Academic literature on the topic 'Hydrocarbonoclastic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrocarbonoclastic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrocarbonoclastic"

1

Sayuti, Irda. "Effect of Agitation to Hydrocarbon Degradation by a Hydrocarbonoclastic Bacterium isolated from Chevron Pacific Indonesia’s Waste Tank in Petapahan, Riau." International Journal of Ecophysiology 1, no. 2 (November 10, 2019): 146–50. http://dx.doi.org/10.32734/ijoep.v1i2.2825.

Full text
Abstract:
Oxygen content is a limiting factor in the process of hydrocarbon compounds degradation by hydrocarbonoclastic bacteria. Oxygen may be supplied through agitation (stirring) during fermentation process by hydrocarbonoclastic bacteria. This study aims to to determine the optimal agitation speed for batch fermentation process by hydrocarbonoclastic bacteria isolated from the waste tank of PT Chevron Pacific Indonesia (CPI) Petapahan, Riau. This study was conducted in Biota laboratory, Universitas Andalas, West Sumatra, Indonesia. Hydrocarbonoclastic bacteria were recovered from waste samples by culturing into nutrient broth. Three different agitation speed viz. 110, 120, and 130 rpm were selected as optimization factors. The results show that the percentage of total petroleum hydrocarbon (TPH) degradation are 79.72, 87.49, and 88.35 for 110, 120, and 130 rpm, respectively. Meanwhile, chemical oxygen demand (COD) monitored during fermentation are 88.48, 90.06, and 90.16%, respectively. The agitation speed of 130 rpm is then designated as optimum factor for hydrocarbon degradation by hydrocarbonoclastic bacteria.
APA, Harvard, Vancouver, ISO, and other styles
2

Dewi, Ariyanti Suhita. "Application of docking method to assess the activity of hydrocarbonoclastic bacteria (HCB) from marine origin in bioremediation process." Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 6, no. 2 (August 1, 2010): 45. http://dx.doi.org/10.15578/squalen.v6i2.60.

Full text
Abstract:
Hydrocarbons are one of the main sources of acute and chronic stressors in marine environmentthat are potentially damaging the ecosystem if not properly overcame. As an attempt to restore theenvironment, microbial degradation is a logical solution owing to its low cost and environmentalfriendliness. Screening of microbes with bioremediation activities can be performed in vitrobymeans of high throughput screening (HTS) and/or in silicovia docking method. The latter haspractical advantages over the first in terms of time and cost. In this review, the use of virtualscreening is demonstrated to analyse the specificity of cytochrome-c peroxidase (CCP) enzymefrom hydrocarbonoclastic bacteria Marinobacter hydrocarbonoclasticus. Result showed thatCCP is a decent receptor for simple aromatic hydrocarbons. Despite previous reports on thealkane degradation activities of M. hydrocarbonoclasticus, this result demonstrates a newperspective on its potential to bioremediate low molecular weight polycyclic aromatic hydrocarbon(PAH) with moderate activity.
APA, Harvard, Vancouver, ISO, and other styles
3

Darmayati, Yeti, Shigeaki Harayama, Atsushi Yamazoe, Ariani Hatmanti, Sulistiani, Ruyitno Nuchsin, and Djoko Hadi Kunarso. "HYDROCARBONOCLASTIC BACTERIA FROM JAKARTA BAY AND SERIBU ISLANDS." Marine Research in Indonesia 33, no. 1 (June 30, 2008): 55–64. http://dx.doi.org/10.14203/mri.v33i1.506.

Full text
Abstract:
Jakarta Bay has been known as one of the most polluted marine environment in Indonesia, with no exception by oil. Seribu Islands waters, located in the north of Jakarta Bay may have been impacted by this polluted condition.It’s sometimes also hit by oil spillage from pipe leakage. The purpose of this study is to isolate and identify hydrocarbonoclastic bacteria (oil and Polyaromatic Hydrocarbon degrading bacteria) from Jakarta Bay and Seribu Island waters. The bacteria were isolated from water and sediment/sand. Isolation was prepared by enriched samples in SWP medium with Arabian Light Crude Oil (ALCO). Screening for PAH degrading bacteria has been completed by using sublimation plate method in ONR7a medium and screening for oil degrading bacteria were conducted by using oil plated method with the same medium. Bacteria identifications were done based on l6sRNA gene. The results were analyzed using BLAST and showed that 131 potential hydrocarbonoclastic bacteria have been isolated from Jakarta Bay and Seribu Island waters. Most of them were oil degrading bacteria (41.98%) and the rest were PAH degrading bacteria. Oil pollution level may impact the number of strain of hydrocarbonoclastic bacteria isolated. Among the hydrocarbonoclastic bacteria isolated from Jakarta Bay and Seribu Islands, Alcanivorax, Marinobacter, Achromobacter and Bacillus were common hydrocarbonoclastic genera in Jakarta Bay and its surrounding waters. Alcanivorax spp. is important oil and PAH-degrader found not only in temperate waters, but in tropical waters as well.
APA, Harvard, Vancouver, ISO, and other styles
4

Nurhariyati, Tri, Ni’matuzahroh Ni’matuzahroh, and Tini Surtiningsih. "KEANEKARAGAMAN KHAMIR PENDEGRADASI MINYAK HASIL ISOLASI DARI PELABUHAN TANJUNG PERAK SURABAYA." Berkala Penelitian Hayati 9, no. 2 (June 30, 2004): 87–91. http://dx.doi.org/10.23869/bphjbr.9.2.20045.

Full text
Abstract:
The aims of this research was to obtain diversity of hydrocarbonoclastic yeast isolated from Tanjung perak harbor Surabaya. Exploration of yeast was conducted by isolation and identification of isolated yeast. Identification of yeast based on characteristics of colonies, cell shape, and biochemical tests. From this research, it was obtained 9 hydrocarbonoclastic yeasts. They were 8 generas: Rhodotorula, Candida, Geotrichum, Torulopsis, Trichosporon, Cryptococcus, Debaryomyces, and Saccharomyces.
APA, Harvard, Vancouver, ISO, and other styles
5

Al-Mailem, D. M., M. K. Kansour, and S. S. Radwan. "Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes." Canadian Journal of Microbiology 60, no. 7 (July 2014): 477–86. http://dx.doi.org/10.1139/cjm-2014-0214.

Full text
Abstract:
Attempts to establish hydrocarbonoclastic biofilms that could be applied in waste-hydrocarbon removal are still very rare. In this work, biofilms containing hydrocarbonoclastic bacteria were successfully established on glass slides by submerging them in oil-free and oil-containing sewage effluent for 1 month. Culture-dependent analysis of hydrocarbonoclastic bacterial communities in the biofilms revealed the occurrence of the genera Pseudomonas, Microvirga, Stenotrophomonas, Mycobacterium, Bosea, and Ancylobacter. Biofilms established in oil-containing effluent contained more hydrocarbonoclastic bacteria than those established in oil-free effluent, and both biofilms had dramatically different bacterial composition. Culture-independent analysis of the bacterial flora revealed a bacterial community structure totally different from that determined by the culture-dependent method. In microcosm experiments, these biofilms, when used as inocula, removed between 20% and 65% crude oil, n-hexadecane, and phenanthrene from the surrounding effluent in 2 weeks, depending on the biofilm type, the hydrocarbon identity, and the culture conditions. More of the hydrocarbons were removed by biofilms established in oil-containing effluent than by those established in oil-free effluent, and by cultures incubated in the light than by those incubated in the dark. Meanwhile, the bacterial numbers and diversities were enhanced in the biofilms that had been previously used in hydrocarbon bioremediation. These novel findings pave a new way for biofilm-based hydrocarbon bioremediation, both in sewage effluent and in other liquid wastes.
APA, Harvard, Vancouver, ISO, and other styles
6

Gofar, Nuni. "Characterization of Petroleum Hydrocarbon Decomposing Fungi Isolated from Mangrove Rhizosphere." Journal of Tropical Soils 16, no. 1 (July 1, 2013): 39–45. http://dx.doi.org/10.5400/jts.2011.v16i1.39-45.

Full text
Abstract:
The research was done to obtain the isolates of soil borne fungi isolated from mangrove rhizosphere which were capable of degrading petroleum hydrocarbon compounds. The soil samples were collected from South Sumatra mangrove forest which was contaminated by petroleum. The isolates obtained were selected based on their ability to survive, to grow and to degrade polycyclic aromatic hydrocarbons in medium containing petroleum residue. There were 3 isolates of soil borne hydrocarbonoclastic fungi which were able to degrade petroleum in vitro. The 3 isolates were identified as Aspergillus fumigates, A. parasiticus, and Chrysonilia sitophila. C. sitophila was the best isolate to decrease total petroleum hydrocarbon (TPH) from medium containing 5-20% petroleum residue.Keywords: Hydrocarbonoclastic fungi, hydrocarbon compounds, mangrove rhizosphere
APA, Harvard, Vancouver, ISO, and other styles
7

Valencia-Agami, Sonia S., Daniel Cerqueda-García, Sébastien Putzeys, María Magdalena Uribe-Flores, Norberto Ulises García-Cruz, Daniel Pech, Jorge Herrera-Silveira, M. Leopoldina Aguirre-Macedo, and José Q. García-Maldonado. "Changes in the Bacterioplankton Community Structure from Southern Gulf of Mexico During a Simulated Crude Oil Spill at Mesocosm Scale." Microorganisms 7, no. 10 (October 11, 2019): 441. http://dx.doi.org/10.3390/microorganisms7100441.

Full text
Abstract:
The southern Gulf of Mexico (sGoM) is highly susceptible to receiving environmental impacts due to the recent increase in oil-related activities. In this study, we assessed the changes in the bacterioplankton community structure caused by a simulated oil spill at mesocosms scale. The 16S rRNA gene sequencing analysis indicated that the initial bacterial community was mainly represented by Gamma-proteobacteria, Alpha-proteobacteria, Flavobacteriia, and Cyanobacteria. The hydrocarbon degradation activity, measured as the number of culturable hydrocarbonoclastic bacteria (CHB) and by the copy number of the alkB gene, was relatively low at the beginning of the experiment. However, after four days, the hydrocarbonoclastic activity reached its maximum values and was accompanied by increases in the relative abundance of the well-known hydrocarbonoclastic Alteromonas. At the end of the experiment, the diversity was restored to similar values as those observed in the initial time, although the community structure and composition were clearly different, where Marivita, Pseudohongiella, and Oleibacter were detected to have differential abundances on days eight–14. These changes were related with total nitrogen (p value = 0.030 and r2 = 0.22) and polycyclic aromatic hydrocarbons (p value = 0.048 and r2 = 0.25), according to PERMANOVA. The results of this study contribute to the understanding of the potential response of the bacterioplankton from sGoM to crude oil spills.
APA, Harvard, Vancouver, ISO, and other styles
8

Baruah, Reshita, Dipak Jyoti Kalita, Binoy K. Saikia, Arvind Gautam, Anil Kumar Singh, and Hari Prasanna Deka Boruah. "Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes." International Biodeterioration & Biodegradation 112 (August 2016): 18–30. http://dx.doi.org/10.1016/j.ibiod.2016.04.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Doumenq, P., E. Aries, L. Asia, M. Acquaviva, J. Artaud, M. Gilewicz, G. Mille, and J. C. Bertrand. "Influence of n-alkanes and petroleum on fatty acid composition of a hydrocarbonoclastic bacterium: Marinobacter hydrocarbonoclasticus strain 617." Chemosphere 44, no. 4 (August 2001): 519–28. http://dx.doi.org/10.1016/s0045-6535(00)00521-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Wahaib, Dhuha, Dhia Al-Bader, Dana K. Al-Shaikh Abdou, Mohamed Eliyas, and Samir S. Radwan. "Consistent Occurrence of Hydrocarbonoclastic Marinobacter Strains in Various Cultures of Picocyanobacteria from the Arabian Gulf: Promising Associations for Biodegradation of Marine Oil Pollution." Journal of Molecular Microbiology and Biotechnology 26, no. 4 (2016): 261–68. http://dx.doi.org/10.1159/000445686.

Full text
Abstract:
Fifteen nonaxenic cultures of picocyanobacteria were isolated from the Arabian Gulf, from which 122 heterotrophic bacterial strains were obtained. Based on their 16S rRNA gene sequences, those strains were affiliated with 22 different species, 82.8% of which belonged to the genus <i>Marinobacter</i>, known to comprise hydrocarbonoclastic strains. The remaining species belonged to the genera <i>Alcanivorax, Bacillus, Halomonas, Mesorhizobium, and Paenibacillus, </i>and a Bacteriodetes bacterium also known to comprise hydrocarbonoclastic strains. All the picocyanobacterial cultures harbored one or more strains of <i>Marinobacter</i>. <i>Marinobacter</i> in addition to <i>Alcanivorax</i> and other genera isolated from those picocyanobacteria grew on Tween 80, crude oil, and pure hydrocarbons as sole sources of carbon and energy, i.e. they are related to the obligate hydrocarbonoclastic bacteria group. They consumed crude oil, <i>n</i>-octadecane, and phenanthrene in batch cultures. The results indicated that <i>Marinobacter</i> isolates seemed to grow better and consume more oil in the presence of their host picocyanobacteria than in their absence. Such natural microbial associations assumingly play a role in bioremediation of spilled hydrocarbons in the Arabian Gulf. Similar associations probably occur in other marine environments as well and are active in oil spill removal.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hydrocarbonoclastic"

1

Thompson, Haydn Frank. "Investigating relationships between hydrocarbonoclastic bacteria and micro-algae." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3347.

Full text
Abstract:
Crude oil spills damage marine ecosystems due to the potentially toxic nature of the petrochemical hydrocarbon constituents and their recalcitrance to degradation. Polycyclic aromatic hydrocarbon components (PAHs) are one group of hydrocarbons in crude oil that are of particular concern due to their genotoxicity and potential to bioaccumulate. Their potential to cause damage in marine environments can be mitigated by the presence and activities of hydrocarbonoclastic bacteria. The phycosphere of marine eukaryotic phytoplankton (micro-algae) has recently been shown as an important biotope where hydrocarbonoclastic bacteria can be found, and the association between these organisms is largely unexplored. This thesis presents new insight into the relationship between these organisms by performing enrichment experiments with crude oil and individual hydrocarbon substrates, as well as wholegenome analysis of an algal-associated hydrocarbon-degrader, and using molecular probes for the in situ visualization (by CARD-FISH) and whole-community analysis (by Flow-FISH) of hydrocarbonoclastic bacteria associated with laboratory cultures and field samples of micro-algae. Results demonstrated variations in the tolerance of different diatom species to PAHs, and that intermediate metabolites formed from the partial biodegradation of PAHs can be more harmful to diatoms compared to that of their parent PAH compounds. Thalassiosira pseudonana presence enhanced phenanthrene dissolution and PAH-degrading bacteria formed cell clusters in EPS aggregates. The genome of an obligate hydrocarbonoclastic bacterial species (Polycyclovorans algicola) found associated with marine micro-algae possessed genes involved in cell communication, horizontal gene transfer and nutrient sharing that may play an important role in the organism’s association with its eukaryotic host cells. Indeed, these interactions are likely to allow these hydrocarbonoclastic bacteria to be supported on the phycosphere of micro-algae in the absence of petrochemical exposure. Microcosm experiments with field samples of micro-algae and bacterial consortia showed that crude oil biodegradation, in particular the PAH fraction, was enhanced compared to that by the free-living bacterial community, and revealed certain groups (e.g. members of the order BD7-3) that had not previously been reported to become enriched in the presence of crude oil. Using Flow-FISH, epibiotic members of the genus Marinobacter were found associated with micro-algae in sea surface field samples, and CARD-FISH was used to show this same group associated with the soft tissues of the coral Lophelia pertusa from polyp samples collected from different coral mounds in the deep North Atlantic.
APA, Harvard, Vancouver, ISO, and other styles
2

Bond, Paul C. "Mineral oil biodegradation within permeable pavements : long-term observations." Thesis, Coventry University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Domingues, Patrícia Maia. "Subaquatic sediments as sources of hydrocarbonoclastic and biosurfactant producing facultative anaerobic bacteria." Doctoral thesis, Universidade de Aveiro, 2018. http://hdl.handle.net/10773/22847.

