Academic literature on the topic 'Hydrides – Storage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrides – Storage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrides – Storage"

1

Jensen, Emil H., Martin Dornheim, and Sabrina Sartori. "Scaling up Metal Hydrides for Real-Scale Applications: Achievements, Challenges and Outlook." Inorganics 9, no. 5 (May 7, 2021): 37. http://dx.doi.org/10.3390/inorganics9050037.

Full text
Abstract:
As the world evolves, so does the energy demand. The storage of hydrogen using metal hydrides shows great promise due to the ability to store and deliver energy on demand while achieving higher volumetric density and safer storage conditions compared with traditional storage options such as compressed gas or liquid hydrogen. Research is typically performed on lab-sized samples and tanks and shows great potential for large scale applications. However, the effects of scale-up on the metal hydride’s performance are relatively less investigated. Studies performed so far on both materials, and hydride-based storage tanks show that the scale-up can significantly impact the system’s capacity, kinetics, and sorption properties. The findings presented in this review suggest areas of further investigation in order to implement metal hydrides in real scale applications.
APA, Harvard, Vancouver, ISO, and other styles
2

MENG, XIANG-YU, ZE-WEI BAO, FU-SHENG YANG, and ZAO-XIAO ZHANG. "THEORETICAL INVESTIGATION OF SOLAR ENERGY HIGH TEMPERATURE HEAT STORAGE TECHNOLOGY BASED ON METAL HYDRIDES." International Journal of Air-Conditioning and Refrigeration 19, no. 02 (June 2011): 149–58. http://dx.doi.org/10.1142/s2010132511000508.

Full text
Abstract:
A solar energy storage system based on metal hydrides was proposed in this paper. The numerical simulation of processes of energy storage and thermal release were carried out. The dynamic behavior of heat and mass transfer in the metal hydride energy system were reported. Some factors which influence the whole system performance were discussed. The paper also made an economic analysis of the system, the results proved that the large amounts of metal hydride materials and the configurations of metal hydrides energy storage system involve a critical situation from an economical point of view. Then further analysis, particularly regarding the performance optimization and new plant arrangement of the metal hydrides energy storage system, has to be developed in order to attain the economical feasibility of the proposal.
APA, Harvard, Vancouver, ISO, and other styles
3

Bogdanovic, Borislav, Michael Felderhoff, and Guido Streukens. "Hydrogen storage in complex metal hydrides." Journal of the Serbian Chemical Society 74, no. 2 (2009): 183–96. http://dx.doi.org/10.2298/jsc0902183b.

Full text
Abstract:
Complex metal hydrides such as sodium aluminohydride (NaAlH4) and sodium borohydride (NaBH4) are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favorable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non-reversible complex metal hydride; it reacts with water to produce hydrogen.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Yuchen, Djafar Chabane, and Omar Elkedim. "Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review." Energies 14, no. 18 (September 13, 2021): 5758. http://dx.doi.org/10.3390/en14185758.

Full text
Abstract:
Hydrogen energy is a very attractive option in dealing with the existing energy crisis. For the development of a hydrogen energy economy, hydrogen storage technology must be improved to over the storage limitations. Compared with traditional hydrogen storage technology, the prospect of hydrogen storage materials is broader. Among all types of hydrogen storage materials, solid hydrogen storage materials are most promising and have the most safety security. Solid hydrogen storage materials include high surface area physical adsorption materials and interstitial and non-interstitial hydrides. Among them, interstitial hydrides, also called intermetallic hydrides, are hydrides formed by transition metals or their alloys. The main alloy types are A2B, AB, AB2, AB3, A2B7, AB5, and BCC. A is a hydride that easily forms metal (such as Ti, V, Zr, and Y), while B is a non-hydride forming metal (such as Cr, Mn, and Fe). The development of intermetallic compounds as hydrogen storage materials is very attractive because their volumetric capacity is much higher (80–160 kgH2m−3) than the gaseous storage method and the liquid storage method in a cryogenic tank (40 and 71 kgH2m−3). Additionally, for hydrogen absorption and desorption reactions, the environmental requirements are lower than that of physical adsorption materials (ultra-low temperature) and the simplicity of the procedure is higher than that of non-interstitial hydrogen storage materials (multiple steps and a complex catalyst). In addition, there are abundant raw materials and diverse ingredients. For the synthesis and optimization of intermetallic compounds, in addition to traditional melting methods, mechanical alloying is a very important synthesis method, which has a unique synthesis mechanism and advantages. This review focuses on the application of mechanical alloying methods in the field of solid hydrogen storage materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Julien, and Jacques Huot. "The effect of cold rolling on the crystal structure of Mg and MgH2." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1797. http://dx.doi.org/10.1107/s2053273314082035.

Full text
Abstract:
Hydrogen could have a leading role as an energy carrier in the future. As a storage medium, metal hydrides are interesting from a fundamental as well as practical point of view. Hydrogen storage applications have been the main driving force of research on these materials but lately uses such as thermal storage are considered. Magnesium and magnesium alloys are interesting as a hydrogen storage material since they are low cost and have a high gravimetric capacity (7.6 wt. %). As a preparation technique, cold rolling has been recently shown to be an equivalent to high energy ball milling for magnesium hydride [1]. In this presentation we will review the use of x-ray and neutron diffraction to study the effect of cold rolling on magnesium and magnesium hydride's crystal structure. Cold rolling on magnesium plate produced a highly textured material. When performed on magnesium hydride, cold rolling reduced the crystallite size down to nanometer scale. The impact of texture and naocrystallinity on hydrogen storage behaviours will also be discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Novák, Pavel, Dalibor Vojtěch, Filip Průša, Jan Šerák, and Thomáš Fabián. "Structure and Properties of Magnesium-Based Hydrogen Storage Alloys." Materials Science Forum 567-568 (December 2007): 217–20. http://dx.doi.org/10.4028/www.scientific.net/msf.567-568.217.

Full text
Abstract:
Hydrogen is the promising pollutant-free fuel of the near future. For various hydrogen applications, suitable storage systems have to be developed. One of the safe ways is the reversible storage of hydrogen in the form of light metal (lithium or magnesium) hydrides. MgH2 magnesium hydride shows very high storage capacity (approx. 7 wt. %), but its problem is high thermodynamic stability. Therefore, high temperature (over 400°C) is necessary for MgH2 to decompose producing hydrogen. The solution of this problem can be the utilization of the complex magnesium hydrides containing nickel, copper or other transition metals. In this work, the microstructure and hydrogen storage properties of the various magnesium alloys (Mg-Ni, Mg-Zn, Mg-Cu and Mg-Cu-Al) are described. The aim was to find suitable hydrogen storage system with good storage capacity and sufficient rate of formation and decomposition of hydrides. Microstructure, chemical and phase composition of the alloys were determined by the light and scanning electron microscopy, EDS and XRD. Hydrogen saturation was carried out by cathodic polarization in the alkaline solution. Hydrogen content in the material was estimated by XRD from the shift of the diffraction lines of present phases.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Feng, Urs Aeberhard, Hong Wu, Man Qiao, and Yafei Li. "Global minimum beryllium hydride sheet with novel negative Poisson's ratio: first-principles calculations." RSC Advances 8, no. 35 (2018): 19432–36. http://dx.doi.org/10.1039/c8ra02492h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baricco, Marcello, Mauro Palumbo, Eugenio Pinatel, Marta Corno, and Piero Ugliengo. "Thermodynamic Database for Hydrogen Storage Materials." Advances in Science and Technology 72 (October 2010): 213–18. http://dx.doi.org/10.4028/www.scientific.net/ast.72.213.

