, Thomas Robert. "A double-acting hydraulic ram pump for deep-well water pumping." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:2118b139-caac-4eea-ab0d-56e625916971.
Full textBooks on the topic "Hydraulic pump"
Totten, GE, GH Kling, and DJ Smolenski, eds. Tribology of Hydraulic Pump Testing. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1997. http://dx.doi.org/10.1520/stp1310-eb.
Full textGlover, Peter B. M. Computer simulation of the hydraulic ram pump. [s.l.]: typescript, 1989.
Find full textD, Jeffery T., ed. Hydraulic ram pumps: A guide to ram pump water supply systems. London: Intermediate Technology Publications, 1992.
Find full textMincey, Steve Berl. Basic water systems: A pump and hydraulic training manual. Westerville, Ohio: National Ground Water Association, 2002.
Find full textRohner, Peter. hand pump Industrial hydraulic control: A textbook for fluid power technicians. 2nd ed. Englewood Cliffs, N.J: Prentice-Hall, 1987.
Find full textTondl, Aleš. Analysis of the transient processes in models of pump-turbines after sudden unloading. Praha: SNTL, 1986.
Find full textGlover, Peter B. M. Computer simulation and analysis methods in the development of the hydraulic ram pump. [s.l.]: typescript, 1994.
Find full textHusain, Zoeb. Basic fluid mechanics and hydraulic machines. Hyderabad [India]: BS Publications, 2008.
Find full textVol'vak, Sergey. Hydraulics. Workshop. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1045068.
Full textStewart, Harry L. Audel Pumps & Hydraulics. New York: John Wiley & Sons, Ltd., 2005.
Find full textBook chapters on the topic "Hydraulic pump"
Jeffrey, T. D., T. H. Thomas, A. V. Smith, P. B. Glover, and P. D. Fountain. "5. Local pump manufacture." In Hydraulic Ram Pumps, 83–92. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1991. http://dx.doi.org/10.3362/9781780442471.005.
Full textJeffrey, T. D., T. H. Thomas, A. V. Smith, P. B. Glover, and P. D. Fountain. "1. Introduction to the ram pump; Ram pumps in water supply systems." In Hydraulic Ram Pumps, 1–18. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1991. http://dx.doi.org/10.3362/9781780442471.001.
Full textSong, Charles C. S., Changsi Chen, Toshiaki Ikohagi, Johshiro Sato, Katsumasa Shinmei, and Kiyohito Tani. "Simulation of Flow Through Pump-Turbine." In Hydraulic Machinery and Cavitation, 277–83. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_27.
Full textThackray, P. R., and R. D. James. "Functional Modelling of Pump Volute Geometry." In Hydraulic Machinery and Cavitation, 411–18. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_41.
Full textBuchmaier, H., B. Quaschnowitz, W. Moser, and D. Klemm. "Numerical Optimization of High Head Pump-Turbines." In Hydraulic Machinery and Cavitation, 160–69. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_15.
Full textSamani, Zohrab A. "Deep-Well Turbine and Submersible Pump Curves." In Hydraulic and Hydrologic Engineering, 81–85. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287537-4.
Full textGrist, Edward. "Hydraulic Performance Loss — Duty Shortfall and Vapour Locking." In Cavitation And The Centrifugal Pump, 89–112. New York: Routledge, 2023. http://dx.doi.org/10.1201/9781315138923-6.
Full textMazzouji, Farid, Maryse Francois, Frank Hebrard, Jean Bernard Houdeline, and Daniele Bazin. "Design and Analysis of a Two Stage Pump Turbine." In Hydraulic Machinery and Cavitation, 200–209. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_19.
Full textNakamura, T., H. Nishizawa, M. Yasuda, T. Suzuki, and H. Tanaka. "Study on High Speed and High Head Reversible Pump -Turbine." In Hydraulic Machinery and Cavitation, 210–19. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_20.
Full textIzquierdo, J., P. Iglesias, V. Espert, and V. Fuertes. "Generalization of Pump Station Boundary Condition in Hydraulic Transient Simulation." In Hydraulic Machinery and Cavitation, 720–28. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_73.
Full textConference papers on the topic "Hydraulic pump"
Mauck, Lisa D., and Christopher S. Lynch. "Piezoelectric hydraulic pump." In 1999 Symposium on Smart Structures and Materials, edited by Norman M. Wereley. SPIE, 1999. http://dx.doi.org/10.1117/12.350760.
Full textTotten, G. E., and R. J. Bishop. "The Hydraulic Pump Inlet Condition: Impact on Hydraulic Pump Cavitation Potential." In SAE Earthmoving Industry Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1877.
Full textMauck, Lisa D., William S. Oates, and Christopher S. Lynch. "Piezoelectric hydraulic pump performance." In SPIE's 8th Annual International Symposium on Smart Structures and Materials, edited by Anna-Maria R. McGowan. SPIE, 2001. http://dx.doi.org/10.1117/12.429662.
Full textMauck, Lisa, William Oates, and Christopher Lynch. "Piezoelectric hydraulic pump development." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1789.
Full textMauck, Lisa D., Jacqueline Menchaca, and Christopher S. Lynch. "Piezoelectric hydraulic pump development." In SPIE's 7th Annual International Symposium on Smart Structures and Materials, edited by Norman M. Wereley. SPIE, 2000. http://dx.doi.org/10.1117/12.388881.
Full textNambiar, Prasanna, Amol Shetty, Amogh Thatte, Shubham Lonkar, and Vishtasp Jokhi. "Hydraulic ram pump: Maximizing efficiency." In 2015 International Conference on Technologies for Sustainable Development (ICTSD). IEEE, 2015. http://dx.doi.org/10.1109/ictsd.2015.7095840.
Full textGuangzheng, Jia, and Wang Xuanyin. "Design and Control of the Hydraulic Reciprocating Pump." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/fpst-25018.
Full textShi, Yan, Tiecheng Wu, Andrew R. Plummer, and Maolin Cai. "The Flow Dynamics of an Air-Driven Hydraulic Pump." In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9570.
Full textChaudhuri, A., J. H. Yoo, N. M. Wereley, and N. Nerssessian. "Scaling-Up Issues With a Magnetostrictive-Hydraulic Pump." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15695.
Full textManhartsgruber, Bernhard, and Vito Tič. "Hydraulic pump pulsation using Ionic Liquid." In International conference Fluid Power 2017. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-086-8.14.
Full textReports on the topic "Hydraulic pump"
Jokela, Greg, and John Kunsemiller. Demonstration: Seawater Hydraulic Transfer Pump. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/adb210667.
Full textSharma, Shashi K., Lois J. Gschwender, Carl E. Snyder, Cecere Jr, and Gregory J. B-1 Aircraft Main Hydraulic Pump Tests With MIL-H-87257 Hydraulic Fluid. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada359968.
Full textWilson, T. R. Compressed air piping, 241-SY-101 hydraulic pump retrieval trailer. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/39098.
Full textKoons, B. M. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/48722.
Full textSharma, Shashi K., Carl E. Synder, Gschwender Jr., Cecere Lois J., Jenney Gregory J., and Timothy A. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada375877.
Full textBonney, G. E. Centrifugal slurry pump wear and hydraulic studies. Quarterly technical progress report, January 1, 1987--March 31, 1987. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/231295.
Full textCooper, P. Centrifugal slurry pump wear and hydraulic studies. Quarterly technical progress report for the period of 1 April 1987--30 June 1987. Office of Scientific and Technical Information (OSTI), December 1987. http://dx.doi.org/10.2172/231335.
Full textSpiliotopoulos, Alexandros A. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1079928.
Full textLeoni, Paolo, and Gunnar Lennermo. Integration concepts of decentral ST systems in DHC. IEA SHC Task 55, June 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0016.
Full textRamsey, J. Michael. Nanofluidic Structures for Electrokinetic-Based Hydraulic Pumps. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/839258.
Full text