Full text
Abstract:
Doutoramento em Engenharia Química
Actualmente são conhecidas poucas estirpes bacterianas capazes de produzir biossurfactantes (BSFs) em condições de microaerobiose ou anaerobiose. Estas bactérias têm um papel importante não só em processos naturais (ex. formação de biofilmes ou de hidratos de gás), como podem ter diversas aplicações biotecnológicas (ex. estratégias de biorremediação e aplicações industriais). As bactérias produtoras de BSFs em condições de limitação de oxigénio, com capacidade para degradar hidrocarbonetos são de particular interesse para estratégias de biorremediação de locais contaminados com hidrocarbonetos de petróleo (PHs) e na recuperação microbiana de petróleo (MEOR). Neste contexto, o objectivo deste trabalho foi o isolamento, identificação e a caracterização de bactérias anaeróbias ou anaeróbias facultativas produtoras de BSF e degradadoras de hidrocarbonetos (hidrocarbonoclásticas) na perspetiva da sua aplicação biotecnológica em condições de limitação de oxigénio. Foram escolhidos dois ambientes contaminados com PHs como potenciais fontes de bactérias hidrocarbonoclásticas produtoras de BSFs: vulcões de lama (MV) de mar profundo do Golfo de Cádis (Oceano Atlântico) e o sistema estuarino da Ria de Aveiro (Portugal). Foram preparadas culturas de enriquecimento com sedimentos subaquáticos recolhidos nestes dois habitats, como potenciais inóculos de bactérias anaeróbias facultativas. Um design experimental fatorial foi usado para testar o efeito do crude como fonte de carbono, e de nitrato e/ou sulfato, como aceitadores terminais de eletrões. De forma a melhor compreender a estrutura das comunidades bacterianas envolvidas na biodegradação de PHs nos MV do mar profundo procedeu-se à sequenciação do gene 16S rRNA das comunidades bacterianas de culturas de enriquecimento com sedimento de dois MVs, um activo e outro inactivo, e com ou sem adição de crude e/ou nitrato. Detetou-se uma diferenciação entre as comunidades dos dois MVs, independentemente dos suplementos a que as culturas foram expostas, sendo que Alphaproteobacteria e Bacilli predominaram nas culturas com sedimentos de MV activo e inactivo, respectivamente. De uma forma menos acentuada, tanto o nitrato como o crude afetaram a composição das comunidades bacterianas. Géneros de bactérias que só foram detectados nos ensaios com adição de crude (ex. Erythrobacteraceae no MV activo e Acidimicrobiale no MV inactivo) poderão ser usados como indicadores da presença de hidrocarbonetos de petróleo nestes habitats. A biodegradação de PHs nas culturas com crude foi avaliada por cromatografia gasosa acoplada a espectrometria de massa. De uma forma geral, as comunidades de culturas do MV activo foram capazes de degradar n-alcanos de tamanho inferior a C13 e compostos monoaromáticos, enquanto as comunidades do MV inactivo apresentaram a capacidade de metabolizar vários tipos de hidrocarbonetos aromáticos policíclicos. A presença de nitrato apenas afectou positivamente a biodegradação de alcanos, e não teve efeito ou foi mesmo inibitória da biodegradação de outros hidrocarbonetos. A partir de todas as culturas, com todos os tipos de sedimentos, dos MVs do Golfo de Cádis e do estuário da Ria de Aveiro, foi possível isolar-se um total de 13 isolados capazes de sobreviver exclusivamente com crude como fonte de carbono e produzir BSF em condições de aerobiose. Destas, apenas duas não foram capazes de produzir BSFs em anaerobiose. A sequenciação do gene 16S rRNA dos isolados permitiu identifica-los como pertencendo aos géneros Pseudomonas, Bacillus, Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter e Curtobacterium, a maioria dos quais não tinha ainda membros conhecidos como produtores de BSF em anaerobiose. Os resultados obtidos com este trabalho permitiram caracterizar melhor as comunidades envolvidas na degradação de PHs em MVs de mar profundo. Conseguiu-se ainda isolar e identificar estirpes, tanto de mar profundo como de ambiente estuarino, capazes de degradar PHs e produzir BSFs em condições de anaerobiose. Estas estirpes apresentam elevado potencial biotecnológico para aplicações como MEOR e biorremediação em ambientes com escassez de oxigénio.
So far, only few bacterial strains are known to produce biosurfactants (BSFs) under microaerobic or anaerobic conditions. However, these bacteria are not only involved in important natural processes (e.g. biofilm and gas hydrates formations) but can also be used in several biotechnological applications (e.g. bioremediation strategies and industrial applications). Bacteria able to produce BSFs under oxygen-limiting conditions that are also able to degrade hydrocarbons, are of particular interest to bioremediation strategies of sites contaminated with petroleum hydrocarbons (PHs) and microbial enhanced oil recovery (MEOR) strategies. In this context, this work aims at isolating, identifying, and characterizing BSF-producing and hydrocarbon-degrading (hydrocarbonoclastic) bacteria grown under anaerobic conditions, which can be used in biotechnological applications under oxygen limitation. Two environments contaminated with PHs were chosen as potential sources of hydrocarbonoclastic BSF-producing bacteria: deep-sea mud volcanos from the Gulf of Cadiz (Atlantic Ocean), and the estuarine system of Ria de Aveiro (Portugal). Enrichment cultures were prepared using subaquatic sediments from both sites, as potential sources of facultative anaerobic bacteria. A factorial experimental design was used to test the effect of crude oil as carbon source, and nitrate and/or sulfate, as terminal electron acceptors. Aiming at better understanding the structure of bacterial communities involved in PHs biodegradation at deep-sea MVs, sequencing of the 16S rRNA gene was performed for bacterial communities from cultures containing sediments from two MVs, active and inactive, and with or without crude oil and/or nitrate. A distinction between the communities of MVs with different activity, independent of the supplements was observed. Alphaproteobacteria and Bacilli were the predominant classes found in enrichment cultures inoculated with active and inactive MVs sediments, respectively. In a minor scale, nitrate and crude oil additions also affected the composition of bacterial communities. Therefore, genera that only appeared in cultures with crude oil. (e.g. Erythrobacteraceae in active MV cultures and Acidimicrobiale in inactive MV cultures) can be used as biosensors of the presence of PHs in these habitats. Biodegradation of PHs in cultures containing crude oil was assessed by gas chromatography coupled with mass spectrometry. Overall, communities from active MV cultures were able to degrade n-alkanes below C13 and monoaromatic hydrocarbons, while communities from inactive MV cultures presented the ability to metabolize several types of polycyclic aromatic hydrocarbons. The presence of nitrate only had a positive effect on the biodegradation of alkanes, and had no effect or even an inhibitory effect on the biodegradation of other hydrocarbons. A total of 13 isolates able to survive on crude as carbon source and produce BSF under aerobic conditions were obtained from all cultures either from sediments of the Gulf of Cadiz MVs or the estuarine system of Ria de Aveiro. Only two isolates failed to produce BSF under anaerobiosis. Sequencing of 16S rRNA gene was used to establish the identification of isolates as Pseudomonas, Bacillus, Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium. Most of these genera had never been described as able to produce BSFs under anaerobic conditions. The results obtained in this work allowed to better characterize the deep-sea communities involved in PHs degradation, as well as, to identify strains from deep-sea and estuarine sediments able to degrade PHs and produce BSFs under anaerobic conditions. These bacteria present high biotechnological potential for applications in oxygen-limiting environments, such as, MEOR and bioremediation of environments contaminated with PHs.
APA, Harvard, Vancouver, ISO, and other styles
4

Barnier, Claudie. "Biodiversité et fonctionnalité des biofilms oléolytiques en milieu marin." Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3032/document.

Full text
Abstract:
En milieu marin le carbone organique particulaire (POC) représente 25 % du carbone organique total. Sa dégradation est réalisée par des microorganismes hétérotrophes ayant mis en place diverses stratégies pour parvenir à le dissoudre et l’assimiler. Peu d’études se sont intéressées à la dégradation des composés polymériques et/ou hydrophobes, quasiment insolubles dans l’eau constituant le POC. Parmi ces composés, on retrouve les lipides et les hydrocarbures regroupés sous le terme de COH (composés organiques hydrophobes). La dégradation des COH est réalisée par des bactéries dîtes oléolytiques ayant entre autre pour stratégie la formation de biofilms également qualifiés d’oléolytique. Nos connaissances sur la diversité et la fonctionnalité des biofilms oléolytiques se limitent actuellement aux bactéries spécifiquement étudiées pour leur capacité à dégrader les HC. Ainsi la dégradation des lipides est souvent négligée alors que cette famille de molécules représente une part significative du POC.La diversité taxonomique des bactéries formant des biofilms oléolytiques a été déterminée par un criblage de 199 souches marines sur 4 substrats : un alcane (paraffine), un triglycéride (tristéarine), un acide gras (acide palmitique) et une cire (l’hexadécyl palmitate). Cette étude a révélé que les bactéries oléolytiques (formant un biofilm sur au moins 1 des substrats) sont relativement répandues parmi les bactéries marines puisque qu’elles représentent 18.7 % des souches testée. Cette étude montre également que les bactéries capables d’assimiler les alcanes sont également capables d’assimiler au moins un lipide. Les bactéries hydrocarbonoclastes, jusqu’alors décrites comme spécialisées, voir restreintes à l’assimilation des hydrocarbures, présentent donc une gamme de substrats s’étendant aux lipides. La corrélation positive entre la capacité d’assimilation des alcanes et l’assimilation des lipides suggère un lien physiologique entre l’assimilation de ces deux familles de COH. L’activité lipase qui est essentielle à l’assimilation des triglycérides mais pas à l’assimilation des alcanes, a été mesurée dans des cultures de souches oléolytiques poussant sur acétate, triglycéride ou hexadécane. Comme attendu, les cultures sur triglycérides montrent toutes une surexpression de l’activité lipases par rapport aux cultures sur acétate. Les cultures sur hexadécane montraient aussi une surexpression de l’activité lipase renforçant l’idée d’un lien physiologique entre dégradation des alcanes et dégradation des lipides. De plus les souches oléolytiques n’ont pas montré de capacité à former un biofilm sur une surface inerte hydrophobe telle que le polystyrène ou sur une surface hydrophile telle que le verre à la hauteur de celles constaté sur COH. Une étude quantitative de l’adhésion sur COH et substrats inertes réalisée par microscopie montre que l’adhésion (dans les conditions testées) n’est pas un facteur déterminant de la formation de biofilm sur ces mêmes substrats. Cela suggère que la spécificité de formation de biofilm sur les substrats COH, ne réside pas dans l’adhésion mais vraisemblablement dans les étapes de développement du biofilm plus tardives.Enfin, les biofilms oléolytiques mettant en jeux des produits extracellulaires (enzymes et facteurs de solubilisation) qui constituent des biens communs, sont propices à l’établissement de comportements sociaux. Nous avons mis en évidence des comportements synergiques (5/8 des comportements observés) ou compétitifs au sein de biofilm oléolytiques (3/8 des comportements observés)
Particulate organic carbon (POC), in marine environment, accounts for 25% of total organic carbon. POC degradation is carried out by heterotrophic microorganisms which have developed strategies to dissolve and assimilate it. Few studies have investigated the degradation of the polymeric and / or hydrophobic components of POC, which are almost insoluble in the water. Among these compounds, there are lipids and hydrocarbons (HC) grouped under the term of HOCs (hydrophobic organic compounds). The degradation of the HOCs is carried out by oleolytic bacteria which form biofilms at the HOC– water interface. Our knowledge of the diversity and functionality of oleolytic biofilms is mostly limited to HC degrading bacteria, while the degradation of lipids is often neglected although this family of molecules represents a significant part of the POC. A screening of 199 marine strains on 4 substrates: an alkane (paraffin), a triglyceride (tristearin), a fatty acid (palmitic acid) and a wax ester (hexadecyl palmitate) was performed to determine the taxonomic diversity of bacteria able to form oleolytic biofilms. This study revealed that oleolytic bacteria (forming a biofilm on at least 1 substrate) were relatively widespread among marine bacteria since they represented 18.7% of tested strains. This study also showed that bacteria able to assimilate alkanes were also able to assimilate at least one lipid. Hydrocarbonoclastic bacteria, previously described as specialized, or restricted to the assimilation of hydrocarbons, have actually a substrate range spanning from HC to lipids. The positive correlation between the ability to form a biofilm on alkanes and on lipids suggested a physiological link between the assimilation of these two HOC families. The lipase activity, which is essential for triglycerdides assimilation but not for the alkanes assimilation, was measured in oleolytic strains cultures growing on acetate, triglyceride or hexadecane. As expected, overexpression of lipase activity was observed in cultures on triglycerides compared to cultures on acetate. Moreover, overexpression of lipase activity was also observed in cultures on hexadecane reinforcing the idea of a physiological link between alkanes and lipids degradation.Oleolytic strains exhibited a very weak ability to form a biofilm on the inert surfaces (non-nutritive) polystyrene or glass compared to the HOC nutritive surface indicating that oleolytic strains have a specificity for HOC to form a biofilm. A quantitative study of adhesion on HOC and inert substratums carried out by microscopy shows that adhesion (in the tested conditions) is not a determining factor of the biofilm formation on these same substrates. This suggests that the specificity of biofilm formation on HOC substrates does not reside in adhesion but presumably in later biofilm development stages.Lastly, oleolytic biofilms, involving extracellular products (enzymes and solubilization factors) that constitute public goods, are favorable to the establishment of social behaviors. We have demonstrated synergistic behaviors (5/8 of observed behaviors) or competitive behaviors (3/8 of observed behaviors) in oleolytic biofilms
APA, Harvard, Vancouver, ISO, and other styles
5

Bollinger, Alexander [Verfasser], Karl-Erich [Gutachter] Jaeger, and Michael [Gutachter] Feldbrügge. "Novel carboxylic ester hydrolases from marine hydrocarbonoclastic bacteria - insights into organic solvent tolerance, substrate promiscuity and polyester hydrolysis / Alexander Bollinger ; Gutachter: Karl-Erich Jaeger, Michael Feldbrügge." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2020. http://d-nb.info/1217480315/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nunes, Ana Rute Fernandes. "Estudos sobre a redutase do óxido nitroso de Marinobacter hydrocarbonoclasticus." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vaysse, Pierre-Joseph. "Développement d’un biofilm bactérien (Marinobacter hydrocarbonoclasticus SP17) à l’interface eau – hydrocarbure." Pau, 2009. http://www.theses.fr/2009PAUU3049.

Full text
Abstract:
La croissance de Marinobacter hydrocarbonoclasticus SP17 sur alcane à longue chaîne conduit à la formation d’un biofilm à l’interface entre le milieu aqueux et l’alcane. Il a été montré que cette croissance s’accompagne d’un détachement important de cellules issues du biofilm. Le but de ces travaux de recherche consistait, à décrire le développement de ce biofilm, à déterminer les mécanismes moléculaires mis en place lors de sa formation et à caractériser les cellules qui s’en détachent. L’observation du biofilm par microscopie confocale à balayage laser a montré que son développement conduit à la formation d’une structure tridimensionnelle élaborée, résultant d’une croissance sous forme de microcolonie. Une étude protéomique a montré que l’adaptation des cellules à l’utilisation de l’hexadécane et la formation du biofilm qui en découle s’accompagnent de changements importants au niveau de l’expression des gènes. L’identification des protéines surexprimées a mis en évidence deux protéines potentiellement impliquées dans le transport de l’hexadécane et l’induction d’un système de sécrétion de type VI. Cette étude a aussi permis de révéler le phénotype original des cellules nouvellement détachées du biofilm dont le profil protéique se distingue nettement des cellules du biofilm mais aussi de celui de cellules planctoniques cultivées sur substrat soluble. L’étude de différentes caractéristiques physiologiques a permis de confirmer leur singularité, telle que leur capacité accrue à coloniser une interface alcane-milieu, ceci étant probablement lié à la consommation d’inclusions lipidiques accumulées avant leur détachement du biofilm
Growth of Marinobacter hydrocarbonoclasticus SP17 on long chain alkane leads to the formation of a biofilm at the alkane-water interface. It was shown that a huge production of biofilm detached cells occurred during it development. The aim of the present study was to describe the development of this biofilm, to determine molecular mechanisms involved in alkane utilisation and biofilm synthesis and to characterise the biofilm detached cells. The observation of biofilm by confocal laser scanning microscopy showed that development leaded to an elaborated tridimensional structure resulting from the expansion of microcolonies. A proteomic study showed that adaptation to alkane utilisation and to biofilm lifestyle involved a drastic change in gene expression. Identification of proteins modulated revealed two proteins probably involved in alkane transport and the overexpression of a type VI secretion system. This analysis also showed that cells freshly detached from the biofilm, exhibited a protein pattern clearly different from that of biofilm and other planktonic cells grown on soluble substrate. Determination of several physiologic properties corroborated this finding. Detached cells showed also an increased ability to colonize alkane-medium interface most likely linked to the their intracellular lipidic reserves
APA, Harvard, Vancouver, ISO, and other styles
8

Tapilatu, Yosmina Héléna. "Activité hydrocarbonoclaste de procaryotes dans des milieux extrêmes (hyperbares et hypersalés)." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22005.

Full text
Abstract:
Bien que les travaux portant sur la biodégradation des hydrocarbures soient bien documentés, très peu d’études ont toutefois été effectuées dans les milieux de vie extrême. A ce jour, la plupart des études portant sur le devenir des hydrocarbures et le rôle joué par les micro-organismes hydrocarbonoclastes dans leur biodégradation ont été conduites dans des milieux presentant principalement des conditions physico-chimiques standards (e.g. pression hydrostatique de 0,1 MPa, salinité comprise entre 0 et 39 g L-1). Or, une partie importante des hydrocarbures déversés dans l’environnement peut aussi contaminer les milieux océaniques profonds (pression hydrostatique supérieure à 10 MPa) ainsi que les milieux hypersalés côtiers (salinité supérieure à 150 g L-1). Par ailleurs, le traitement des rejets hypersalins contaminés par les hydrocarbures qui sont générés par les exploitations pétrolières posent des problèmes sérieux et couteux. Ce travail de recherche porte sur l’étude de l’activité hydrocarbonoclaste de procaryotes présents dans des milieux extrêmes (hyperbares et hypersalés) pour d’une part, comprendre les processus naturels de biodégradation dans ces écosystèmes et d’autre part permettre le développement futur de techniques de réhabilitation spécifiques. Dans ce but, des expérimentations en laboratoire ont été réalisées. Une mise au point de méthodes d’incubation sous pression hydrostatique nous a permis d’obtenir des informations métaboliques et physiologiques importantes sur une souche bactérienne piézotolérante hydrocarbonoclaste (Marinobacter hydrocarbonoclasticus #5) lorsqu’elle se développe sous pression hydrostatique (35 MPa) sur hexadécane comme seule source de carbone et d’énergie. Cela confirme la capacité de certaines bactéries à dégrader les hydrocarbures en conditions hyperbares. Les résultats obtenus soulignent par ailleurs l’importance de la synthèse de cires dans le fonctionnement énergétique des souches hydrocarbonoclastes et soulèvent de nombreuses questions quant à l’augmentation du degré d’insaturation des acides gras cellulaires à pression hydrostatique élevée. D’une manière intéressante, nos résultats montrent aussi que les micro-organismes qui jouent potentiellement un rôle important dans la biodégradation des hydrocarbures dans les milieux océaniques profonds méditerranéens appartiennent aux mêmes genres que ceux isolés des milieux côtiers, notamment Alcanivorax. Notons également que dans les conditions de culture utilisées certaines souches isolées dégradent préférentiellement le n-hexadecane (e.g. Alcanivorax venustensis, Rhodobacter) ou l’heptadecane (e.g. Marinobacter sp.). De même, les archées halophiles extrêmes hydorcarbonoclastes que nous avons isolées appartiennent aux deux genres ubiquistes des environnements hypersalés que sont Haloarcula et Haloferax. En fonction des souches, les archées halophiles isolées montrent un taux important de dégradation de 32 à 95% (0.5 g L-1) du n-heptadécane après 30 jours d’incubation à 40°C dans les milieux sursalés synthétiques (225 g L-1 NaCl). Certaines souches comme Haloferax sp. MSNC 14 sont capables de dégrader à la fois des n-alcanes et un hydrocarbure aromatique polycyclique (HAP), le phénanthrène. Les résultats obtenus au cours de ce travail de thèse constituent une contribution à l’amélioration de nos connaissances sur le devenir des hydrocarbures dans les milieux océaniques profonds et les milieux hypersalins, jusqu’alors peu étudiés. Au regard de ces résultats, il apparaît indispensable de poursuivre l’étude des milieux extrêmes et de la biodiversité microbienne unique qu’ils abritent. Mots clés : hydrocarbures, biodégradation, souches hydrocarbonoclastes, milieux extrêmes, pression hydrostatique, salinité
Limited information is available on the ability of prokaryotes living in the extreme environments to degrade hydrocarbon. To date, most studies on hydrocarbon biodegradation were conducted on microorganisms isolated from environments with so-called “standards” physicochemical properties (e.g. hydrostatic pressure 0,1 MPa and salinity between 0 and 39 g L-1), despite the evident occurrence of hydrocarbons in extreme environments. An important part of hydrocarbon spilled in the environment could contaminate the deep-sea (hydrostatic pressure higher than 10 MPa) as well as hypersalin (salinity higher than 300 g L-1) coastal areas. Moreover, hydorcarbon-contaminated hypersaline waste water produced during oil exploitation require the improvement of the remediation treatments. The present work deals with the hydrocarbon-degrading activity of prokaryotes living in these extreme environments. In order to deepen our knowledge on the hydrocarbon-degrading microorganisms potential role and also to contribute to the development of specific rehabilitation techniques in these type of environments, various experiments were carried out. A bacterial cultivation method under hydrostatic pressure was developped, through which we obtained important metabolical and physiological informations on a hydrocarbon-degrading piezotolerant bacterium (Marinobacter hydrocarbonoclasticus #5) grown using hexadecane as sole source of carbon and energy. Results confirm the capacity of certain bacteria to degrade the hydrocarbon under hyperbaric (35 MPa) conditions. They also highlight the importance of wax production in energetical functionning and raise numerous questions regarding the increase, under elevated hydrostatic pressure, of unsaturated fatty-acid degree that constitute the wax. Interestingly, our results indicated that the same groups of bacteria, in particular those belong to Alcanivorax, were potentially involved in hydrocarbon biodegradation in deep-sea environments as in coastal waters. Moreover, with the cultivation condition used, isolated strains preferred to degrade either n-hexadecane (e.g. Alcanivorax venustensis, Rhodobacter) or n-heptadecane (e.g. Marinobacter sp.). Similar result was obtained from experiments carried out with archaea isolated from a shallow crystallizer pond sample, in that these microorganisms belong to two ubiquistes genus (Haloarcula and Haloferax) in hypersalin environments. Depending on the strain, extremely halophilic archaea isolated degraded 32 to 95% (0.5 g L-1) of n-heptadecane after 30 days of incubation at 40°C in 225 g L-1 NaCl artificial medium. One of the strains (MSNC 14) was also able to degrade phenanthrene. This study provides useful informations on hydrocarbon biodegradation by microorganisms in deep-sea and hypersalin environments, which remains yet to be fully explored. Further studies seems thus indispensable to elucidate the physico-chemical and biological properties involved in these processes, as well as works on the particular microbial biodiversity living in this type of environment. Keywords: alkanes, biodegradation, hydrocarbon-degrading strains, extreme environments, hydrostatic pressure, salinity
APA, Harvard, Vancouver, ISO, and other styles
9

Klein, Benjamin. "Formation d'un biofilm lors de l'assimilation des alcanes par Marinobacter hydrocarbonoclasticus SP17." Pau, 2007. http://www.theses.fr/2007PAUU3001.

Full text
Abstract:
Lors de la croissance sur n-alcanes, la bactérie marine Marinobacter hydrocarbonoclasticus SP17 forme un biofilm à l'interface eau-hydrocarbure. La formation de biofilms n'a été observée que sur des substances insolubles et métabolisables, les n-alcanes de C8 à C28 et les alcools gras à 12 et 16 carbones. Par contre, il n'y a pas formation de biofilms à la surface des alcanes non métabolisables pristane, heptamethylnonane et dotriacontane. La formation de biofilms par M. Hydrocarbonoclasticus SP17 serait donc spécifique des interfaces nutritives, c'est-à-dire les interfaces entre la phase aqueuse et un substrat insoluble. La perturbation du développement du biofilm par une forte agitation conduit à une sévère réduction de la croissance et du taux de dégradation de l'hexadécane. La formation du biofilm est donc nécessaire à une assimilation efficace de l'hexadécane. L'absence d'émulsification de l'hexadécane et la production de surfactants associée aux cellules montrent que la capture de l'alcane par les cellules se fait par contact avec l'interface. Le rôle du biofilm pourrait être d'établir et/ou maintenir une interaction entre les cellules et le substrat. Nos travaux montrent que l'adaptation à l'utilisation de l'hexadécane comme source de carbone conduit à la formation de plusieurs types cellulaires au sein de la culture. Des cellules forment le biofilm à l'interface eau-substrat où se fait l'assimilation du substrat et la croissance bactérienne. Les cellules du biofilm accumulent une grande quantité de cires sous forme d'inclusions cytoplasmiques (0,47 mg/mg de protéines). Parallèlement, apparaît une population de cellules planctoniques ne se divisant pas et provenant du détachement du biofilm. Ces cellules contiennent cinq fois moins de cires (0,09 mg/mg de protéines) que les cellules du biofilm. Bien qu'elles contiennent une quantité significative de cires, l'absence de croissance des cellules détachées est due à une carence en source de carbone et d'énergie exogène puisque l'addition d'acétate permet leur croissance. Une étude physicochimique de la première étape du développement du biofilm, l'adhésion à l'hexadécane, a été entreprise en utilisant un tensiomètre dynamique à goutte. Il est montré que l'adsorption des cellules à l'interface eau-hexadécane est limitée par leur diffusion de la phase aqueuse vers l'hexadécane. L'adsorption des cellules s'interrompt avant qu'elles recouvrent la totalité de la surface disponible. Lorsque les cellules atteignent l'interface, elles produisent des composés tensio-actifs qui s'adsorbent et recouvrent l'interface. Un comportement différent des cellules aux interfaces eau-hexadécane et eau-heptaméthylnonane a été mis en évidence, indiquant que M. Hydrocarbonoclasticus SP17 est capable de différencier une interface nutritive (hexadécane) d'une interface non-nutritive (heptamethylnonane)
During growth on n-alkanes, Marinobacter hydrocarbonoclasticus SP17 forms a biofilm at the water/hydrocarbon interface. Biofilm formation was only observed on insoluble and metabolizable substances such as n-alkanes from C8 to C28 and fatty alcohols dodecanol and hexadecanol. These bacteria do not form a biofilm on the non metabolizable pristane, heptamethylnonane and dotriacontane. Biofilm formation seems to be controlled by the presence of nutritives interfaces. The perturbation of biofilm development by vigorous agitation results in a decrease in growth and rate of hexadecane degradation. Biofilm formation is required for efficient hexadecane assimilation. Both the absence of emulsification and the presence of tensioactives substances associated to the cells show that hexadecane uptake is due to interfacial contact. Ours experiments show that adaptation to hexadecane as carbon source leads to different cellular types in the same culture. Biofilm cells, located at the water/hydrocarbon interface, accumulate a large amount of waxes ester (0. 47 mg/mg of proteins). In contrast, planktonic cells originated from biofilm dispersion accumulate five time less of waxes ester (0. 09 mg/mg of proteins). Although they contain significant amount of waxes, cells detached from the biofilm could not grow due to carbon limitation and exogenous energy as demonstrated by their ability to grow after acetate addition. A physico-chemistry study of the bacterial adhesion step to hexadecane by using drop tensiometer shows that adsorption of cells on hydrocarbons is limited by Brownian diffusion. Adsorption of bacteria is stopped before the entire surface is colonized. The interruption of cell adsorption is due to production of surface active compounds by bacteria located at the interface. Different behaviours at water/hexadecane interface and the water/heptamethylnonane interface show that M. Hydrocarbonoclasticus SP17 is able to discriminate hexadecane as nutritive interface and heptamethylnone as non nutritive surface
APA, Harvard, Vancouver, ISO, and other styles
10

Terrisse, Fanny. "Influence des oscillations anoxie/oxie sur des communautés microbiennes hydrocarbonoclastes de sédiments intertidaux." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3056/document.

Full text
Abstract:
Les écosystèmes côtiers sont des milieux complexes au sein desquels les communautés microbiennes, jouant un rôle majeur dans leur fonctionnement et leur maintien, s’adaptent et sont tolérantes à des conditions environnementales fluctuantes. En effet, au rythme des marées et de l'activité de la macrofaune, des oscillations oxie/anoxie influencent la composition et la dynamique des communautés microbiennes et par conséquent leur implication métabolique. Afin d’appréhender le devenir du pétrole dans ces écosystèmes, il est donc indispensable d’apporter des connaissances sur l’écologie des microorganismes intervenant dans son élimination, notamment dans des conditions oscillantes anoxie/oxie. Ainsi, ce travail de thèse a eu pour objectif de décrypter l’assemblage de communautés microbiennes hydrocarbonoclastesde sédiments intertidaux soumises à des oscillations anoxie/oxie en présence de pétrole lors d’une expérience en bioréacteurs. Les réponses écologiques des communautés bactériennes globales et de micro-organismes sulfato-réducteurs en conditions oscillantes ont pu être décrites en comparaison avec celles obtenues en conditions d’oxie ou d’anoxie permanentes, par l’analyse des données obtenues par séquençage haut-débit des gènes de l’ARN 16S et dsrB au niveau transcriptionnel. Ces études comparatives ont mis en évidence des profils écologiques en réponseaux conditions oscillantes, pouvant être répandus dans différents environnements marins côtiers. En réponse à ces conditions particulières, de nombreux microorganismes semblent avoir le potentiel à tolérer et/ou s’adapter aux différentes conditions d'oxygénation. Cette capacité d’acclimatation rapide des communautés bactériennes aux conditions oscillantes se sont accompagnées de capacités de dégradation équivalentes ou supérieures dans ces conditions par rapport à la condition d’oxie permanente montrant l’influence des oscillations anoxie/oxie sur le devenir du polluant dans les environnements pollués soumis à ces conditions
Coastal ecosystems are complex environments in which microbial communities, playing a major role in their functioning and maintain, are tolerant and adapt to changing environmental conditions. Indeed, the tides and the macrofauna’s activity generate oxic/anoxic oscillations which influence the composition and dynamics of microbial communities and consequently their metabolic in volvement. To understand the fate of oil in these ecosystems, it is essential to provide knowledge on the ecology of microorganisms involved in these systems, taking into account anoxic/oxicoscillating conditions. Thus, this thesis aimed to decipher the organization of hydrocarbonoclastic microbial communities inhabiting intertidal sediments, when they are subjected to anoxic/oxic oscillations in an experiment in bioreactors with oil addition. Ecological responses of bacterial communities and sulfate-reducing microorganisms in oscillating conditions have been described comparing with those obtained with permanent oxic or anoxic conditions, using high-throughputsequencing analyses of the 16S rRNA and dsrB genes at the transcriptional level. These comparatives studies have highlighted ecological profiles in response to the oscillating conditions, which can be prevalent in different coastal marine environments. In response to these particular conditions, many organisms seem to have the potential to tolerate and / or adapt to the different conditions of oxygenation. This rapid acclimation capacity of bacterial communities tothese changing conditions have been accompanied by equivalent or greater degradation capacity under these conditions compared to the permanent oxic condition, showing the influence of the anoxic/oxic oscillations on the fate of pollutant in environments subjected tothese conditions
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Hydrocarbonoclastic"

1

Smedile, Francesco, Violetta La Cono, Maria Genovese, Giovacchino Ruggeri, Renata Denaro, Francesca Crisafi, Laura Giuliano, and Michail M. Yakimov. "High Pressure Cultivation of Hydrocarbonoclastic Aerobic Bacteria." In Springer Protocols Handbooks, 33–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/8623_2016_208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Golyshin, P. N., H. Lünsdorf, M. Ferrer, and M. M. Yakimov. "Thermoleophilum: A Gram-Positive Hydrocarbonoclastic Thermophilic Bacterium." In Handbook of Hydrocarbon and Lipid Microbiology, 1881–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Genovese, Maria, Renata Denaro, Daniela Russo, Francesca Crisafi, Santina Santisi, Simone Cappello, Laura Giuliano, and Michail M. Yakimov. "Cultivation and Preservation of Hydrocarbonoclastic Microorganisms, Particularly Cycloclasticus Species." In Springer Protocols Handbooks, 79–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/8623_2015_167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smedile, Francesco, Violetta La Cono, Maria Genovese, Giovacchino Ruggeri, Renata Denaro, Francesca Crisafi, Laura Giuliano, and Michail M. Yakimov. "Erratum to: High Pressure Cultivation of Hydrocarbonoclastic Aerobic Bacteria." In Springer Protocols Handbooks, 173. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/8623_2017_231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Genovese, Maria, Renata Denaro, Daniela Russo, Francesca Crisafi, Santina Santisi, Simone Cappello, Laura Giuliano, and Michail M. Yakimov. "Erratum to: Cultivation and Preservation of Hydrocarbonoclastic Microorganisms, Particularly Cycloclasticus Species." In Springer Protocols Handbooks, 319. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/8623_2017_230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gutierrez, Tony. "Occurrence and Roles of the Obligate Hydrocarbonoclastic Bacteria in the Ocean When There Is No Obvious Hydrocarbon Contamination." In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes, 337–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14796-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gutierrez, Tony. "Occurrence and Roles of the Obligate Hydrocarbonoclastic Bacteria in the Ocean When There Is No Obvious Hydrocarbon Contamination." In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes, 1–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-60053-6_14-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Naranjo-Briceño, Leopoldo, Beatriz Pernía, Trigal Perdomo, Meralys González, Ysvic Inojosa, Ángela De Sisto, Héctor Urbina, and Vladimir León. "Potential Role of Extremophilic Hydrocarbonoclastic Fungi for Extra-Heavy Crude Oil Bioconversion and the Sustainable Development of the Petroleum Industry." In Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, 559–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19030-9_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Al-Mailem, Dina M., and Samir S. Radwan. "Hydrocarbonoclastic Biofilms." In Biofilms in Bioremediation: Current Research and Emerging Technologies, 183–200. Caister Academic Press, 2016. http://dx.doi.org/10.21775/9781910190296.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cafaro, Valeria, Viviana Izzo, Eugenio Notomista, and Alberto Di Donato. "Marine hydrocarbonoclastic bacteria." In Marine Enzymes for Biocatalysis, 373–402. Elsevier, 2013. http://dx.doi.org/10.1533/9781908818355.3.373.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrocarbonoclastic"

1

Bird, C., E. Adetutu, N. Hancock, C. Lynch, K. Kadali, A. Bueti, A. Truskewycz, and A. S. Ball. "The application of hydrocarbonoclastic bacteria for the bioremediation of weathered crude oil." In MICROBES IN APPLIED RESEARCH - Current Advances and Challenges. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814405041_0035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Junusmin, Kathleen Irena, Brian Saputra Manurung, and Yeti Darmayati. "Bioremediation of oil-contaminated sediment by hydrocarbonoclastic bacterial consortium immobilized in different types of carrier." In PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silveira, Célia M., Manolis Matzapetakis, M. Gabriela Almeida, and Sofia R. Pauleta. "Copper tolerance in Marinobacter hydrocarbonoclasticus — Proteomic analysis of the periplasm." In MICROBES IN APPLIED RESEARCH - Current Advances and Challenges. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814405041_0124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ARAUJO, F. J., B. S. R. GOMES, C. C. BESSA, J. A. O. SOARES-JUNIOR, D. C. HISSA, and V. M. M. MELO. "EXPRESSION AND PURIFICATION OF A NEW ESTERASE (LIPG7) FROM METAGENOMIC CLONE SIMILAR TO BACTERIAL ESTERASE OF THE Porticoccus hydrocarbonoclasticus." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-co.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography