Academic literature on the topic 'Hydro power generation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydro power generation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydro power generation"
Saket, R. K., and Lokesh Varshney. "Self Excited Induction Generator and Municipal Waste Water Based Micro Hydro Power Generation System." International Journal of Engineering and Technology 4, no. 3 (2012): 282–87. http://dx.doi.org/10.7763/ijet.2012.v4.366.
Full textMesserle, H. K. "Magneto-hydro-dynamic electrical power generation." Fuel and Energy Abstracts 37, no. 3 (May 1996): 194. http://dx.doi.org/10.1016/0140-6701(96)88700-5.
Full textP., Dr Karrupusamy. "Performance Analysis of Multiple Pico Hydro Power Generation." Journal of Electrical Engineering and Automation 2, no. 2 (May 29, 2020): 92–101. http://dx.doi.org/10.36548/jeea.2020.2.005.
Full textBallance, A., D. Stephenson, R. A. Chapman, and J. Muller. "A geographic information systems analysis of hydro power potential in South Africa." Journal of Hydroinformatics 2, no. 4 (October 1, 2000): 247–54. http://dx.doi.org/10.2166/hydro.2000.0022.
Full textSekar, Deepak. "Domestic Solar - Aero - Hydro Power Generation System." IOSR Journal of Electrical and Electronics Engineering 7, no. 5 (2013): 08–12. http://dx.doi.org/10.9790/1676-0750812.
Full textGarg, Jitendra Kumar, Anita Khosla, and Nizamuddin Hakimuddin. "AGC of a multi sources power system with natural choice of power plants." EMITTER International Journal of Engineering Technology 7, no. 1 (June 15, 2019): 105–28. http://dx.doi.org/10.24003/emitter.v7i1.342.
Full textWang, Sijia, Xiangyu Wu, Gang Chen, and Yin Xu. "Small-Signal Stability Analysis of Photovoltaic-Hydro Integrated Systems on Ultra-Low Frequency Oscillation." Energies 13, no. 4 (February 24, 2020): 1012. http://dx.doi.org/10.3390/en13041012.
Full textPandey, Madhusudhan, Dietmar Winkler, Roshan Sharma, and Bernt Lie. "Using MPC to Balance Intermittent Wind and Solar Power with Hydro Power in Microgrids." Energies 14, no. 4 (February 7, 2021): 874. http://dx.doi.org/10.3390/en14040874.
Full textZhang, Liqin, Jun XIE, Xingying CHEN, Yongsheng Zhan, and Lv Zhou. "Cooperative Game-Based Synergistic Gains Allocation Methods for Wind-Solar-Hydro Hybrid Generation System with Cascade Hydropower." Energies 13, no. 15 (July 30, 2020): 3890. http://dx.doi.org/10.3390/en13153890.
Full textDou, Yanhong, Wei Ding, Yan Huang, Jing Hu, Yu Li, and Huicheng Zhou. "Analysis of Complementary Characteristics of Wind/PV/hydro Power Based on the Bundled Output." MATEC Web of Conferences 246 (2018): 01017. http://dx.doi.org/10.1051/matecconf/201824601017.
Full textDissertations / Theses on the topic "Hydro power generation"
Wallace, Alexander Robert Swan. "Small-scale hydro power generation." Thesis, University of Edinburgh, 1990. http://hdl.handle.net/1842/14633.
Full textOliveira, Pedro Nuno Ferreira Pino de. "Optimal scheduling of hydro-thermal power generation systems." Thesis, University of Strathclyde, 1992. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21228.
Full textXiong, Min. "Short-term generation scheduling in a hydrothermal power system." Thesis, Durham University, 1990. http://etheses.dur.ac.uk/1182/.
Full textEvans, Joel I. "Benefits of wind power curtailment in a hydro-dominated electric generation system." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/13393.
Full textGROULT, Mathieu. "Optimization of Electromechanical Studies for the Connection of Hydro Generation." Thesis, KTH, Elkraftteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221802.
Full textDen nuvarande elproduktionsmodellen baseras på kraftverk som är direktkopplade till stamnätet. Stamnätet i sin tur matar distributionsnätet som därefter levererar el till slutkonsumenterna. För att säkerställa stamnätets integritet samt säkerhet och undvika strömavbrott kvantifieras prestandan hos varje generator som är ansluten till det med hjälp av nätkoder. När det gäller det franska stamnätet skrivs prestandakraven i ett dokument som utfärdas av den franska transmissionssystemoperatören (TSO). Olika händelser med olika anslutningskonfigurationer måste simuleras där dess prestanda ska utvärderats. Syftet med dessa simuleringar är att identifiera stabiliteten vid varje elproduktionsenhet med bl. a. dess reaktionstid för den aktiva effekten efter kortslutningar.Med tanke på antalet generatorer som är anslutna till stamnätet framträder ett behov för överföringsoptimering vilket är syftet med detta examensarbete. För att utföra dessa simuleringar på ett effektivt sätt på alla generatorer som ägs av den ledande franska elproducenten, EDF, bidrar denna avhandling med ett verktyg som heter AuDySim kodat i mjukvarorna MATLAB och EUROSTAG. Verktyget gör det möjligt för användaren att konfigurera en elproduktionsenhet innan man utför alla simuleringar som specificeras av TSO:n och samtidigt producerar en rapport som innehåller grafisk- och data resultat. Både simuleringar och rapporten produceras automatiskt för att optimera en bearbetningstid och resursanvändning.För att validera verktygets prestanda utförs två fallstudier på olika typer av kraftverk. De två fallstudierna fokuserar på ett hydraulisk- respektive ett kärnkraftverk. I resultaten utvärderas prestanda för varje typ av kraftverk, med fokus på maskinens rotorvinkelstabilitet och andra viktiga faktorer, såsom spänning och aktiv effekt. Resultat leder till slutsatsen att AuDySim uppfyller sitt uppdrag genom att automatiskt analysera prestanda hos en elektrisk generationsenhet och presentera analysen i en rapport.
Sarabia, Jaime (Jaime Eduardo) 1976. "An investigation into the use of linear generators in the Schneider Hydro-Power Generation system." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9588.
Full textIncludes bibliographical references (leaf 23).
The Schneider HydroBeaver is a revolutionary idea in Hydro-Power Generation. Conventional dams employ the use of turbines which require a large head to generate the power. The large head is developed through dams, which alter the natural course of rivers, destroying fertile river valleys and ruining the environment for fish. The HydroBeaver plans to develop power through a head of only 3 meters. No dam is required to develop this head. The HydroBeaver unit is small and environmentally friendly. Because no dam is required, no land is destroyed, plus the design allows for safe passage of fish downstream. The purpose of this thesis was an investigation into Llie feasibility and efficiency of a linear generation unit rather than a rotational generation unit. As is, the Hydro Beaver generates power through a rotational power generation unit placed on one of the axis. The idea is that a linear generation unit would be able to provide more power, more efficiently and in less space. This thesis discovered the governing variables in a linear power generator and briefly describes how to design a linear generator according to these variables. Airgap, magnet size, magnet flux density and field intensity, as well as velocity were discovered to effect power generation. Given the size restraints of the HydroBeaver and limits on foil velocity, it was discovered that a linear power generation unit is an inefficient and not very economic approach to the power generation problem. It will develop power, but only at about 10% of the power desired. This thesis lays the groundwork on the design of a linear generator so in the event of advancement in magneto-solid technology or some other technological advance, this thesis can be referenced or reinvestigated.
by Jaime Sarabia.
S.B.
Thomson, Allister James. "Effect of hydro-electric power generation on benthic macroinvertebrates in the River North Tyne downstream of Kielder Dam." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313547.
Full textKiamehr, Mehdi. "The evolution of systems-integration capability in latecomer contexts : the case of Iran's thermal and hydro power generation systems." Thesis, University of Brighton, 2012. https://research.brighton.ac.uk/en/studentTheses/b31e948f-290d-488f-9b7e-bddd6a4dc83b.
Full textKadowaki, Makoto. "Modelo de programação da operação de sistemas hidrotérmicos predominantemente hidrelétricos . = Short term generation scheduling of hydro dominant hydrothermal systems." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261160.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-21T04:48:16Z (GMT). No. of bitstreams: 1 Kadowaki_Makoto_D.pdf: 5665852 bytes, checksum: 8007a4e9bf74d78a3c83adc1271d30e0 (MD5) Previous issue date: 2012
Resumo: Esta tese apresenta um modelo para a programação da operação de sistemas hidrotérmicos predominantemente hidrelétricos. A formulação matemática adota uma representação detalhada das usinas hidrelétricas, do sistema de reservatórios, e leva também em conta requisitos de mercado e de operação. As usinas hidrelétricas são modeladas incluindo suas unidades geradoras (conjunto turbina-gerador), com os seus rendimentos representados pela curva colina, e considerando ainda os custos de partida/ parada das unidades geradoras. O sistema de reservatórios leva em conta a rede de reservatórios, considerando os tempos de viagem da água entre reservatórios, limites operativos de armazenamento, turbinagem e defluência, e considera também rampas de geração para atendimento de restrições ambientais. Em termos de mercado, o modelo considera a uma curva de carga global em base horária, e em termos de requisitos operativos considera restrições de reserva girante e conexão de usinas hidrelétricas a mais de um barramento. Como critério de otimização adota-se a minimização de perdas de geração na operação das hidrelétricas e dos custos de partidas e paradas de unidades geradoras. Como resultado desta modelagem, tem-se um problema de otimização determinístico não linear inteiro misto de grande porte. Este problema de otimização foi tratado por uma abordagem híbrida, combinando metodologias baseadas em Programação Dinâmica, Método de Newton, Método de Relaxação das Restrições, Método de Conjuntos Ativos e heurísticas. A metodologia foi aplicada a um estudo de caso baseado na programação de operação do Sistema Interligado Nacional, composto de 94 usinas hidrelétricas, 447 unidades geradoras e considerando um horizonte de uma semana
Abstract: This thesis presents a hydro unit commitment model for predominantly hydroelectric hydrothermal systems. The model employs a detailed representation of the hydro plants, the reservoir system, and taking into account the load demand and operational requirements. The hydro plants are modeling at hydro generation unit (turbine-generator set) level, in which its efficiency is represented by the hill curves, and also considering the hydro-unit start-up / shutdown costs. The reservoir system considers the network of reservoirs, the lead time of water displacement between reservoirs, the operational limits of storage, discharge, and generation ramp rate. The load demand is represented on hourly (or less) time base, the requirements of spinning reserve are taking into account, and the model also allows the representation of plants connected to more than one transmission sub-system. The mathematical formulation obtained is a mixed integer nonlinear optimization problem. The optimization problem is treated by hybrid method, combining methodologies based on Dynamic Programming, Newton Method, Active Set Method, and heuristics. The methodology is applied to a test system based on the Brazilian Interconnected System, composed of 94 hydro plants, with 447 hydro generation units, and considering a time horizon of one week
Doutorado
Energia Eletrica
Doutor em Engenharia Elétrica
Karnik, Macaya Yohanna. "Vattennivåreglering i Avesta Lillfors : På uppdrag av Fortum Generation AB." Thesis, KTH, Data- och elektroteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146658.
Full textThis report evaluates different methods to create a stable regulation of the water level in the hydro power plant Avesta Lillfors, in county Dalar-na. Another pair of plants are located just 900 m up the stream, which is why the regulation has to act fast. If the water level can be regulated and automatically adjust to the incoming flow, it facilitates the control of the plant. A flow chart is created from measurements in the turbine, using the Win-ter-Kennedy method. The results are used for feedforward control. A PID-regulator with feedback is also simulated in a model of the river. This helps finding the parameters that provide a stable, accurate and fast regu-lation. Fuzzy logic control has also been simulated.
Books on the topic "Hydro power generation"
Driben, Paul. The generation of power and fear: The Little Jackfish River hydroelectric project and the Whitesand Indian Band. [Thunder Bay, Ont.]: Lakehead Centre for Northern Studies, 1989.
Find full textOntario. Ministry of the Environment. Monitoring cost estimates and their implications for direct dischargers in the electric generation sector. [Toronto]: Queen's Printer for Ontario, 1989.
Find full textEnvironment, Ontario Ministry of the. Monitoring cost estimates and their implications for direct dischargers in the electric generation sector: Draft. Toronto: Ministry of the Environment, 1989.
Find full textMunicipal Industrial Strategy for Abatement Program (Ontario). The Development document for the draft effluent monitoring regulation for the electric power generation sector. Toronto: Environment Ontario, 1989.
Find full textHydro, Ontario. Ontario Hydro's history and description of hydro-electric generating stations. [Toronto]: Ontario Hydro, 1991.
Find full textOntario. Legislative Assembly. Select Committee on Energy. Report on Darlington Nuclear Generating Station. Toronto: Queen's Printer, 1985.
Find full textEconomic and financial profile of the Ontario electric power generation industry: Municipal-Industrial Strategy for Abatement (MISA) : report. [Toronto]: Environment Ontario, 1989.
Find full textWolf, E. L. Wind, hydro and tides Fully sustainable energy. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0008.
Full textBook chapters on the topic "Hydro power generation"
Oliveira, P., S. Mckee, and C. Coles. "The Optimal Scheduling of Hydro-Electric Power Generation." In Proceedings of the Fifth European Conference on Mathematics in Industry, 109–14. Wiesbaden: Vieweg+Teubner Verlag, 1991. http://dx.doi.org/10.1007/978-3-663-01312-9_14.
Full textDeulkar, Aparna M., Vivek S. Chavhan, and Pankaj R. Modak. "Micro-hydro Power Generation in India—A Review." In Water Resources Management and Reservoir Operation, 219–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79400-2_18.
Full textKobila, T. Ø. "The choice between hydro and thermal power generation under uncertainty." In Recent Modelling Approaches in Applied Energy Economics, 187–205. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3088-2_10.
Full textAmoo, Oseni Taiwo, Motebang Dominic Vincent Nakin, Abdultaofeek Abayomi, Uduak Umoh, Murimo Bethel Mutanga, and Solomon Olakunle Bilewu. "Assessing Impacts of Low Flow on Kainji Hydro-Power Generation." In Hybrid Intelligent Systems, 803–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5_78.
Full textDurgesh Kumar, Ankit Gupta, Rupendra Kumar Pachauri, and Yogesh K. Chauhan. "Performance Investigation of ANN Controller-Assisted Small Hydro Power Generation System." In Proceeding of International Conference on Intelligent Communication, Control and Devices, 871–77. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1708-7_102.
Full textMaheswari, Santhoshkumar, and C. Vijayalakshmi Seshathri. "An Optimal Design to Schedule the Hydro Power Generation Using Lagrangian Relaxation Method." In Advances in Intelligent and Soft Computing, 723–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27443-5_82.
Full textSarda, Jigar, and Kartik Pandya. "Optimal Active–Reactive Power Dispatch Considering Stochastic Behavior of Wind, Solar and Small-Hydro Generation." In Advances in Intelligent Systems and Computing, 255–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1819-1_25.
Full textVelazhagan, P., A. Ramesh Babu, M. D. Vijayakumar, and G. T. Sundar Rajan. "Prospect of Pico-Hydro Electric Power Generation Scheme by Using Consuming Water Distributed to Multi-storage Building." In Lecture Notes in Electrical Engineering, 213–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1906-8_23.
Full textLeong, M. Salman, and Ng Boon Hee. "Managing the Risks of Adverse Operational Requirements in Power Generation – Case Study in Gas and Hydro Turbines." In Asset Condition, Information Systems and Decision Models, 207–18. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2924-0_11.
Full textPati, Subhranshu Sekhar, and Saroj Kumar Mishra. "Automatic Generation Control of a Wind Turbine Integrated Hydro-thermal Plant with Redox Flow Batteries for 2-Area Interconnected Power System." In Smart Intelligent Computing and Applications, 411–18. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9282-5_39.
Full textConference papers on the topic "Hydro power generation"
Bisht, Vimal Singh. "Genetic algorithm solution for convex hydro-thermal generation scheduling problem." In 2012 IEEE Fifth Power India Conference. IEEE, 2012. http://dx.doi.org/10.1109/poweri.2012.6479532.
Full textSebastijanovic, Slavko, Milan Opalic, and Nebojsa Sebastijanovic. "A Study of Integrity Changes in Structures During Exploitation." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26072.
Full textRobert, G., and F. Michaud. "Hydro power plant modeling for generation control applications." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6315213.
Full textChioma, Opanweze, Sadiq Thomas, Suleiman U. Hussein, Godwin Aboi, Omotayo Oshiga, and Ahmed Abubakar Ahmed. "Hydro Power Generation 1n Nigeria: Impacts And Mitigation." In 2019 15th International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2019. http://dx.doi.org/10.1109/icecco48375.2019.9043184.
Full textRigatos, Gerasimos, Pierluigi Siano, Carlo Cecati, and Masoud Abbaszadeh. "Nonlinear optimal control for hydro-power generation units." In 2018 AEIT International Annual Conference. IEEE, 2018. http://dx.doi.org/10.23919/aeit.2018.8577457.
Full textJaved, Umer, Muhammad Moazam Fraz, Imran Mahmood, Muhammad Shahzad, and Omar Arif. "Forecasting of Electricity Generation for Hydro Power Plants." In 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). IEEE, 2020. http://dx.doi.org/10.1109/honet50430.2020.9322841.
Full textBhati, Nikhil, and Ujjwal Kumar Kalla. "Investigations on PMBLDCG for Micro Hydro Power Generation." In 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). IEEE, 2021. http://dx.doi.org/10.1109/sefet48154.2021.9375678.
Full textYahya, Ahmad Khusairee, Wan Noraishah Wan Abdul Munim, and Zulkifli Othman. "Pico-hydro power generation using dual pelton turbines and single generator." In 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO). IEEE, 2014. http://dx.doi.org/10.1109/peoco.2014.6814495.
Full textJin Zou and Xu Lai. "Robust control of hydro generators for wind power variability accommodation." In International Conference on Renewable Power Generation (RPG 2015). Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/cp.2015.0322.
Full textRenton, M. W. "Expert system scheduling of cascade hydro-electric plants." In International Conference on Opportunities and Advances in International Power Generation. IEE, 1996. http://dx.doi.org/10.1049/cp:19960121.
Full text