Dissertations / Theses on the topic 'Hydrocarbon biodegradation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Hydrocarbon biodegradation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aitken, Carolyn M. "Identification of non-hydrocarbon metabolites of deep subsurface anaerobic petroleum hydrocarbon biodegradation." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437844.
Full textToccalino, Patricia. "Optimization of hydrocarbon biodegradation in a sandy soil /." Full text open access at:, 1992. http://content.ohsu.edu/u?/etd,192.
Full textRipley, Mark Brian. "Hydrocarbon bioremediation using bioactive foam." Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313765.
Full textLehrer, Michael Robert. "ENHANCED HYDROCARBON BIODEGRADATION USING BIOAUGMENTATION WITH BIOWISHTM-AQUA FOG." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/763.
Full textFallon, Agata M. "Study of Hydrocarbon Waste Biodegradation and the Role of Biosurfactants in the Process." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36986.
Full textMaster of Science
Molson, John W. H. "Numerical simulation of hydrocarbon fuel dissolution and biodegradation in groundwater." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0019/NQ56676.pdf.
Full textAganbi, Eferhire. "Investigation of aromatic hydrocarbon biodegradation in estuarine and aquifer sediments." Thesis, University of Essex, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446009.
Full textAmodu, Olusola S. "Biodegradation of polycyclic aromatic hydrocarbon contaminants in a mixed culture bioreactor." Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/934.
Full textPolycyclic aromatic hydrocarbons (PAHs) are one of the most common and recalcitrant environmental contaminants – known for their potential toxicity, mutagenicity, and carcinogenicity to humans. Biosurfactant application can enhance the biodegradation of PAHs. The main object of this work was to explore the novelty of biosurfactant produced by the isolated strains of Bacillus sp and Pseudomonas aeruginosa grown exclusively on Beta vulgaris, and the modification of the zeolites nanoparticles by the biosurfactant, for enhanced biodegradation of PAHs in soil. Novel biosurfactant-producing strains were isolated from hydrocarbon-contaminated environments, while several agrowaste were screened as primary carbon sources for the expression of biosurfactants, which were quantified using various standardized methods......
Ziegler, Brady Allen. "Biogeochemical controls on arsenic cycling in a hydrocarbon plume." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/84443.
Full textPh. D.
Tibui, Aloysius. "Biodegradation of Aliphatic Chlorinated Hydrocarbon (PCE, TCE and DCE) in Contaminated Soil." Thesis, Linköping University, The Tema Institute, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7908.
Full textSoil bottles and soil slurry experiments were conducted to investigate the effect of some additives on the aerobic and anaerobic biodegradation of chlorinated aliphatic hydrocarbons; tetrachloroethylene (PCE), trichloroethylene (TCE) and dichloroethylene (DCE) in a contaminated soil from Startvätten AB Linköping Sweden. For the aerobic degradation study the soil sample was divided into two groups, one was fertilised. The two groups of soil in the experimental bottles were treated to varying amount of methane in pairs. DCE and TCE were added to all samples while PCE was found in the contaminated soil. Both aerobic and anaerobic experiments were conducted. For aerobic study air was added to all bottles to serve as electron acceptor (oxygen). It was observed that all the samples showed a very small amount of methane consumption while the fertilised soil samples showed more oxygen consumption. For the chlorinated compounds the expected degradation could not be ascertained since the control and experimental set up were more or less the same.
For the anaerobic biodegradation study soil slurry was made with different media i.e. basic mineral medium (BM), BM and an organic compound (lactate), water and sulphide, phosphate buffer and sulphide and phosphate buffer, sulphide and ammonia. To assure anaerobic conditions, the headspace in the experimental bottles was changed to N2/CO2. As for the aerobic study all the samples were added DCE and TCE while PCE was found in the contaminated soil. The sample without the soil i.e. the control was also given PCE. It was observed that there was no clear decrease in the GC peak area of the pollutants in the different media. The decrease in GC peak area of the pollutants could not be seen, this may be so because more susceptible microorganisms are required, stringent addition of nutrients and to lower the risk of the high concentration of PCE and petroleum products in the soil from Startvätten AB.
Ehlers, George A. C. "Integrated anaerobic/aerobic bioprocess environments and the biodegradation of complex hydrocarbon wastes." Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1004071.
Full textBaruah, Mihika. "Laboratory evaluation of polycyclic aromatic hydrocarbon biodegradation at a former tar plant site." Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1220474373/.
Full textZoeckler, Jeff Radcliffe. "Aerobic Biodegradation of MTBE in Uncontaminated and Gasoline-Contaminated Aquifer Sediments." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/43865.
Full textMaster of Science
Feng, Yuchi. "Effect of Salt on Biodegradation of Model Alkanes and Crude Oil Saturates by Hydrocarbon-degrading Bacteria." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32580.
Full textVogdt, Joachim. "Bioremediation of petroleum hydrocarbon contaminated soil." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-02132009-172348/.
Full textWu, Tong. "Application of computational fluid dynamics to the biopile treatment of hydrocarbon contaminated soil." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/5713.
Full textVivian, Rafael Bitencourt. "ANÁLISE DE CONTAMINAÇÃO EM SOLO E ÁGUA SUBTERRÂNEA POR HIDROCARBONETOS DERIVADOS DE PETRÓLEO." Universidade Federal de Santa Maria, 2015. http://repositorio.ufsm.br/handle/1/7649.
Full textEsta pesquisa teve como finalidade delimitar uma pluma de contaminação, oriunda de um vazamento em posto revendedor de combustível, penetrando aquífero cristalino no Estado do Rio Grande do Sul. Determinaram-se com o emprego de um analisador de vapor THERMO GASTECH, modelo Innova SV, as concentrações in situ de Compostos Orgânicos Voláteis (COV) existentes no solo. Para a identificação de hidrocarbonetos em fase livre, (porção de contaminantes sobrenadante na água subterrânea), empregou-se um medidor de nível digital modelo HSIFD-30, que permitiu a detecção de fluidos (contaminantes) em fase livre usando-se sonda, que mede a interface água e fluidos oleosos. Realizou-se a contagem e identificação de bactérias heterotróficas na água subterrânea, isso para verificar a existência ou não de microbiota autóctone com capacidade para degradar hidrocarbonetos derivados de petróleo. Como resultado, conseguiu-se mapear e determinar as concentrações das plumas de TPH em forma de COV a cada 0,5 m de profundidade, atingindo-se até 3,5 m. As maiores concentrações de COV, ocorreram nas profundidades de 2,5; 3,0 e 3,5 m, onde se registraram concentrações acima de 10.000 ppm, chegando inclusive a se registrar 100% LEL, limite máximo de detecção do equipamento. Quanto à fase livre, mapeou-se uma pluma de contaminação sobrenadante na água subterrânea com espessuras que variaram de 2 a 5 mm. Ambas as plumas, fase vapor e fase livre, já ultrapassaram os limites físicos do empreendimento atingindo áreas residenciais e comerciais existentes ao norte. Quanto à existência de microrganismos degradadores, foram identificadas as espécies Pseudomonas aeruginosa, Bacillus sp., Burkholderia glandioli, Pseudomonas sp. e Acinetobacter sp. ambas espécies consideradas por vários autores como degradadoras de hidrocarbonetos. A identificação da área contaminada e o estudo das interações destes compostos com o meio é de extrema importância para a definição de estratégias e tecnologias visando sua recuperação.
Caivano, Antonio. "The impact of nutrients on microbial Hydrocarbon degradation at deep-sea Temperature and Hydrostatic Pressure." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textSun, Xiaoxu. "Biodegradation of Macondo oil by aerobic hydrocarbon-degrading bacteria in the water column and deepsea sediments of the northern Gulf of Mexico." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53102.
Full textBaranger, Claire. "Polycyclic aromatic hydrocarbon biodegradation for soil bioremediation : potential of microfluidics to understand benzo[a]pyrene uptake by the filamentous fungus Talaromyces helicus." Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2559.
Full textThe present work examines several aspects of the fungal bioremediation of polycyclic aromatic hydrocarbons, following three main axes: mobilization, uptake and biodegradation. This study focuses on the interactions between the pollutant, fungus and the environment through the example of benzo[a]pyrene (BaP) mobilization by Talaromyces helicus. BaP is a carcinogenic, mutagenic and reprotoxic compound well-studied as a model hydrophobic pollutant, while T. helicus in a soil fungus recently identified as holding potential for the remediation of multiple contaminations. Result predictability depending on each site’s characteristics is a limitation in the field of bioremediation, and having adapted experimental tools is important to identify relevant biostimulation strategies on a case-by-case basis. Therefore, several experimental set-ups were used. As a first step, tests in liquid cultures were carried out to quantify BaP degradation in controlled conditions. Soil microcosms are also a classical approach for the study of pollution remediation, used here to evaluate the strain’s performance in conditions closer to a real site, and to test several biostimulation parameters. Finally, a compartmentalized model environment was set up in the form of a microfluidic chip, the goal being to develop a transparent, adaptable model of porous medium to study pollutant mobilization and uptake by a non-motile organism at the microscale
Andong, Omores Raissa. "Spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of a petrochemical plant in Cape Town." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2432.
Full textPolycyclic aromatic hydrocarbons (PAHs) are an alarming group of organic substances for humans and environmental organisms due to their ubiquitous presence, toxicity, and carcinogenicity. They are semi-volatile substances which result from the fusion of carbon and hydrogen atoms and constitute a large group of compounds containing two to several aromatic rings in their molecule. Natural processes and several anthropogenic activities involving complete or incomplete combustion of organic substances such as coal, fossil fuel, tobacco and other thermal processes, generally result in the release of the PAHs into the environment. However, the fate of the PAHs is of great environmental concern due to their tendency to accumulate and their persistence in different environmental matrices and their toxicity. Animal studies have revealed that an excessive exposure to PAHs can be harmful. Evidence of their carcinogenic, mutagenic, and immune-suppressive effects has been reported in the literature. In the soil environment, they have the tendency to be absorbed by plants grown on soil being contaminated by the PAHs. It is, therefore, important to evaluate their occurrence levels in different environmental matrices such as soil concentrations.
Al, Mallah Maha. "Biodegradation des hydrocarbures dans les milieux sursales." Aix-Marseille 2, 1988. http://www.theses.fr/1988AIX22040.
Full textSurridge, Angela Karen Joanna. "Denaturing gradient gel electrophoresis characterisation of microbial communities in polycyclic aromatic hydrocarbon and polychlorinated biphenyl contaminated soil." Thesis, Pretoria : [s.n.], 2007. http://hdl.handle.net/2263/25070.
Full textThesis (PhD (Microbiology))--University of Pretoria, 2007.
Microbiology and Plant Pathology
unrestricted
Haddad, Aziza. "Dégradation d'hydrocarbures aromatiques par une souche d'Arthrobacter sp. : régulation des voies de biodégradation." Vandoeuvre-les-Nancy, INPL, 1997. http://www.theses.fr/1997INPL072N.
Full textMelo, Abinadabe Jackson de. "Metagen?mica: busca de novos genes envolvidos com a biodegrada??o de hidrocarbonetos e s?ntese de biossurfactantes." Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/13080.
Full textConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
Industrial activities, oil spills and its derivatives, as well as the incomplete combustion of fossil fuels have caused a great accumulation of hydrocarbons in the environment. The number of microorganisms on the planet is estimated at 1030 and prokaryotes the most abundant. They colonized diverse environments for thousands of years, including those considered extreme and represent an untapped source of metabolic and genetic diversity with a large biotechnological potential. It is also known that certain microorganisms have the enzymatic capacity to degrade petroleum hydrocarbons and, in many ecosystems, there is an indigenous community capable of performing this function. The metagenomic has revolutionized the microbiology allowing access uncultured microbial communities, being a powerful tool for elucidation of their ecological functions and metabolic profiles, as well as for identification of new biomolecules. Thus, this study applied metagenomic approaches not only for functional selection of genes involved in biodegradation and emulsification processes of the petroleum-derived hydrocarbons, but also to describe the taxonomic and metabolic composition of two metagenomes from aquatic microbiome. We analyzed 123.116 (365 ? 118 bp) and 127.563 sequences (352 ? 120 bp) of marine and estuarine metagenomes, respectively. Eight clones were found, four involved in the petroleum biodegradation and four were able to emulsify kerosene indicating their abilities in biosurfactants synthesis. Therefore, the metagenomic analyses performed were efficient not only in the search of bioproducts of biotechnological interest and in the analysis of the functional and taxonomic profile of the metagenomes studied as well
Atividades industriais, derramamentos de petr?leo e seus derivados, bem como a combust?o incompleta de combust?veis f?sseis t?m causado um grande ac?mulo de hidrocarbonetos no meio ambiente. O n?mero de microrganismos no planeta ? estimado em 1030, sendo os procariotos os mais abundantes. Eles colonizaram diversos ambientes durante milhares de anos, incluindo aqueles considerados extremos e representam uma fonte inexplorada de diversidade gen?tica e metab?lica com um grande potencial biotecnol?gico. Sabe-se que muitos microrganismos possuem vias metab?licas complexas atuando na biodegrada??o de hidrocarbonetos derivados de petr?leo e, em muitos ecossistemas, existe uma comunidade aut?ctone capaz de realizar essa fun??o. A metagen?mica tem revolucionado a Microbiologia permitindo o acesso ?s comunidades microbianas n?o cultiv?veis, sendo uma potente ferramenta para elucida??o de suas fun??es ecol?gicas, dos perfis metab?licos, bem como para identifica??o de novas biomol?culas. Assim, o presente estudo aplicou abordagens metagen?micas n?o apenas para sele??o funcional de genes envolvidos nos processos de biodegrada??o e biossurfacta??o de hidrocarbonetos derivados do petr?leo, mas tamb?m para descri??o da composi??o taxon?mica e metab?lica de dois metagenomas de microbiota aqu?tica. Foram analisadas 123.116 (365 ? 118 pb) e 127.563 sequ?ncias (352 ? 120 pb) dos metagenomas marinho e estuarino, respectivamente. Oito clones foram encontrados, sendo quatro envolvidos na biodegrada??o de petr?leo e quatro capazes de emulsificar querosene, indicando a habilidade de sintetizar biossurfactantes. Portanto, as an?lises metagen?micas realizadas foram eficientes n?o apenas na busca de bioprodutos de interesse biotecnol?gico como tamb?m na an?lise do perfil funcional e taxon?mico dos metagenomas estudados
Safinowski, Michael. "Anaerobic biodegradation of polycyclic aromatic hydrocarbons." kostenfrei, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=97648627X.
Full textBaessa, Marcus Paulus Martins. "Assinaturas geoelétricas em área contaminada por hidrocarboneto no pólo industrial de Cubatão - SP /." Rio Claro : [s.n.], 2007. http://hdl.handle.net/11449/92836.
Full textBanca: Walter Malagutti Filho
Banca: Vagner Roberto Elis
Resumo: Visando caracterizar assinaturas geoelétricas em áreas contaminadas por hidrocarbonetos de petróleo, foram realizados levantamentos geofísicos utilizando-se os métodos da eletrorresistividade e análises hidroquímicas em área localizada no Pólo Industrial de Cubatão - SP. Foram realizadas 19 sondagens elétricas verticais (SEVs), 4 imageamentos elétricos 2D e 3 imageamentos elétricos 3D, tendo sido identificadas, por meio destas técnicas, 12, 21 e 9 anomalias, respectivamente. Constatou-se que a presença de anomalias condutivas na zona não saturada coincide com a ocorrência de fase livre nos poços de monitoramento. A identificação de NH4 +, subjacente à ocorrência de fase livre, confirmou a atuação de processo de denitrificação. As baixas concentrações dos íons sulfato (SO4 2-) e ferroso (Fe2+) indicam que os mesmos foram reduzidos biologicamente para sulfeto (S2-) e precipitado como sulfeto de ferro (FeS), respectivamente. Esses resultados permitem concluir que as anomalias condutivas estão diretamente associadas à presença de fase residual de hidrocarbonetos, em processo de biodegradação, na zona não saturada. Desta forma, os métodos de investigação geofísica utilizados permitiram identificar áreas sob influência de hidrocarbonetos de petróleo.
Abstract: Geophysical surveys using electroresistivity methods and hydrochemical analyses were applied aiming the characterization of geoelectrical signatures in hydrocarbon contaminated sites located in the Polo Industrial de Cubatão - SP. There have been accomplished nineteen vertical electric soundings (VESs), four 2D and three 3D electrical imaging, which identified 12, 21 and 9 geophysical anomalies respectively. It was verified that the presence of conductive anomalies within the non-saturated zone coincided with the occurrence of free phase on the monitoring wells. Ammonium (NH4 +) identification, underlying the free phase occurrence, reinforced the activity of denitrifying process. Additionally, low concentration values of sulfate (SO4 2-) and ferrous (Fe2+) ions indicated that they were, respectively, biologically reduced to sulfide (S2-) and precipitated as iron sulfide (FeS). Based on those results, it was concluded that the conductive anomalies detected inside the non-saturated zone were directly associated with the presence of hydrocarbon residual phase, with was undergoing a biodegradation process. Therefore, the geophysical methods applied in this study allowed the identification of sites under petroleum hydrocarbons influence.