Full text
Abstract:
In order to be used for applications, the thermodynamic stability of a candidate hydrogen storage material should be suitable for hydrogen sorption at room conditions. By mixing different hydrides, it is possible to promote the hydrogenation/dehydrogenation processes. On the other hand, small changes in composition allow a tailoring of thermodynamic stability of hydrides. Knowledge of thermodynamic stability of hydrides is thus fundamental to study the hydrogenation/dehydrogenation processes and useful to rationalize synthesis reactions and to suggest possible alternative reaction routes. The purpose of this work is to develop a consistent thermodynamic database for hydrogen storage systems by the CALPHAD approach. Experimental data have been collected from the literature. When experimental measurements were scarce or completely lacking, estimations of the energy of formation of hydrides have been obtained by ab initio calculations performed with the CRYSTAL code. Several systems of interest for hydrogen storage have been investigated, including metallic hydrides (M-H) and complex hydrides. The effect on thermodynamic properties of fluorine-to-hydrogen substitution in some simple hydrides is also considered. Calculated and experimental thermodynamic properties of various hydrides have been compared and a satisfactory agreement has been achieved.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jinsong, Timothy S. Fisher, P. Veeraraghavan Ramachandran, Jay P. Gore, and Issam Mudawar. "A Review of Heat Transfer Issues in Hydrogen Storage Technologies." Journal of Heat Transfer 127, no. 12 (August 25, 2005): 1391–99. http://dx.doi.org/10.1115/1.2098875.

Full text
Abstract:
Significant heat transfer issues associated with four alternative hydrogen storage methods are identified and discussed, with particular emphasis on technologies for vehicle applications. For compressed hydrogen storage, efficient heat transfer during compression and intercooling decreases compression work. In addition, enhanced heat transfer inside the tank during the fueling process can minimize additional compression work. For liquid hydrogen storage, improved thermal insulation of cryogenic tanks can significantly reduce energy loss caused by liquid boil-off. For storage systems using metal hydrides, enhanced heat transfer is essential because of the low effective thermal conductivity of particle beds. Enhanced heat transfer is also necessary to ensure that both hydriding and dehydriding processes achieve completion and to prevent hydride bed meltdown. For hydrogen storage in the form of chemical hydrides, innovative vehicle cooling design will be needed to enable their acceptance.
APA, Harvard, Vancouver, ISO, and other styles
10

Aymard, Luc, Yassine Oumellal, and Jean-Pierre Bonnet. "Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries." Beilstein Journal of Nanotechnology 6 (August 31, 2015): 1821–39. http://dx.doi.org/10.3762/bjnano.6.186.

Full text
Abstract:
The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which share the knowledge of both hydrogen-storage and lithium-anode communities.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hydrides – Storage"

1

Sahlberg, Martin. "Light-Metal Hydrides for Hydrogen Storage." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Price, Tobias E. C. "Multi-component complex hydrides for hydrogen storage." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/11988/.

Full text
Abstract:
Hydrogen as an energy vector offers great potential for mobile energy generation through fuel cell technology, however this depends on safe, mobile and high density storage of hydrogen. The destabilised multi-component complex hydride system LiBH4 : MgH2 was investigated in order to characterise the destabilisation reactions which enable reduction of operating temperatures for this high capacity system (ca. 9.8 wt.%). In-situ neutron diffraction showed that regardless of stoichiometry similar reaction paths were followed forming LiH and MgB¬2¬ when decomposed under H¬2 and Mg-Li alloys (Mg0.816Li0.184 and Mg0.70Li0.30) when under dynamic vacuum. Hydrogen isotherms of the 0.3LiBH4 : MgH¬2¬ showed a dual plateau behaviour with the lower plateau due to the destabilised LiBH4 reaction. Thermodynamic data calculated from the isotherm results showed a significant reduction in the T(1bar) for LiBH4 to 322 C (cf. 459 C for LiBH4(l)). Cycling behaviour of 0.3LiBH4 : MgH2 system decomposed under both reaction environments showed very fast kinetics on deuteriding at 400C and 100 bar D2, reaching 90 % conversion within 20 minutes. In contrast 2LiBH4 : MgH2 samples had kinetics an order of magnitude slower and after 4 hours conversions <50 %. These results demonstrate the strong influence of stoichiometry in the cycling kinetics compared to decomposition conditions. Investigation of catalysts found dispersion of metal hydrides through long ball-milling times, or dispersion through reaction with metal halide additions provided the greatest degree of kinetic advantage, with pre-milled NbH providing the best kinetic improvement without reducing capacity due to Li-halide formation. Finally, additions of LiAlH4 to the system formed an Al dispersion through the sample during decomposition, which acted both as a catalyst and destabilising agent on the MgH2 component, forming Mg-Al-Li alloys. Decomposition under H2 also showed a destabilisation effect for the LiBH4 component.
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, Xuanli. "Nanostructured magnesium-scandium hydrides for hydrogen storage." Thesis, University of Nottingham, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605586.

Full text
Abstract:
Magnesium hydride, MgH2, is one of the most promising candidates for hydrogen storage due to its high reversible hydrogen storage capacity (theoretically up to 7.6 wt. %) and low cost ($3/kg). However, the relatively slow kinetics and high operating temperature limit its commercial application. In this research, the lightest transition metal, scandium (Sc), was melted together with magnesium to form a bulk MgO.6SSC0.3S alloy which was phase separated to a nanostructured MgO.6SSCO.3S-H system during its first hydrogenation. The hydrogen storage properties of the MgO.6SSC0.3s-H system were thoroughly evaluated. The results showed a high reversible hydrogen storage capacity (4.2 ± 0.1 wt.%), fast kinetics with an activation energy of 82 ± 5 klmor' and good cycling stability. The enthalpy and entropy values were 77.4 ± 0.9 klmor' (H2) and 141 ± 2 J.mor'.K' (H2) respectively. The nanostructure comprised a Sc-rich hydride (MgO.07SCO.93H2.32) nano-cluster distributed within the MgH2 phase with grain sizes ranging from 40 to 100 nm. The in-situ powder neutron diffraction showed that the reaction pathway, phase separation, formed a ScDx-rich phase and an intermediate phase. It is hypothesised that the nano-sized Sc-rich hydride, which has a fluOl'ite structure and higher mobility of hydrogen, provides a fast diffusion pathway to the magnesium core via the grain boundary. In addition, the nano-structure formed after phase separation was stable and remained during cycling. The Sc-rich hydride nano-clusters also function as a grain refiner and reduce the grain growth rate of Mg/MgH2 during cycling. Abstract A xMgH2/(l-x)ScH2 system was also investigated to explore the effect of the ball milling duration and the ScH2 catalyst content on the kinetics of MgH2 dehydrogenation. It was found that the optimal content of the catalyst ScH2 was ca. 12 at. %, which was achieved by the 0.90MgH2/O.lOScH2-40h ball milled sample with an activation energy value of 62 ± 5 kJ.mor i and the reversible hydrogen storage capacity of 5.7 ± 0.1 wt.%. Alternative Sc-based alloys (ScSi and ScAh) were investigated as candidates to reduce the enthalpy of dehydrogenation of MgH2. The samples were prepared by ball milling Mg or MgH2 together with the synthesised ScSi or ScAh alloy at different composition ratios. It was found that the ScSi phase separated to SCH2 and Mg2Si, a process that was irreversible during the hydrogenation cycles of the 3Mg:ScSi-lOh sample. In contrast, the ScAl3 remained unchanged over three cycles but achieved fast kinetics; the decomposition reaction reached its equilibrium within 35 min at 354 QC. 11
APA, Harvard, Vancouver, ISO, and other styles
4

Chater, Philip A. "Mixed anion complex hydrides for hydrogen storage." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/733/.

Full text
Abstract:
The first examples of a new class of mixed anion complex hydride have been synthesised and characterised. The structures of three amide-borohydride complex hydrides of lithium and sodium, Li\(_4\)BH\(_4\)(NH\(_2\))\(_3\), Li\(_2\)BH\(_4\)NH\(_2\) and Na\(_2\)BH\(_4\)NH\(_2\), have been solved by powder diffraction methods and characterised by infrared and Raman spectroscopy. The thermal decomposition of these hydrogen rich materials was investigated and hydrogen was observed as the major gaseous product in all cases. Ammonia was observed as a minor product with the amount of ammonia release dependent on the sample composition and experimental set-up. Powder diffraction was used to identify the solid decomposition products and decomposition pathways are proposed. Two competing decomposition pathways, one forming metal hydride and boron nitride, the other forming metal nitridoborate, were identified for the lithium system and suggested for the sodium system. \(In\)-\(situ\) and \(ex\)-\(situ\) powder diffraction, differential scanning calorimetry and temperature programmed desorption were used to investigate the lithium amide-borohydride system in detail and a phase diagram was proposed. The reactions of metal hydrides with Li\(_4\)BH\(_4\)(NH\(_2\))\(_3\) were tested and were found to reduce the amount of ammonia released. A reversible hydrogen storage reaction was observed upon reaction with magnesium hydride, which was investigated with gravimetric methods and \(ex\)-\(situ\) powder diffraction to elucidate the reaction pathway.
APA, Harvard, Vancouver, ISO, and other styles
5

Mistry, Priyen C. "Coated metal hydrides for stationary energy storage applications." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/38798/.

Full text
Abstract:
This thesis explores suitable materials for energy stores for stationary applications, specifically a prototype hydrogen store, domestic thermal store operating between 25-100 C and a moderate thermal store for a concentrated solar power (CSP) plant operating at 400 C. The approach incorporated a unique coating technique to deliver prototype hydrogen and thermal storage media, where the coating could offer commercial advantages, for example, in the form of hydride activation and enhanced kinetics during successive cycling. The highly reversible Mg-MgH2 system is particularly promising for thermal storage, obtaining an enthalpy of reaction of 74.5 kJ/mol H2 that translates to a thermal energy capacity of approximately 2800 kJ/kg of MgH2. Nevertheless, magnesium is hindered by slow activation and poor kinetics of (de)hydrogenation, even when approaching temperatures ideal for concentrated solar power applications (in the region 400 C). Elevated temperature cycling studies were performed on commercial atomised Mg powder with magnetron sputtered catalysts (chromium, iron, vanadium and stainless steel) applied to their surfaces; the aim of which was to fabricate hydrogen storage materials that possess (de)hydrogenation characteristics equal to or even bettering their nanocrystalline equivalents, yet in a potentially economic and scalable manner. Following 50 cycles at 400 C, the coatings were found to have little to no positive impact on the behaviour of the atomised Mg powders. In addition, for both uncoated and coated samples the effects of an activation process at 400 C are matched by cycling the material 5 times from the outset, after which identical behaviour is observed during subsequent cycles. At 350 C, the benefits of catalyst coatings on the hydrogen storage properties of atomised Mg powders are evident during activation and successive cycling up to 90 times. The material undergoes different microstructural evolution during cycling when in the presence of a surface catalyst, causing an enhancement of the `nucleation and growth' stage of (de)hydrogenation. This was attributed to particle reorientation dominating particle sintering, whereas the opposite occurs for the uncoated material. For the domestic thermal and prototype hydrogen stores a selection of AB and AB2 intermetallic hydrides enhanced through catalysis or thermodynamic modification were investigated. TiFe produced via powder atomisation obtained thermodynamic properties (dehydrogenation H = 28.9 kJ/mol H2 and S = 105 J/K.mol H2) in line with published results. The minor substitution of Ni into TiFe1-xNix resulted in different hydrogenation characteristics to TiFe, for example, TiFe0:96Ni0:04 possessed a dehydrogenation of H = 29.9 kJ/mol H2 and S = 107 J/K.mol H2. Discrepancies between maximum achieved and theoretical capacities were observed for both atomised TiFe and TiFe0:96Ni0:04 and a range of possible contributing factors are discussed. A minor addition of Pd (1.17 wt.%) magnetron sputtered to the surface of TiFe0:96Ni0:04 enabled successful room temperature hydrogenation with no activation treatment required. Characterisation (SEM and TEM) confirmed it is not necessary to have complete Pd coverage in the form of a uniform coating and XPS was utilised to derive a theory for the activation mechanism. The AB2 alloy comparison between the commercially available Hydralloy C5 and in house fabricated Ti0:9Zr0:2Mn1:5V0:2Cr0:3 showed that Hydralloy C5 was the most promising alloy for the hydrogen store application with the higher working capacity (ca. 0.96 wt.%) in the pressure range of 4-15 bar at 22 C, despite Ti0:9Zr0:2Mn1:5V0:2Cr0:3 obtaining a higher maximum storage capacity (1.82 wt.%). The hydrogenation kinetics of both alloys were studied with corresponding activation energies and hydrogen diffusion coefficients determined. The kinetics of hydrogenation for both alloys is sufficiently fast that only the heat transfer of the storage system is the rate limiting parameter for hydrogen exchange for most technical applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Jonas, Ncumisa Prudence. "Electrochemical energy conversion using metal hydrides hydrogen storage materials." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_2992_1361369645.

Full text
Abstract:

Metal hydrides hydrogen storage materials have the ability to reversibly absorb and release large amounts of hydrogen at low temperature and pressure. In this study, metal hydride materialsemployed as negative electrodes in Ni-MH batteries are investigated. Attention is on AB5 alloys due to their intermediate thermodynamic properties. However, AB5 alloys a have 
tendency of forming oxide film on their surface which inhibits hydrogen dissociation and penetration into interstitial sites leading to reduced capacity. To redeem this, the materials were micro-encapsulated by electroless deposition with immersion in Pd and Pt baths. PGMs were found to increase activation, electrochemical activity and H2 sorption kinetics of the MH alloys. Between the two catalysts the one which displayed better performance was chosen. The materials were characterized by X-ray difractommetry, and the alloys presented hexagonal CaCu5 &ndash
type 
structure of symmetry P6/mmm. No extra phases were found, all the modified electrodes displayed the same behavior as the parent material. No shift or change in peaks which corresponded to Pd or Pt were observed. Scanning Electron Microscopy showed surface morphology of the materials modified with Pd and Pt particles, the effect of using different reducing agents (i.e., N2H4 and NaH2PO2), and alloys functionalized with &gamma
-aminosopropyltrietheosilane solution prior to Pd deposition. From all the surface modified alloys, Pt and Pd particles were observed on the 
surface of the AB5 alloys. Surface modification without pre-functionalization had non-uniform coatings, but the prefunctionalized exhibited more uniform coatings. Energy dispersive X-ray Spectroscopy and Atomic Absorption Spectroscopy determined loading of the Pt and Pd on the surface of all the alloys, and the results were as follows: EDS ( Pt 13.41 and Pd 31.08wt%), AAS (Pt 0.11 and Pd 0.78wt%). Checking effect of using different reducing agents N2H4 and NaH2PO2 for electroless Pd plating the results were as follows: EDS (AB5_N2H4_Pd- 7.57 and AB5_NaH2PO2_Pd- 31.08wt%), AAS (AB5_N2H4_Pd- 11.27 and AB5_NaH2PO2_Pd- 0.78wt%). For the AB5 alloys pre-functionalized with &gamma
-APTES, the results were: EDS (10.24wt%) and AAS (0.34wt%). Electrochemical characterization was carried out by charge/discharge cycling controlled via potential to test the AB5 alloy. Overpotential for unmodified, Pt and Pd modified 
electrodes were -1.1V, -1.24V, and -1.60V, respectively. Both modified electrodes showed discharge overpotentials at lower values implying higher specific power for the battery in comparison with the unmodified electrodes. However, Pd electrode exhibited higher specific power than Pt. To check the effect of the reducing agent the results were as follows: AB5_ N2H4_Pd (0.4V) and AB5_NaH2PO2_Pd (-0.2V), sodium hypophosphite based alloy showing lower overpotential values, implying it had higher specific power than hydrazine based bath. Alloy prefunctionalized with &gamma
-APTES, the overpotential was (0.28V), which was higher than -0.2V of the alloy without pre-functionalization, which means pre-functionalization with &gamma
-APTES did not improve the performance of the alloy electrode. Polarization resistance of the electrodes was investigated with Electrochemical Impedance Spectroscopy. The unmodified alloy showed high resistance of 
21.6884 while, both Pt and Pd modified electrodes exhibited decrease 14.7397 and 12.1061 respectively, showing increase in charge transfer for the modified electrodes. Investigating the effect of the reducing agent, the alloys exhibited the following results: (N2H4 97.8619 and NaH2PO2 12.1061) based bath. Alloy pre-functionalized with &gamma
-APTES displayed the 
resistance of 9.3128. Cyclic Voltammetry was also used to study the electrochemical activity of the alloy electrodes. The voltammograms obtained displayed the anodic current peak at -0.64V 
o -0.65V for the Pt and Pd modified electrodes, respectively. Furthermore, the electrode which was not coated with Pt or Pd the current peak occurred at -0.59V. The Pd and Pt coated 
alloy electrodes represented lower discharge overpotentials, which are important to improve the battery performance. Similar results were also observed with alloy electrodes Pd modified 
using N2H4 (-0.64V) and NaH2PO2 (-0.65V). For the electrode modified with and without &gamma
-APTES the over potentials were the same (-0.65V). PGM deposition has shown to significantly 
improve activation and hydrogen sorption performance and increased the electro-catalytic activity of these alloy electrodes. Modified electrodes gave better performance than the unmodified 
electrodes. As a result, Pd was chosen as the better catalyst for the modification of AB5 alloy. Based on the results, it was concluded that Pd electroless plated using NaH2PO2 reducing agent 
had better performance than electroless plating using N2H4 as the reducing agent. Alloy electrode pre-functionalized with &gamma
-APTES gave inconsistent results, and this phenomenon needs to 
be further investigated. In conclusion, the alloy modified with Pd employing NaH2PO2 based electroless plating bath exhibited consistent results, and was found to be suitable candidate for 
use in Ni-MH batteries.

APA, Harvard, Vancouver, ISO, and other styles
7

Koultoukis, Evangelos D. "Efficient hydrogen storage and compressors by using metal hydrides." Thesis, University of Bolton, 2014. http://ubir.bolton.ac.uk/1309/.

Full text
Abstract:
Hydrogen gas is considered as the key "green" technology for its endless production-consumption procedure, known better as the "water-cycle". In this cycle, hydrogen is directly produced from water electrolysis and while forms water again, when combusted with oxygen, releasing energy. However, as the most lightweight gas, the volumetric density of hydrogen makes it inappropriate for use in most fuel applications. Hydrogen storage technologies that promote the compression of the gas, along with a solid state form of storage, based on the consumer needs, are a critical component to further development of a hydrogen fuel-based economy. Among the breakthrough hydrogen technologies, metal hydrides have drawn special attention due to their multiple properties. Their ability to react with hydrogen at various pressure and temperature conditions opened a whole new universe for storing energy in the form of hydrogen. Moreover, their unique capability to operate as thermal machines in order to compress hydrogen is of major importance and it will probably affect future hydrogen technologies. The research described in this thesis tries to reveal new metal hydrides with enhanced properties or to enrich knowledge on already investigated compounds. The research conducted was multidisciplinary in nature and all the involved detailed investigations tried to identify correlations between micro-structural and chemical properties with the thermodynamic properties of the metal hydrides. The research undertaken focused in three key research areas: (i) structural characterization by means of the X-Ray Diffraction (XRD) technique and Rietveld analysis, (ii) microstructural observation and microchemical characterization by SEM/EDX analysis and (iii) thermodynamic properties investigation by hydrogen absorption/desorption measurements. The interactions between these different properties can be complex, and they are not always resulting to data that can be easily exploited. In a more extensive manner, several Ti- or Zr-based intermetallic alloys have been synthesized from pure elements either using the arc-melting or the induction-levitation melting method. Both techniques are characterized as "Rapid Solidification Processes" with crucial influence on the crystal structure of the investigated compounds. The word "crucial" has been used in the last phrase since the rapid solidification of the liquid compounds result in fine, well-structured microstructures that are, as well as with the chemical properties, the key factor of their thermodynamic properties. All the compounds have been fully characterized by XRD and SEM/EDX, and they are mostly exhibiting the hexagonal C14 or the cubic C15 type Laves phases. More specifically, Zr-based compounds with Laves phase structures are considered advantageous hydrides for the large span of plateau pressures (0 - 1000 bar) they can exhibit when forming reversible metal hydrides. Since these intermetallic compounds are considered as low temperature hydrides, all hydrogen Pressure-Composition Isotherms (PCI) have been conducted in the range of 0 to ~100 oC. It has been shown that small compositional changes can affect the atomic structure that has a direct effect, in respect, on the thermodynamic properties. Thus, compounds with really close composition can have a very large difference in the equilibrium pressures in some given temperatures. Finally, the metal hydride hydrogen compression technology is presented in terms that metal hydrides with successive equilibrium pressures can be used in order to increase hydrogen pressure using only waste heat as driving force.
APA, Harvard, Vancouver, ISO, and other styles
8

Surrey, Alexander. "Preparation and Characterization of Nanoscopic Solid State Hydrogen Storage Materials." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217904.

Full text
Abstract:
Die Speicherung von Wasserstoff in Form von Hydriden im festen Aggregatzustand hat den Vorteil einer hohen volumetrischen und gravimetrischen Wasserstoffspeicherdichte, die sowohl für die stationäre als auch die mobile Anwendung nötig ist. Um die Anforderungen dieser Anwendungen erfüllen zu können, müssen die Speichereigenschaften dieser Materialien weiter verbessert werden. Als zentrales Konzept dieser Dissertation wird die Nanostrukturierung verfolgt, die eine vielversprechende Strategie zur Modifizierung der thermodynamischen und kinetischen Eigenschaften von Hydriden darstellt. Die Transmissionselektronenmikroskopie (TEM) stellt dabei eine unverzichtbare Untersuchungsmethode solch nanoskopischer Materialien dar. Als problematisch erweist sich dabei die durch Radiolyse hervorgerufene Zersetzung der meisten Hydride bei der Beleuchtung mit dem abbildenden Elektronenstrahl. Im ersten Teil dieser Arbeit wird eine Methodik entwickelt um dieses Phänomen quantitativ mit Hilfe von Valenzelektronenenergieverlustspektroskopie zu untersuchen. Hierzu kommt kugelgemahlenes MgH2 als Modellsystem zum Einsatz. Die Dehydrierung kann quantitativ durch die inelastische Streuung der hochenergetischen Elektronen am MgH2-Plasmon erklärt werden. Eine Lösung dieses grundlegenden Problems wird theoretisch an Hand von Multislice TEM-Kontrastsimulationen untersucht. Hierbei wird ein TEM Experiment unter Wasserstoff bei Umgebungsdruck anstatt unter Vakuum simuliert, was mit Hilfe eines speziellen TEM Halters, in dem das Gas durch elektronentransparente Fenster eingeschlossen ist, realisiert werden kann. Im zweiten Teil wird der Einfluss des Nanoconfinements (Nanoeinschließung), einer speziellen Form der Nanostrukturierung, des komplexen Hydrids LiBH4 auf dessen Wasserstoffspeichereigenschaften untersucht, wofür eine neuartige nanoporöse aerogel-ähnliche Kohlenstoff-Gerüststruktur zum Einsatz kommt. Diese wird durch Salt Templating synthetisiert - einer simplen und nachhaltigen Methode zur Herstellung nanoporöser kohlenstoffbasierter Materialien mit großen Porenvolumina. Es wird gezeigt, dass durch das Nanoconfinement die Wasserstoffdesorptionstemperatur, die für makroskopisches LiBH4 bei über 400 °C liegt, auf 310 °C sinkt und die Desorption bereits bei 200 °C einsetzt. Eine teilweise Rehydrierung ist unter moderaten Bedingungen (100 bar und 300 °C) möglich, wobei die Reversibilität durch eine partielle Oxidation des amorphen Bor gehemmt ist. Im Gegensatz zu Beobachtungen einer aktuellen Veröffentlichung von in hoch geordnetem, nanoporösen Kohlenstoff eingebetteten LiBH4 deuten die in-situ TEM-Heizexperimente der vorliegenden Arbeit darauf hin, dass beide Reaktionsprodukte (B und LiH) in den Poren des aerogel-ähnlichen Kohlenstoffs verbleiben
Storing hydrogen in solid hydrides has the advantage of high volumetric and gravimetric hydrogen densities, which are needed for both stationary and mobile applications. However, the hydrogen storage properties of these materials must be further improved in order to meet the requirements of these applications. Nanostructuring, which represents one of the central approaches of this thesis, is a promising strategy to tailor the thermodynamic and kinetic properties of hydrides. Transmission electron microscopy (TEM) is an indispensable tool for the structural characterization of such nanosized materials, however, most hydrides degrade fast upon irradiation with the imaging electron beam due to radiolysis. In the first part of this work, a methodology is developed to quantitatively investigate this phenomenon using valence electron energy loss spectroscopy on ball milled MgH2 as a model system. The dehydrogenation can be quantitatively explained by the inelastic scattering of the incident high energy electrons by the MgH2 plasmon. A solution to this fundamental problem is theoretically studied by virtue of multislice TEM contrast simulations of a windowed environmental TEM experiment, which allows for performing the TEM analysis in hydrogen at ambient pressure rather than vacuum. In the second part, the effect of the nanoconfinement of the complex hydride LiBH4 on its hydrogen storage properties is investigated. For this, a novel nanoporous aerogel-like carbon scaffold is used, which is synthesized by salt templating - a facile and sustainable technique for the production of nanoporous carbon-based materials with large pore volumes. It is shown that the hydrogen desorption temperature, which is above 400 °C for bulk LiBH4, is reduced to 310 °C upon this nanoconfinement with an onset temperature as low as 200 °C. Partial rehydrogenation can be achieved under moderate conditions (100 bar and 300 °C), whereby the reversibility is hindered by the partial oxidation of amorphous boron. In contrast to recent reports on LiBH4 nanoconfined in highly ordered nanoporous carbon, in-situ heating in the TEM indicates that both decomposition products (B and LiH) remain within the pores of the aerogel-like carbon
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Sheng. "Light metal borohydrides and Mg-based hydrides for hydrogen storage." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5674/.

Full text
Abstract:
This work has investigated structural and compositional changes in LiBH\(_4\), Mg(BH\(_4\))\(_2\), Ca(BH\(_4\))\(_2\), LiBH\(_4\)-Ca(BH\(_4\))\(_2\), MgH\(_2\)-B-TiX (TiX = Ti, TiH\(_2\) or TiCl\(_3\)), and hydrided Li-Mg alloy during heating. The crystal and vibrational structures of these borohydrides/composites were characterized using lab-based X-ray diffraction (XRD) and Raman spectroscopy, with particular attention to the frequency/width changes of Raman vibrations of different polymorphs of borohydrides. The thermal stability and decomposition pathway of the borohydrides was studied mainly using differential scanning calorimetry and thermogravimetric analysis, XRD and Raman measurements, whilst the gaseous products during heating were monitored using a mass spectrometry. Hydrogen is the main decomposition gaseous product from all of these compounds, but in some cases a very small amount of diborane release was also detected. These studies suggest that the thermal decomposition of the metal borohydrides occurs via a wide range of reaction pathways, often in several steps, which may involve simultaneous competing reactions. This can include the formation of stable borane intermediates/by-products which largely preclude the possibility of reversibility. Furthermore, the role of diborane in the decomposition and formation of borohydrides, was later studied by heating metal borohydrides (or hydrides) to various temperatures in a gaseous diborane-hydrogen atmosphere; and different types of borane products were observed.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Ki Chul. "Thermodynamics of metal hydrides for hydrogen storage applications using first principles calculations." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34688.

Full text
Abstract:
Metal hydrides are promising candidates for H2 storage, but high stability and poor kinetics are the important challenges which have to be solved for vehicular applications. Most of recent experimental reports for improving thermodynamics of metal hydrides have been focused on lowering reaction enthalpies of a metal hydride by mixing other compounds. However, finding out metal hydride mixtures satisfying favorable thermodynamics among a large number of possible metal hydride mixtures is inefficient and thus a systematic approach is required for an efficient and rigorous solution. Our approaches introduced in this thesis allow a systematic screening of promising metal hydrides or their mixtures from all possible metal hydrides and their mixtures. Our approaches basically suggest two directions for improving metal hydride thermodynamics. First, our calculations for examining the relation between the particle size of simple metal hydrides and thermodynamics of their decomposition reactions provide that the relation would depend on the total surface energy difference between a metal and its hydride form. It ultimately suggests that we will be able to screen metal hydride nanoparticles having favorable thermodynamics from all possible metal hydrides by examining the total surface differences. Second, more importantly, we suggest that our thermodynamic calculations combined with the grand canonical linear programming method and updated database efficiently and rigorously screen potential promising bulk metal hydrides and their mixtures from a large collection of possible combinations. The screened promising metal hydrides and their mixtures can release H2 via single step or multi step. Our additional free energy calculations for a few selected promising single step reactions and their metastable paths show that we can identify the most stable free energy paths for any selected reactant mixtures. In this thesis, we also demonstrate that a total free energy minimization method can predict the possible evolution of impurity other than H2 for several specified mixtures. However, it is not ready to predict reaction thermodynamics from a large number of compounds.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hydrides – Storage"

1

Demirci, Umit B., and Philippe Miele. Boron hydrides, high potential hydrogen storage materials. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Amos, Wade A. Costs of storing and transporting hydrogen. Golden, CO: National Renewable Energy Laboratory, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mustanir. Nanocrystalline magnesium based hydrides prepared by reactive mechanical alloying as hydrogen storage materials for fuel cell powered vehicle application: Final report international collaboration research and publication. Banda Aceh]: University of Syiah Kuala, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kong, Vincent Chi Yuen. Development of hydride storage for fuel cell generators. Ottawa: National Library of Canada, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

library, Wiley online, ed. Handbook of hydrogen storage: New materials for future energy storage. Weinheim: Wiley-VCH, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Symposium on Hydrogen Storage Materials, Batteries, and Electrochemistry (1991 Phoenix, Ariz.). Proceedings of the Symposium on Hydrogen Storage Materials, Batteries, and Electrochemistry. Pennington, NJ: Electrochemical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Willey, David Benjamin. The investigation of the hydrogen storage properties of metal hydride electrode alloy surface modified with platinum group metals. Birmingham: University of Birmingham, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maintenance-free batteries: Lead-acid, nickel/cadmium, nickel/hydride : a handbook of battery technology. Taunton, Somerset, England: Research Studies Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maintenance-free batteries: Lead-acid, nickel/cadmium, nickel/metal hydride : a handbook of battery technology. 2nd ed. Somerset, England: Research Studies Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maintenance-free batteries: Based on aqueous electrolyte lead-acid, nickel/cadmium, nickel/metal hydride : a handbook of battery technology. 3rd ed. Philadelphia, PA: Research Studies Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Hydrides – Storage"

1

Huot, Jacques. "Metal Hydrides." In Handbook of Hydrogen Storage, 81–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629800.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weidenthaler, Claudia, and Michael Felderhoff. "Complex Hydrides." In Handbook of Hydrogen Storage, 117–57. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629800.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cuevas, F. "Crystal structures of AB-hydrides." In Hydrogen Storage Materials, 44–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cuevas, F. "Introduction to complex metal hydrides." In Hydrogen Storage Materials, 251. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paul-Boncour, V. "Introduction to Mg-based metal hydrides." In Hydrogen Storage Materials, 20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cuevas, F. "Overview of AB-type metal hydrides." In Hydrogen Storage Materials, 71–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Latroche, M. "Overview of AB3 phase metal hydrides." In Hydrogen Storage Materials, 158. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Latroche, M. "Overview of A5B19 phase metal hydrides." In Hydrogen Storage Materials, 176. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paul-Boncour, V. "Overview of A6B23 phase metal hydrides." In Hydrogen Storage Materials, 193. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Joubert, J. M. "Overview of AB5 phase metal hydrides." In Hydrogen Storage Materials, 250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrides – Storage"

1

Park, Y. H., and I. Hijazi. "EAM Potential for Hydrogen Storage Application." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65845.

Full text
Abstract:
Palladium is capable of storing a large atomic percent of hydrogen at room temperature and allows for hydrogen to diffuse with a high mobility. These unique properties make it an efficient storage medium for hydrogen and hydrogen isotopes, such as tritium, a byproduct of nuclear reaction. Palladium thus can be used for applications where fast diffusion and large storage density are important. Better understanding of molecular level phenomena such as hydride phase transformation in the metal and the effect of defects in the materials provides clues to designing metal hydrides that perform better. Atomic simulations are useful in the evaluation of palladium-hydrides (Pd-H) systems as changes in composition can be more easily explored than with experiments. However, the complex behavior of the Pd-H system such as phase miscibility gap presents a huge challenge to developing accurate computational models. In this paper, we present the palladium hydride potentials to investigate and identify the relevant physical mechanisms necessary to describe the absorption of hydrogen within a metal lattice.
APA, Harvard, Vancouver, ISO, and other styles
2

Ruiz-Hervias, Jesus, Miguel Angel Martin-Rengel, and Francisco Javier Gomez-Sanchez. "Failure Criteria for Unirradiated PWR Cladding Subjected to Ring Compression Tests." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45793.

Full text
Abstract:
The ring compression test applied to nuclear fuel cladding is relatively easy to perform but difficult to interpret. It can be representative of the loading state associated to a hypothetical spent fuel assembly drop accident. This is particularly important for spent fuel cladding subjected to drying operations previous to storage and transportation, because they may produce hydride reorientation along the radial direction of cladding. In this paper, experimental testing and numerical simulations are combined to obtain operative failure criteria from the results of the ring compression tests on unirradiated pre-hydrided samples with radial hydrides, simulating drying, storage and subsequent transport conditions.
APA, Harvard, Vancouver, ISO, and other styles
3

Shafiee, Shahin, and Mary Helen McCay. "A Hybrid Energy Storage System Based on Metal Hydrides for Solar Thermal Power and Energy Systems." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59183.

Full text
Abstract:
Thermal storage in an important operational aspect of a solar thermal system which enables it to deliver power or energy when there is no sunlight available. Current thermal storage systems in solar thermal systems work based on transferring the generated heat from sunlight to a thermal mass material in an insulated reservoir and then withdraw it during dark hours. Some common thermal mass materials are stone, concrete, water, pressurized steam, phase changing materials, and molten salts. In the current paper, a hybrid thermal energy storage system which is based on two metal hydrides is proposed for a solar thermal system. The two hydrides which are considered for this system are magnesium hydride and lanthanum nickel. Although metal hydride Energy Storage Systems (ESS) suffer from slow response time which restricts them as a practical option for frequency regulation, off peak shaving and power supply stabilization; they can still demonstrate significant flexibility and good energy capacity. These specifications make them good candidates for thermal energy storage which are applicable to any capacity of a solar thermal system just by changing the size of the ESS unit.
APA, Harvard, Vancouver, ISO, and other styles
4

Jorgensen, Scott. "Engineering Hydrogen Storage Systems." In ASME 2007 2nd Energy Nanotechnology International Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/enic2007-45026.

Full text
Abstract:
Increased research into the chemistry, physics and material science of hydrogen cycling compounds has led to the rapid growth of solid-phase hydrogen-storage options. The operating conditions of these new options span a wide range: system temperature can be as low as 70K or over 600K, system pressure varies from less than 100kPa to 35MPa, and heat loads can be moderate or can be measured in megawatts. While the intense focus placed on storage materials has been appropriate, there is also a need for research in engineering, specifically in containment, heat transfer, and controls. The DOE’s recently proposed engineering center of expertise underscores the growing understanding that engineering research will play a role in the success of advanced hydrogen storage systems. Engineering a hydrogen system will minimally require containment of the storage media and control of the hydrogenation and dehydrogenation processes, but an elegant system design will compensate for the storage media’s weaker aspects and capitalize on its strengths. To achieve such a complete solution, the storage tank must be designed to work with the media, the vehicle packaging, the power-plant, and the power-plant’s control system. In some cases there are synergies available that increase the efficiency of both subsystems simultaneously. In addition, system designers will need to make the hard choices needed to convert a technically feasible concept into a commercially successful product. Materials cost, assembly cost, and end of life costs will all shape the final design of a viable hydrogen storage system. Once again there is a critical role for engineering research, in this case into lower cost and higher performance engineering materials. Each form of hydrogen storage has its own, unique, challenges and opportunities for the system designer. These differing requirements stem directly from the properties of the storage media. Aside from physical containment of compressed or liquefied hydrogen, most storage media can be assigned to one of four major categories, chemical storage, metal hydrides, complex hydrides, or physisorption. Specific needs of each technology are discussed below. Physisorption systems currently operate at 77K with very fast kinetics and good gravimetric capacity; and as such, special engineering challenges center on controlling heat transfer. Excellent MLVSI is available, its cost is high and it is not readily applied to complex shape in a mass manufacture setting. Additionally, while the heat of adsorption on most physisorbents is a relatively modest 6–10kJ/mol H2, this heat must be moved up a 200K gradient. Physisorpion systems are also challenged on density. Consequently, methods for reducing the cost of producing and assembling compact, high-quality insulation, tank design to minimize heat transfer while maintaining manufacturability, improved methods of heat transfer to and from the storage media, and controls to optimize filling are areas of profitable research. It may be noted that the first two areas would also contribute to improvement of liquid hydrogen tanks. Metal hydrides are currently nearest application in the form of high pressure metal hydride tanks because of their reduced volume relative to compressed gas tanks of the same capacity and pressure. These systems typically use simple pressure controls, and have enthalpies of roughly 20kJ/mol H2 and plateau pressures of at most a few MPa. During filling, temperatures must be high enough to ensure fast kinetics, but kept low enough that the thermodynamically set plateau pressure is well below the filling pressure. To accomplish this balance the heat transfer system must handle on the order of 300kW during the 5 minute fill of a 10kg tank. These systems are also challenged on mass and the cost of the media. High value areas for research include: heat transfer inside a 35MPa rated pressure vessel, light and strong tank construction materials with reduced cost, and metals or other materials that do not embrittle in the presence of high pressure hydrogen when operated below ∼400K. The latter two topics would also have a beneficial impact on compressed gas hydrogen storage systems, the current “system to beat”. Complex hydrides frequently have high hydrogen capacity but also an enthalpy of adsorption >30kJ/mol H2, a hydrogen release temperature >370K, and in many cases multiple steps of adsorption/desorption with slow kinetics in at least one of the steps. Most complex hydrides are thermal insulators in the hydrided form. From an engineering perspective, improved methods and designs for cost effective heat transfer to the storage media in a 5 to 10MPa vessel is of significant interest, as are materials that resist embrittlement at pressures below 10MPa and temperatures below 500K. Chemical hydrides produce heat when releasing hydrogen; in some systems this can be managed with air cooling of the reactor, but in other systems that may not be possible. In general, chemical hydrides must be removed from the vehicle and regenerated off-board. They are challenged on durability and recycling energy. Engineering research of interest in these systems centers around maintaining the spent fuel in a state suitable for rapid removal while minimizing system mass, and on developing highly efficient recycling plant designs that make the most of heat from exothermic steps. While the designs of each category of storage tank will differ with the material properties, two common engineering research thrusts stand out, heat transfer and structural materials. In addition, control strategies are important to all advanced storage systems, though they will vary significantly from system to system. Chemical systems need controls primarily to match hydrogen supply to power-plant demand, including shut down. High pressure metal hydride systems will need control during filling to maintain an appropriately low plateau pressure. Complex hydrides will need control for optimal filling and release of hydrogen from materials with multi-step reactions. Even the relatively simple compressed-gas tanks require control strategies during refill. Heat transfer systems will modulate performance and directly impact cost. While issues such as thermal conductivity may not be as great as anticipated, the heat transfer system still impacts gravimetric efficiency, volumetric efficiency and cost. These are three key factors to commercial viability, so any research that improves performance or reduces cost is important. Recent work in the DOE FreedomCAR program indicates that some 14% of the system mass may be attributed to heat transfer in complex hydride systems. If this system is made to withstand 100 bar at 450K the material cost will be a meaningful portion of the total tank cost. Improvements to the basic shell and tube structures that can reduce the total mass of heat transfer equipment while maintaining good global and local temperature control are needed. Reducing the mass and cost of the materials of construction would also benefit all systems. Much has been made of the need to reduce the cost of carbon fiber in compressed tanks and new processes are being investigated. Further progress is likely to benefit any composite tank, not just compressed gas tanks. In a like fashion, all tanks have metal parts. Today those parts are made from expensive alloys, such as A286. If other structural materials could be proven suitable for tank construction there would be a direct cost benefit to all tank systems. Finally there is a need to match the system to the storage material and the power-plant. Recent work has shown there are strong effects of material properties on system performance, not only because of the material, but also because the material properties drive the tank design to be more or less efficient. Filling of a hydride tank provides an excellent example. A five minute or less fill time is desirable. Hydrogen will be supplied as a gas, perhaps at a fixed pressure and temperature. The kinetics of the hydride will dictate how fast hydrogen can be absorbed, and the thermodynamics will determine if hydrogen can be absorbed at all; both properties are temperature dependent. The temperature will depend on how fast heat is generated by absorption and how fast heat can be added or removed by the system. If the design system and material properties are not both well suited to this filling scenario the actual amount of hydrogen stored could be significantly less than the capacity of the system. Controls may play an important role as well, by altering the coolant temperature and flow, and the gas temperature and pressure, a better fill is likely. Similar strategies have already been demonstrated for compressed gas systems. Matching system capabilities to power-plant needs is also important. Supplying the demanded fuel in transients and start up are obvious requirements that both the tank system and material must be design to meet. But there are opportunities too. If the power-plant heat can be used to release hydrogen, then the efficiency of vehicle increases greatly. This efficiency comes not only from preventing hydrogen losses from supplying heat to the media, but also from the power-plant cooling that occurs. To reap this benefit, it will be important to have elegant control strategies that avoid unwanted feedback between the power-plant and the fuel system. Hydrogen fueled vehicles are making tremendous strides, as can be seen by the number and increasing market readiness of vehicles in technology validation programs. Research that improves the effectiveness and reduces the costs of heat transfer systems, tank construction materials, and control systems will play a key role in preparing advanced hydrogen storage systems to be a part of this transportation revolution.
APA, Harvard, Vancouver, ISO, and other styles
5

Tang, David T., Antonio Rigato, and Robert Einziger. "Flaw Effects and Flaw Reorientation on Spent Fuel Rod Performance: A Simulation With Finite Element Analysis." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45306.

Full text
Abstract:
While fuel cladding failures have decreased significantly over the years, fuel cladding can still develop defects in the form of cracks, blisters, and circumferential hydride precipitates when irradiated. After drying for storage, circumferential precipitates may reorient as radial hydrides. This study examines if these hydrides could potentially influence the bending performance of the rod. Using a hollow, simply supported fuel tube to simulate the limiting behavior of a spent fuel rod deprived of the flexural rigidity contribution of the pellets, effects of the hydrides presence and orientation on the fuel rod bending structural performance are assessed. Within the confines of the finite element analyses (FEAs) of a flawed bare fuel tube, the bending strength of the hollow tube is shown not to be significantly compromised by the presence of the modeled circumferential and radial hydrides.
APA, Harvard, Vancouver, ISO, and other styles
6

Korinko, Paul S., Robert L. Sindelar, and Ronald L. Kesterson. "Comparison of Ring Compression Testing to Three Point Bend Testing for Unirradiated ZIRLO Cladding." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45984.

Full text
Abstract:
Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal history) and b) for critical strains in post drying handling, storage and accident conditions the 3 point bend strain tolerance is less affected by radial hydrides than the conventional ring compression test (the radial hydride related Quasi DBTT associated with a three point bend straining is lower (better) than that measured by the ring compression tests).
APA, Harvard, Vancouver, ISO, and other styles
7

Chesalkin, Artem, and Petr Moldrik. "Energy storage in La-Ni based metal hydrides." In 2018 19th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2018. http://dx.doi.org/10.1109/epe.2018.8396024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Y. H., and I. Hijazi. "Palladium Hydride Atomic Potentials for Hydrogen Storage/Separation." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28340.

Full text
Abstract:
Palladium is capable of storing a large atomic percent of hydrogen at room temperature and allows for hydrogen to diffuse with a high mobility. These unique properties make it an efficient storage medium for hydrogen and hydrogen isotopes, such as tritium, a byproduct of nuclear reaction. Palladium thus can be used for applications where fast diffusion and large storage density are important. Better understanding of molecular level phenomena such as hydride phase transformation in the metal and the effect of defects in the materials provides clues to designing metal hydrides that perform better. Atomic simulations are useful in the evaluation of palladium-hydrogen systems as changes in composition can be more easily explored than with experiments. In this paper, we present the palladium hydride potentials to investigate and identify the relevant physical mechanisms necessary to describe the absorption of hydrogen within a metal lattice.
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Michael, Il-Seok Park, Sunwoo Kim, and Kwang J. Kim. "Porous Metal Hydride (PMH) Compacts for Thermal Energy Applications." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90361.

Full text
Abstract:
Pelletized Porous Metal Hydride (PMH) was investigated in order to assess its thermal capability for energy storage/transfer applications. Metal hydrides have been known as promising materials for hydrogen storage systems, heat storage systems, and thermal devices, thanks to their nearly reversible reaction characteristics during the hydrogen absorbing and desorbing processes. The conventional powder-type metal hydrides however have a relatively low thermal conductivity, which is responsible for low heat generation. In the present study three representative metal hydrides, LaNi5, Ca0.6Mm0.4Ni5, and LaNi4.75Al0.25, metal hydride powders were coated with thin copper and pressed at 3,000 psig with metal additives in order to improve the thermal conductivity. This pelletizing process does not require the use of an organic binder and additional processes such as sintering under high pressure. The pelletized PMH compacts employing the copper coating exhibit higher thermal conductivity compared to raw metal hydride powders. However, pelletizing may deteriorate the permeability of the PMH compacts, lowering mass transfer of hydrogen. Therefore, the permeability must be observed to verify whether it meets the required level for suitable applications. Measurements were performed by varying copper fractions and plotted against the upstream/downstream pressure differential. Darcy’s equation in conjunction with an ideal gas assumption was used to calculate the permeability of a rigid wall design. This investigation reveals that rising copper content is accompanied with decreases in permeability. Permeability values for most samples tested in this study were found to be larger than the desirable level, 5 × 10−15 m2. Additionally, the thermal performance of the LaNi5 PMH compacts was tested by calculating and comparing the heat generation of the PMH pellets and powders filled reactors during the hydrogen absorption process in water bath medium.
APA, Harvard, Vancouver, ISO, and other styles
10

Flueckiger, Scott, Yuan Zheng, and Timothe´e Pourpoint. "Transient Plane Source Method for Thermal Property Measurements of Metal Hydrides." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56311.

Full text
Abstract:
Metal hydrides are promising hydrogen storage materials with potential for practical use in a passenger car. To be a viable hydrogen storage option, metal hydride heat transfer behavior must be well understood and accounted for. As such, the thermal properties of the metal hydride are measured and compiled to assess this behavior. These properties include thermal conductivity, specific heat, and thermal diffusivity. The transient plane source (TPS) method was selected primarily due to a high level of versatility, including customization for high pressure hydrogen environments. To perform this measurement, a TPS 2500 S thermal property analyzer by the Hot Disk Company was employed. To understand the measurement and analysis process of the TPS method, two different sample materials were evaluated at ambient conditions. These samples included a stainless steel pellet and an inactivated (non-pyrophoric) metal hydride pellet. Thermal conductivity and thermal diffusivity of these samples were measured using the TPS method. The thermal property measurements are compared to the data available in the literature (stainless steel) and the data obtained using laser flash method (metal hydride). The improvements needed to successfully implement the TPS method are discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrides – Storage"

1

Slattery, Darlene, and Michael Hampton. Complex Hydrides for Hydrogen Storage. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/861447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conradi, Mark. NMR Hydrogen Storage Systems: Ionic Hydrides and Mobile Species. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1413128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Di-Jia. “Graphene-Wrapped” Complex Hydrides as High-Capacity, Regenerable Hydrogen Storage Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1490684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daniel A. Mosher, Xia Tang, Ronald J. Brown, Sarah Arsenault, Salvatore Saitta, Bruce L. Laube, Robert H. Dold, and Donald L. Anton. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides. Office of Scientific and Technical Information (OSTI), July 2007. http://dx.doi.org/10.2172/912521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Billone, M. C., T. A. Burtseva, and J. M. Garcia-Infanta. Effects of Radial Hydrides on PWR Cladding Ductility following Drying and Storage. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1478471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Damle, A. Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/971332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lesch, David A., J. W. J. Adriaan Sachtler, John J. Low, Craig M. Jensen, Vidvuds Ozolins, Don Siegel, and Laurel Harmon. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1004939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandra, Dhanesh, Joshua Lamb, Wen-Ming Chien, Anjali Talekar, and Narendra and Pal. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1010941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhattacharyya, Abhijit, A. S. Biris, M. K. Mazumder, T. Karabacak, Ganesh Kannarpady, and R. Sharma. An Integrated Approach for Hydrogen Production and Storage in Complex Hydrides of Transitional Elements and Carbonbased Nanostructural materials (Final Report). Office of Scientific and Technical Information (OSTI), July 2011. http://dx.doi.org/10.2172/1172679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ozolins, Vidvuds, J. L. Herberg, Kevin F. McCarty, Robert S. Maxwell, Roland Rudolph Stumpf, and Eric H. Majzoub. Hydrogen storage in sodium aluminum hydride. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/875967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography