Academic literature on the topic 'Hydride Transfer Chemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydride Transfer Chemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydride Transfer Chemistry"

1

McSkimming, Alex, Jordan W. Taylor, and W. Hill Harman. "Assembly and Redox-Rich Hydride Chemistry of an Asymmetric Mo2S2 Platform." Molecules 25, no. 13 (2020): 3090. http://dx.doi.org/10.3390/molecules25133090.

Full text
Abstract:
Although molybdenum sulfide materials show promise as electrocatalysts for proton reduction, the hydrido species proposed as intermediates remain poorly characterized. We report herein the synthesis, reactions and spectroscopic properties of a molybdenum-hydride complex featuring an asymmetric Mo2S2 core. This molecule displays rich redox chemistry with electrochemical couples at E½ = −0.45, −0.78 and −1.99 V vs. Fc/Fc+. The corresponding hydrido-complexes for all three redox levels were isolated and characterized crystallographically. Through an analysis of solid-state bond metrics and DFT ca
APA, Harvard, Vancouver, ISO, and other styles
2

Fukuzumi, Shunichi, Toshiaki Kitano, Masashi Ishikawa, and Yoshiharu Matsuda. "Electron transfer chemistry of hydride and carbanion donors. Hydride and carbanion transfer via electron transfer." Chemical Physics 176, no. 2-3 (1993): 337–47. http://dx.doi.org/10.1016/0301-0104(93)80244-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Bun, and Masanari Kimura. "High-level quantum chemistry exploration of reduction by group-13 hydrides: insights into the rational design of bio-mimic CO2 reduction." Electronic Structure 4, no. 4 (2022): 044001. http://dx.doi.org/10.1088/2516-1075/ac9bb3.

Full text
Abstract:
Abstract In the present study, we have used computational quantum chemistry to explore the reduction of various types of substrates by group-13 hydrides. We use the high-level L-W1X method to obtain the energies for the constituent association and hydride transfer reactions. We find that the hydride transfer reactions are highly exothermic, while the preceding association reactions are less so. Thus, improving the thermodynamics of substrate association may improve the overall process. Among the various substrates, amine and imine show the strongest binding, while CO2 shows the weakest. Betwee
APA, Harvard, Vancouver, ISO, and other styles
4

Bohra, Anupama, Pradeep K. Sharma, and Kalyan K. Banerji. "Kinetics and Mechanism of the Oxidation of Aliphatic Aldehydes by Benzyltrimethylammonium Chlorobromate." Journal of Chemical Research 23, no. 5 (1999): 308–9. http://dx.doi.org/10.1177/174751989902300506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Yin, Helmut W. Schmalle, Thomas Fox, Olivier Blacque, and Heinz Berke. "Hydride transfer reactivity of tetrakis(trimethylphosphine)(hydrido)(nitrosyl)molybdenum(0)." Dalton Trans., no. 1 (2006): 73–85. http://dx.doi.org/10.1039/b511797f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wel, Hans van der, Nico M. M. Nibbering, and Margaret M. Kayser. "A gas phase study of the regioselective BH4− reduction of some 2-substituted maleic anhydrides." Canadian Journal of Chemistry 66, no. 10 (1988): 2587–94. http://dx.doi.org/10.1139/v88-406.

Full text
Abstract:
Gas phase ion/molecule reactions in a Fourier transform ion cyclotron resonance mass spectrometer have been carried out for reductions of isotopically labelled citraconic (methylmaleic), phenylmaleic, and ethoxymaleic anhydrides by BH4−. In citraconic anhydride the carbonyl group neighbouring the methyl substituent is reduced preferentially in agreement with the ab initio calculations, which show the higher LUMO coefficients at this site. Hydride ion transfer to the olefinic double bond occurs as well; however, in that case no preference for either of the carbon atoms is observed. In phenylmal
APA, Harvard, Vancouver, ISO, and other styles
7

Zaman, Khan M., Norio Nishimura, Shunzo Yamamoto, and Yoshimi Sueishi. "Hydride transfer reactions of Michler's hydride with different ?-accetors." Journal of Physical Organic Chemistry 7, no. 6 (1994): 309–15. http://dx.doi.org/10.1002/poc.610070607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

FUKUZUMI, SHUNICHI, and SOUTA NOURA. "Cobalt(III) Porphyrin-catalysed Hydride Reduction of 10-Methylacridinium ion and Hydrometallation of Alkenes and Alkynes by Tributyltin Hydride." Journal of Porphyrins and Phthalocyanines 01, no. 03 (1997): 251–58. http://dx.doi.org/10.1002/(sici)1099-1409(199707)1:3<251::aid-jpp24>3.0.co;2-p.

Full text
Abstract:
Cobalt(III) tetraphenylporphyrin catalyses a hydride transfer reaction from tributyltin hydride to 10-methylacridinium ion via the formation of hydridocobalt(III) tetraphenylporphyrin, which is the rate-determining step, followed by facile hydride transfer from the hydridocobalt(III) porphyrin to 10-methylacridinium ion in acetonitrile. Tributyltin hydride is also effective for the hydrometallation of alkenes and alkynes with cobalt(III) tetraphenylporphyrin to yield the corresponding organocobalt(III) porphyrins regioselectively. The hydrometallation is suggested to proceed via the hydride tr
APA, Harvard, Vancouver, ISO, and other styles
9

Tassano, Erika, and Mélanie Hall. "Enzymatic self-sufficient hydride transfer processes." Chemical Society Reviews 48, no. 23 (2019): 5596–615. http://dx.doi.org/10.1039/c8cs00903a.

Full text
Abstract:
Enzymatic self-sufficient hydride transfer processes. The hydride shuttle used in catalytic quantities is typically a nicotinamide cofactor (full: reduced; empty: oxidized). Ideally, no electron is lost to ‘the outside’ and no waste is produced.
APA, Harvard, Vancouver, ISO, and other styles
10

Casey, Charles P., and Jeffrey B. Johnson. "Kinetic isotope effect evidence for the concerted transfer of hydride and proton from hydroxycyclopentadienyl ruthenium hydride in solvents of different polarities and hydrogen bonding ability." Canadian Journal of Chemistry 83, no. 9 (2005): 1339–46. http://dx.doi.org/10.1139/v05-140.

Full text
Abstract:
The tolyl analogue of Shvo's hydroxycyclopentadienyl ruthenium hydride (4) efficiently transfers a hydride and proton to benzaldehyde or acetophenone to produce an alcohol. This reduction can be performed in toluene, methylene chloride, and THF. Reduction of benzaldehyde in toluene and methylene chloride occurs approximately 300 times faster than in THF at 0 °C. Reduction of acetophenone occurs between 75 and 150 times slower than benzaldehyde at 0 °C in each respective solvent. Despite the differences in rate, mechanistic studies have provided evidence for a similar concerted transfer of acid
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!