Mestre
Verde, Leandro Costa Lima 1979. "Avaliação da diversidade filogenética e funcional da microbiota envolvida na biodegradação de hidrocarbonetos em amostras de petróleo de reservatórios brasileiros = Evaluation of the phylogenetic and functional diversity of the microbiota involved in hydrocarbon biodegradation in petroleum samples from Brazilian reservoirs." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317327.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-25T14:04:53Z (GMT). No. of bitstreams: 1 Verde_LeandroCostaLima_D.pdf: 7821596 bytes, checksum: b0f165c3b35ff62438f4e8f59035eb82 (MD5) Previous issue date: 2014
Resumo: O processo de biodegradação do petróleo em reservatórios pode resultar em mudanças na composição e propriedades físico-químicas de óleos brutos e gases naturais, as quais levam à diminuição do teor de hidrocarbonetos saturados, produzindo óleos mais pesados e com baixo valor econômico. O uso combinado de técnicas dependentes e independentes de cultivo pode nos permitir um melhor entendimento acerca da comunidade de micro-organismos que habita os reservatórios de petróleo, incluindo aqueles responsáveis por esta biodegradação. O conhecimento sobre a composição microbiana, suas funções e interações com outros micro-organismos e com o ambiente pode levar à definição de estratégias de monitoramento e/ou controle da biodegradação em reservatórios. Este estudo teve como finalidade avaliar a diversidade de micro-organismos e genes envolvidos na degradação de hidrocarbonetos presentes em amostras de petróleo provenientes de dois poços terrestres da Bacia Potiguar (RN), identificados como GMR75 (poço biodegradado) e PTS1 (poço não-biodegradado), através da construção de bibliotecas de genes catabólicos (alcano monooxigenases - alk, dioxigenases que hidroxilam anéis aromáticos ¿ ARHDs e 6-oxocyclohex-1-ene-1-carbonyl-CoA hidroxilase - bamA) e sequenciamento em larga escala de metagenoma e metatranscriptoma de enriquecimentos microbianos aeróbios. Os resultados obervados mostraram uma distribuição diferencial dos genes catabólicos entre os reservatórios, sendo o óleo biodegradado mais diverso para os genes alk e bamA. As sequências foram semelhantes aos genes alkB dos gêneros Geobacillus, Acinetobacter e Streptomyces, aos genes ARHD dos gêneros Pseudomonas e Burkholderia, e aos genes bamA do gênero Syntrophus. A análise quantitativa dos genes catabólicos de degradação de hidrocarbonetos presentes e expressos nos enriquecimentos microbianos em diferentes etapas da biodegradação do óleo, através de PCR Tempo Real, demonstrou maior atividade do gene que codifica a enzima dioxigenase nas comunidades microbianas enriquecidas, e os resultados obtidos pela técnica de microarray sugeriram a existência de novas sequências dos genes alk e ARHD provindas do reservatório de petróleo. As análises das sequências obtidas a partir do metagenoma e metatranscriptoma mostraram que a comunidade bacteriana recuperada no enriquecimento aeróbio é bastante diversa, com predominância do Filo Actinobacteria, seguido de Proteobacteria. As sequências com maior abundância e níveis de expressão foram relacionadas aos genes que codificam as proteínas ligase CoA de ácido graxo de cadeia longa, envolvida na degradação de compostos aromáticos; descarboxilase, envolvida com o ciclo do glioxilato, e o fator sigma da RNA polimerase, envolvida com a regulação da resposta ao estresse oxidativo, sugerindo uma adaptação da comunidade microbiana às condições do enriquecimento e um processo inicial de biodegradação dos hidrocarbonetos. Os resultados obtidos neste trabalho fornecem dados inéditos sobre a diversidade de genes catabólicos e de membros da comunidade microbiana potencialmente envolvidos com a degradação do óleo em reservatórios de petróleo
Abstract: The process of oil biodegradation in reservoirs may result in changes in the composition and physico-chemical properties of crude oils and natural gases, which lead to the decrease of the content of saturated hydrocarbons, producing heavy oils and with low economic value. The combined use of both dependent and independet cultivation techniques may allow us to better understand the microbial community inhabiting oil reservoirs, including those microorganisms responsible for oil degradation. The knowledge about the microorganisms, ther functions and interactions with other microorganisms and the environment may lead to the definition of monitoring and/or control strategies of biodegradation in oil reservoirs. This study aimed at evaluating the diversity of microorganisms and genes involved in the degradation of hydrocarbons present in oil samples from two onshore reservoirs at Potiguar Basin (RN), identified as GMR75 (biodegraded) and PTS1 (non- biodegraded), through the construction of catabolic gene libraries (alkane monooxygenases - alk, aromatic ring hydroxylating dioxygenases ¿ ARHD and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydroxylase - bamA) and highthroughput sequencing of metagenome and metatranscriptome from aerobic microbial enrichments. Results observed showed a differential distribution of catabolic genes between the reservoirs, being the biodegraded oil more diverse for the alk and bamA genes. The sequences were similar to alkB genes from Geobacillus, Acinetobacter and Streptomyces genera, to the ARHD genes from Pseudomonas and Burkholderia genera, and to the bamA genes from Syntrophus genus. Quantitative analysis of the hydrocarbon degradation genes present and expressed in the microbial enrichments during the different phases of oil biodegradation by Real-Time PCR showed that there was a higher activity of dioxygenase enzymes in the enriched microbial communities and results from microarray assays suggested the existence of new alk and ARHD gene sequences originated from the oil reservoir. Metagenomic and metatranscriptomic analyses showed a highly diverse bacterial community, dominated by the Phylum Actinobacteria, followed by Proteobacteria. The most abundant and active sequences were affiliated to the Long-chain-fatty-acid-CoA ligase protein, involved in the degradation of aromatic compounds; decarboxylase, which is involved with the glyoxylate cycle, and RNA polymerase sigma factor, which is involved in regulating the oxidative stress response, suggesting an adaptation of the microbial community to the enrichment conditions and an initial process of biodegradation of hydrocarbon compounds. The results obtained in this work bring innovative data on the diversity of catabolic genes and microbial community members potentially involved with oil degradation in petroleum reservoirs
Doutorado
Genetica de Microorganismos
Doutor em Genetica e Biologia Molecular
Amin, Ali Oulfat. "Physiologie des procaryotes sulfato-réducteurs : dégradation d'hydrocarbures et oxydo-réduction d'éléments métalliques." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4796.
Full textSulfate-reducing prokaryotes (SRPs) play a significant role in the biogeochemical cycles of matter, in particular in the degradation of recalcitrant organic compounds (e.g. hydrocarbons) but also in oxido-reduction of metals and/or metalloids. The aim of this work was to deepen some of these aspects of SRPs physiology. Hydrocarbon degradation was studied with a mesophilic bacterial strain isolated from a polluted site.This strain, described as a new species, Desulfatiferula berrensis BE2801, is able to degrade n-alkenes. Degradation of hydrocarbons has also been studied at high temperatures with an archaeon, Archaeoglobus fulgidus. This archaeon oxidize n-alkanes with most likely involvement of the PflD protein. All our experiments showed that PflD would be an alkylsuccinate synthase allowing hydrocarbon activation by addition to fumarate. Moreover, A. fulgidus was shown to corrode iron at high temperature, through the production of sulfide and also by directly oxidizing iron with formation of unusual "micro-chimneys". In addition to organic matter oxidation, SRPs are known to reduce a large number of elements, including metals and metalloids. This is the case for Desulfotomaculum hydrothermale reported to reduce arsenic at high temperature. Analyses of the genome sequence of this bacterium confirmed its ability to detoxify this mineral
Eriksson, Mikael. "Biodegradation of hydrocarbons in soil and water /." Stockholm : Tekniska högsk, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3072.
Full textAl-Bashir, Bilal. "Biodegradation of polycyclic aromatic hydrocarbons in soilwater systems." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59963.
Full textFirst, the mineralization of naphthalene in soil/water systems under denitrifying conditions has been studied. Results showed that naphthalene mineralization is influenced by its availability to the microbial population, which in turn is a function of the compound initial concentration, the sorption/desorption characteristics of the soil/contaminant complex and the organic content of the soil.
Second, the biodegradation of four PAH compounds, acenaphthene, acenaphthylene, fluorene and anthracene, in a soil/water system under four redox environments has been studied. Both aerobic and denitrifying environments supported appreciable PAH biodegradation rates. The denitrifying environment was chosen for a further experiment to investigate the performance of a bioreactor system in treating PAH-contaminated soils. Results showed that by enlarging the scale of the reactor by approximately eight times and simultaneously reducing the mixing intensity of the soil slurry, the biodegradation rates of the PAH compounds remained virtually unchanged.
Diegor, Elizabeth Justa M. "Biodegradation of aromatic hydrocarbons : microbial and isotopic studies /." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0016/MQ55501.pdf.
Full textAgbeotu, Emibra E. "Plant enhanced biodegradation of petroleum hydrocarbons in soil." Thesis, University of Aberdeen, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=59440.
Full textMcCormick, Amy J. "The effects of pH on the biodegradation of benzene, toluene, ethylbenzene, m-Xylene in soils." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-10222009-124953/.
Full textBaessa, Marcus Paulus Martins [UNESP]. "Assinaturas geoelétricas em área contaminada por hidrocarboneto no pólo industrial de Cubatão - SP." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/92836.
Full textVisando caracterizar assinaturas geoelétricas em áreas contaminadas por hidrocarbonetos de petróleo, foram realizados levantamentos geofísicos utilizando-se os métodos da eletrorresistividade e análises hidroquímicas em área localizada no Pólo Industrial de Cubatão – SP. Foram realizadas 19 sondagens elétricas verticais (SEVs), 4 imageamentos elétricos 2D e 3 imageamentos elétricos 3D, tendo sido identificadas, por meio destas técnicas, 12, 21 e 9 anomalias, respectivamente. Constatou-se que a presença de anomalias condutivas na zona não saturada coincide com a ocorrência de fase livre nos poços de monitoramento. A identificação de NH4 +, subjacente à ocorrência de fase livre, confirmou a atuação de processo de denitrificação. As baixas concentrações dos íons sulfato (SO4 2-) e ferroso (Fe2+) indicam que os mesmos foram reduzidos biologicamente para sulfeto (S2-) e precipitado como sulfeto de ferro (FeS), respectivamente. Esses resultados permitem concluir que as anomalias condutivas estão diretamente associadas à presença de fase residual de hidrocarbonetos, em processo de biodegradação, na zona não saturada. Desta forma, os métodos de investigação geofísica utilizados permitiram identificar áreas sob influência de hidrocarbonetos de petróleo.
Geophysical surveys using electroresistivity methods and hydrochemical analyses were applied aiming the characterization of geoelectrical signatures in hydrocarbon contaminated sites located in the Polo Industrial de Cubatão – SP. There have been accomplished nineteen vertical electric soundings (VESs), four 2D and three 3D electrical imaging, which identified 12, 21 and 9 geophysical anomalies respectively. It was verified that the presence of conductive anomalies within the non-saturated zone coincided with the occurrence of free phase on the monitoring wells. Ammonium (NH4 +) identification, underlying the free phase occurrence, reinforced the activity of denitrifying process. Additionally, low concentration values of sulfate (SO4 2-) and ferrous (Fe2+) ions indicated that they were, respectively, biologically reduced to sulfide (S2-) and precipitated as iron sulfide (FeS). Based on those results, it was concluded that the conductive anomalies detected inside the non-saturated zone were directly associated with the presence of hydrocarbon residual phase, with was undergoing a biodegradation process. Therefore, the geophysical methods applied in this study allowed the identification of sites under petroleum hydrocarbons influence.
Stoecker, Matthew A. "Biodegradation of aromatic and aliphatic hydrocarbons by Rhodococcus spp. /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11495.
Full textUgochukwu, Uzochukwu Cornelius. "Biodegradation of crude oil hydrocarbons supported on clay minerals." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1329.
Full textRobson, John Nicholas. "Synthetic and biodegradation studies of some sedimentary isoprenoid hydrocarbons." Thesis, University of Plymouth, 1987. http://hdl.handle.net/10026.1/1111.
Full textIves, Sian E. "The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in groundwater." Thesis, University of Huddersfield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368319.
Full textIbrahim, Ashraf Samir Abdel-Aziz. "Biodegradation of crude oil and individual hydrocarbons by microorganisms." Thesis, Loughborough University, 1991. https://dspace.lboro.ac.uk/2134/27943.
Full textFisher, Steven J. "The use of advanced analytical techniques for studying the biodegradation of aromatic hydrocarbons." Curtin University of Technology, School of Applied Chemistry, 2002. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=13440.
Full textAnalysis of the aromatic hydrocarbons in both sets of sediment extracts by using gas chromatography-mass spectrometry (GC-MS) revealed the successive depletion of alkylnaphthalenes, and due to the subtlety of changes in the extent of biodegradation, provided an excellent opportunity to examine the susceptibility of biodegradation towards the individual alkylnaphthalenes in the marine environment. Conventional GC-MS analysis of these mixtures is performed under chromatographic conditions where complete resolution of the mixture is not achieved and several isomers co-elute. The mass spectra of these co-eluting isomers may be so similar that one is unable to differentiate between them, and their abundance may therefore not be determined. Since each isomer has a unique infrared spectrum, however, the abundance of each individual isomer was determined by comparing the infrared spectrum of the co-eluting compounds with the spectrum of each of the isomers. To this end, techniques were developed for the application of direct-deposition gas chromatography - Fourier transform infrared spectroscopy (GCFTIR) to the analysis of the complex mixture of alkylnaphthalenes present in the petroleum. This technique was also extended to discriminate between individual alkylphenanthrene isomers, and to clarify the sorption behaviour of the dimethylphenanthrenes by mordenite molecular sieves. The identification of other compounds of geochemical significance in petroleum is also described.
Analyses of' the aromatic hydrocarbons in the contaminated sea-floor sediments using GC-FTIR enabled the unambiguous identification and quantification of each of the dimethylnaphthalene, trimethylnaphthalene and tetramethylnaphthalene isomers present in the samples, from which the relative extents of depletion of each with increasing extent of biodegradation were determined. It was apparent from the considerable differences in the observed susceptibility to biodegradation that a strong relationship exists between the compound structure and its susceptibility to biodegradation, with 1,6-disubstituted polymethylnaphthalenes being preferentially depleted relative to other isomers that lack this feature. The second case study involved tracking the fate (weathering) of hydrocarbons from an accidental release of condensate from a buried pipeline into intertidal coastal (mangrove) sediments in North Western Australia. Sediment samples were collected on nine occasions over a three-year period. Chemical analysis of the saturated and aromatic hydrocarbon components of the petroleum extracts revealed that both hydrocarbon fractions exhibited an increasingly biodegraded profile with increased residence time in the sediments. In a similar manner to the first case study, detailed analysis of the aromatic hydrocarbons using GC-FTIR techniques was performed to determine the depletion of individual alkylnaphthalene isomers with increasing extent of biodegradation. It was apparent that a relationship similar to that observed for the sea-floor sediments exists between the alkylnaphthalene structure and its susceptibility to biodegradation.
Changes in the distribution of methylphenanthrene and dimethylphenanthrene isomer mixtures were also studied and the susceptibility to biodegradation amongst these determined in a similar manner. These relative susceptibilities to biodegradation of the aromatic hydrocarbons were then related to the established hierarchy of susceptibilities of the saturated hydrocarbons, in effect providing a second parallel system for the assessment of the extent of biodegradation. Finally, a system of ratios calculated from the relative abundances of selected aromatic hydrocarbons was developed and used as indicators to differentiate between several crude oils that have been biodegraded to varying extents. These parameters also offer promise as indicators of multiple accumulation events in oil reservoirs where petroleum fluids biodegraded to differing extents are mixed.
Orlu, Rosemary Nmavulem. "Geochemical controls during the biodegradation of petroleum hydrocarbons in soils." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19846/.
Full textSmith, Michael John. "Bioremediation of polycyclic aromatic hydrocarbons in soil." Thesis, University of Kent, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242929.
Full textZhang, Yimin. "Role of Pseudomonas rhamnolipid surfactants in biodegradation of slightly soluble hydrocarbons." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187280.
Full textLü, Xiaoying, and 吕晓莹. "Biodegradation of polycyclic aromatic hydrocarbons in marine sediment under anoxic conditions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B45961062.
Full textObuekwe, Ifeyinwa S. "Biodegradation of polycyclic aromatic hydrocarbons in soils co-contaminated with metals." Thesis, Lancaster University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656325.
Full textSpence, Keith Harvey. "The biodegradation of MTBE and fuel hydrocarbons in the chalk aquifer." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426844.
Full textRodriguez-Lattuada, Sylian J. "Characterization of Soil Biofilms for the Biodegradation of Polycyclic Aromatic Hydrocarbons." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1129320613.
Full textMejeha, Obioma Kelechi. "Biodegradation of petroleum hydrocarbons in soils co-contaminated with petroleum hydrocarbons and heavy metals derived from petroleum." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3391.
Full textAemprapa, Sirinun. "Toluene/xylene catabolic pathway of Pseudomonas putida strain Oâ†2Câ†2." Thesis, Bangor University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321526.
Full text