Academic literature on the topic 'Hydrodynamics; Aerodynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrodynamics; Aerodynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrodynamics; Aerodynamics"

1

Ennos, A. R. "The aerodynamics and hydrodynamics of plants." Journal of Experimental Biology 202, no. 23 (December 1, 1999): 3281–84. http://dx.doi.org/10.1242/jeb.202.23.3281.

Full text
Abstract:
Because they grow away from their substratum to compete for light, plants have to withstand hydrodynamic or aerodynamic drag. Both water and land plants reconfigure in response to this drag, and this is presumed to reduce the risk of mechanical failure. However, there is little unequivocal evidence of drag reduction in large trees as a result of reconfiguration. Land plants must also transport water internally to their tissues, and many have developed xylem tracheids and vessels that help speed up this process. Recent evidence that tree height is limited by water supply suggests that water transport efficiency must be a crucial element in tree design. However, the resistance of many parts of the xylem is still unknown. More focused work is urgently required to shed light on the evolution and ecology of plants in relation to the flow of fluids.
APA, Harvard, Vancouver, ISO, and other styles
2

Alam, Firoz, Harun Chowdhury, and Hazim Moria. "A review on aerodynamics and hydrodynamics in sports." Energy Procedia 160 (February 2019): 798–805. http://dx.doi.org/10.1016/j.egypro.2019.02.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Syamsuar, Sayuti. "Simulasi dan Verifikasi Prestasi Terbang Model Remote Control Flying Boat Saat Hidroplaning." WARTA ARDHIA 42, no. 1 (September 23, 2017): 1. http://dx.doi.org/10.25104/wa.v42i1.294.1-6.

Full text
Abstract:
Pesawat Wing In Surface Effect A2B tipe B konfigurasi Lippisch mempunyai hambatan air yang cukup besar dibandingkan tenaga mesin saat hydroplaning. Makalah ini berisikan bagian dari analisis dalam perancangan untuk mengetahui karakteristik aerodinamika dan hidrodinamika dari remote control model jenis Flying Boat pada fase hydroplaning. Pada awalnya, dilakukan pemotretan 3D terhadap pesawat model Flying Boat menggunakan kamera laser untuk menghasilkan solid drawing pada program CATIA. Model 3D dianalisis dengan menggunakan piranti lunak CFx pada program AnSys. Planform sayap, memiliki dihedral dan menggunakan airfoil jenis NACA 23012. Karakteristik aerodinamika dan hidrodinamika untuk model 3 D dipresentasikan pada posisi sudut alpha =00. Sedangkan kecepatan yang digunakan adalah 0 sampai25 knots. Untuk memverifikasi data hasil simulasi, digunakan data uji terbang pesawat udara tanpa awak Alap-alap yang mempunyai T/W rasio yang sama, yaitu sudut pitch, kecepatan arah sumbu Z pada sumbu benda, ketinggian dan kecepatan. Gaya angkat aerodimaka arah sumbu Z pada simulasi RC model Flying Boat sebanding dengan gaya angkat aerodinamika arah sumbu Z pada UAV Alap-alap saat take off. [The Hydroplaning Flight Performance Simulation and Verfication of a Flying Boat Remote Control Model] The Wing in Surface Effect Aircraft A2B type B with Lippisch configuration has higher hydrodynamics drag compared to engine powered aircraft during hydroplaning. This paper explains parts of analysis in aircraft design to identify the aerodynamics and hydrodynamics characteristics of flying boat remote control model during hydroplaning phase. At first, flying boat model was three dimensional photographed using laser camera in order to produce solid drawing for CATIA program. The three dimensional model, later, analyzed by using CFx software in AnSys program. The wing planform has dihedral angle while the airfoil used is NACA 23012. The aerodynamics and hydrodynamics characteristics of this three-dimensional model is represented for alpha =00. Whilst the speed used in simulation was 0 to 25 knots. In verifying the data of the simulation results, the Unmanned Aerial Vehicle UAV Alap-alap flight test data was used in which it has the same T/W ratio for the pitch angle, acceleration in Z body axis, altitude, and speed. The aerodynamics lift in Z axis of flying boat model during simulation is proportional to the aerodynamics lift in Z axis of UAV Alap-alap during take-off.
APA, Harvard, Vancouver, ISO, and other styles
4

Ferreiro, Larrie D. "The mutual influence of aircraft aerodynamics and ship hydrodynamics in theory and experiment." Archive for History of Exact Sciences 68, no. 2 (August 27, 2013): 241–63. http://dx.doi.org/10.1007/s00407-013-0129-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

TUCK, E. O., and Y. M. STOKES. "ON THIN OR SLENDER BODIES." ANZIAM Journal 53, no. 3 (January 2012): 190–212. http://dx.doi.org/10.1017/s1446181112000120.

Full text
Abstract:
AbstractThis is a review of thin-body and slender-body theories, with indications of some new applications. Topics discussed include bodies with near-constant surface pressure, subsonic and supersonic aerodynamics, ship hydrodynamics, slender bodies in Stokes flow, slender footings in elastic media, and slender moonpools. Mathematical features of the thin- and slender-body approximations are also discussed, especially nonlocal convolution terms modelling three-dimensionality in the otherwise two-dimensional near field, end effects, and the role of the logarithm of the slenderness ratio. This review was presented by the first author as the IMA Lighthill Memorial Lecture at the British Applied Mathematics Colloquium (BAMC) 2004.
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Hua, Yunsai Chen, Xing Zheng, Shanqin Jin, and Qingwei Ma. "A Study on Stable Regularized Moving Least-Squares Interpolation and Coupled with SPH Method." Mathematical Problems in Engineering 2020 (May 30, 2020): 1–28. http://dx.doi.org/10.1155/2020/9042615.

Full text
Abstract:
The smoothed particle hydrodynamics (SPH) method has been popularly applied in various fields, including astrodynamics, thermodynamics, aerodynamics, and hydrodynamics. Generally, a high-precision interpolation is required to calculate the particle physical attributes and their derivatives for the boundary treatment and postproceeding in the SPH simulation. However, as a result of the truncation of kernel function support domain and irregular particle distribution, the interpolation using conventional SPH interpolation experiences low accuracy for the particles near the boundary and free surface. To overcome this drawback, stable regularized moving least-squares (SRMLS) method was introduced for interpolation in SPH. The surface fitting studies were performed with a variety of polyline bases, spatial resolutions, particle distributions, kernel functions, and support domain sizes. Numerical solutions were compared with the results using moving least-squares (MLS) and three SPH methods, including CSPH, K2SPH, and KGFSPH, and it was found that SRMLS not only has nonsingular moment matrix, but also obtains high-accuracy result. Finally, the capability of the algorithm coupled with SRMLS and SPH was illustrated and assessed through several numerical tests.
APA, Harvard, Vancouver, ISO, and other styles
7

Suzuki, Kenta, and Kuniaki Kawabata. "Development of a Robot Simulator for Decommissioning Tasks Utilizing Remotely Operated Robots." Journal of Robotics and Mechatronics 32, no. 6 (December 20, 2020): 1292–300. http://dx.doi.org/10.20965/jrm.2020.p1292.

Full text
Abstract:
This paper describes the development of a robot simulator for remote decommissioning tasks using remotely operated robots at the Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company Holdings. The robot simulator was developed to provide a remote operation training environment to ensure operator proficiency. The developed simulator allows for the calculation of physical aspects, such as the hydrodynamics of a remotely operated vehicle and the aerodynamics of an unmanned aerial vehicle. A disturbed camera view presented to an operator can be generated by setting parameters such as transparency, color, distortion, and noise. We implemented a communication failure emulator on the simulator in addition to functionalities for calculating the integral dose and generating the gamma camera image. We discuss the functional requirements and introduce the implemented functionalities. The simulator was built using the developed functions and can be executed integrally.
APA, Harvard, Vancouver, ISO, and other styles
8

Saydam, Ahmet Ziya, Serhan Gokcay, and Mustafa Insel. "Evaluation of Aerodynamic Characteristics of Mega-Yacht Superstructures by CFD Simulations." Journal of Ship Production and Design 36, no. 04 (November 13, 2020): 259–70. http://dx.doi.org/10.5957/jspd.09190051.

Full text
Abstract:
Air wake distribution around the superstructure of a mega-yacht is a key concern for the designer because of various reasons such as comfort expectations in recreational deck areas, self-noise generation, air pollution and temperature gradients due to exhaust interactions, and safety of helicopter operations such as landing/take off and hovering. The Reynolds-averaged Navier-Stokes (RANS) technique in computational fluid dynamics (CFD) is frequently used in studies on mega-yacht hydrodynamics and aerodynamics with satisfactory results. In this article, a case study is presented for the utilization of CFD in a mega-yacht's superstructure design. The flow field in recreational open areas has been analyzed for the increase in velocity due to the existence of the superstructure. A reduction in self-noise of the mast structure has been aimed by reducing flow separation and vorticity. Time-dependent velocity data obtained with scale-resolving simulations are presented for the evaluation of helicopter landings. The capabilities and limitations of the RANS technique are discussed along with recent developments in modeling approaches.
APA, Harvard, Vancouver, ISO, and other styles
9

Chaudhary, Harideo. "Application of the Theory of a Single First Order Equation to Traffic Flow." Journal of the Institute of Engineering 9, no. 1 (June 30, 2014): 175–81. http://dx.doi.org/10.3126/jie.v9i1.10681.

Full text
Abstract:
Few years ago, Lighthill and Whitham (1955) published a lengthy paper dealing with the theory of highway traffic flow .The basic idea in their approach to the problem is that the flow of traffic along a highway is analogous to the flow of a fluid in an open channel or pipe. This point of view replaces a long column of closely spaced discrete moving vehicles with an equivalent continuous moving stream of liquid (e.g. water) or gas (e.g. air). In other words, Lighthill and Whitham analyzed the phenomenon of traffic flow as though it were a problem in fluid mechanics. This approach allows some, though certainly not all, of the physical and mathematical relationships of hydrodynamics and aerodynamics to be utilized in the traffic flow problem. (Bank, p. 272) DOI: http://dx.doi.org/10.3126/jie.v9i1.10681Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 175–181
APA, Harvard, Vancouver, ISO, and other styles
10

Ciappi, Lorenzo, Lapo Cheli, Irene Simonetti, Alessandro Bianchini, Giampaolo Manfrida, and Lorenzo Cappietti. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots." Energies 13, no. 21 (October 26, 2020): 5582. http://dx.doi.org/10.3390/en13215582.

Full text
Abstract:
Oscillating water column (OWC) systems are among the most credited solutions for an effective conversion of the notable energy potential conveyed by sea waves. Despite a renewed interest, however, they are often still at a demonstration phase and additional research is required to reach industrial maturity. Within this framework, this study provides a wave-to-wire model for OWC systems based on an impulse air turbine. The model performs a comprehensive simulation of the system to estimate the attendant electric energy production for a specific sea state, based on analytical models of the primary (fixed chamber) and secondary (air turbine) converters coupled with the tertiary converter (electric generator). A rigid piston model is proposed to solve the hydrodynamics, thermodynamics, and hydrodynamics of the chamber, in a coupled fashion with the impulse turbine aerodynamics. This is solved with a novel method by considering the cascades as sets of blades, each one consisting of a finite number of airfoils stacked in the radial direction. The model was applied for two Mediterranean sites located in Tuscany and Sardinia (Italy), which were selected to define the optimal geometry of the turbine for a specified chamber. For each system, the developed analytical wave-to-wire model was applied to calculate the performance parameters and the annual energy production in environmental conditions typical of the Mediterranean Sea. The selected impulse turbines are able to convert 13.69 and 39.36 MWh/year, with an efficiency of 4.95% and 4.76%, respectively, thus proving the interesting prospects of the technology.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hydrodynamics; Aerodynamics"

1

Bate, John. "Performance analysis and prediction of high speed planing craft." Thesis, University of Plymouth, 1994. http://hdl.handle.net/10026.1/2462.

Full text
Abstract:
A comprehensive and critical review of literature pertaining to the study of planing craft is given within this work. This study includes monohull design, analysis and performance prediction for flat water; many features of the planing characteristics, including dynamic stability, the use of stepped hullforms, re-entrant transoms and flow characteristics are detailed. Work on the rough water seakeeping analysis of planing craft is also given, and furthermore, literature pertaining to planing catamaran design and performance prediction, and on the ground effect is cited. Mathematical modelling approaches are discussed and it is explained that there is still much progress to be made in this area before accurate and reliable analytical prediction methods become available. The method of matched asymptotic expansions and also a proposed force-mathematical model are shown to be particularly suitable to the prediction of planing craft forces and moments, the first method being highly analytical and the latter requiring a semi-empirical approach to be adopted. A discussion is given of the physical phenomena responsible for the characteristics of planing craft and their interrelation. It is also discussed how modem craft are attaining higher and higher speeds, and a result of this is that the dynamic characteristics of the craft, including the flow conditions, are substantially different to those of more conventional craft. This modem very high speed regime of planing has been analysed and identified in this study under the new title of 'Alto-planing'. Further discussion of planing craft form and design concepts are persued, including details of the design of catamarans and more novel forms. A new computer-based prediction method is presented, which includes prediction methods for trim tabs and an aero foil. The ability of the program to allow the designer to vary given inputs of the hull data is explained, and a systematic variation of all the input characteristics is detailed. An optimisation procedure is offered and it is observed that this new prediction method can provide the designer with as much data as required for analysis of the form, a distinct advantage over current planing craft prediction software. Validation is undertaken by comparison with data from trials results, model test data and comparison with other prediction techniques. A discussion of current prediction methods is given. Finally, the aerodynamic characteristics of alto-planing craft are researched in detail, by means of a systematic series of model tests. Analysis of the results have extended the previous empirical limits and have furthermore segregated and quantified the components of the aerodynamic effects, including the aerodynamic resistance and the change in hydrodynamic running conditions due to the aerodynamic effects. An enhanced and novel prediction method is given, which is used to provide illustrative examples of the aerodynamic characteristics of alto-planing craft.
APA, Harvard, Vancouver, ISO, and other styles
2

Baldovin, Brandon James. "Sweep and Taper Analysis of Surfboard Fins Using Computational Fluid Dynamics." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/1983.

Full text
Abstract:
The research presented here provides a basis for understanding the hydrodynamics of surfboard fin geometries. While there have been select studies on fins there has been little correlation to the shape of the fin and its corresponding hydrodynamic performance. This research analyzes how changing the planform shape of a surfboard fin effects its performance and flow field. This was done by isolating the taper and sweep distribution of a baseline geometry and varying each parameter individually whilst maintaining a constant span and surface area. The baseline surfboard fin was used as a template in Matlab to generate a set of x and y coordinates that defined the outline of the fin shape. These coordinates were then altered by changing either the sweep or taper distribution and resulted in new, unique planform shapes. The new shapes were used to generate 3D models with the NACA 0006 foil as the cross-section hydrofoil. After the geometry was modeled, each fin was meshed and simulated in CFD for incidence angles ranging from 0o to 20o and a fin Reynolds Number of 3.51x105. When the sweep distribution was changed, there was a direct correlation to vortex formation off the leading edge. Increasing the sweep generated a stronger vortex that persisted for higher angles of attack and resulted in higher moments but increased drag. Changing the taper distribution was not as influential. The tapered fin set showed similar flow fields and body forces to each other. Making a fin more rectangular had slight decreases in drag but made the shape more prone to separation.
APA, Harvard, Vancouver, ISO, and other styles
3

Glenwright, David George. "An experimental and finite element investigation of added mass effects on ship structures." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26701.

Full text
Abstract:
The Experimental and Finite Element Investigation of Added Mass Effects on Ship Structures comprised three phases : 1) investigation of the fluid modelling capabilities of the Finite Element Program VAST, 2) experimental investigation to determine the effect of the fluid on the lowest natural frequencies and mode shapes of a ship model, and 3) comparison of these experimental results with numerical results obtained from VAST. The fluid modelling capabilities of VAST were compared with experimental results for submerged vibrating plates, and the effect of fluid element type and mesh discretization was considered. In general, VAST was able to accurately predict the frequency changes caused by the presence of the fluid. Experimental work both in air and water was performed on a ship model. The lowest four modes of vertical, horizontal, and torsional vibration were identified, and the effect of draught on the frequencies and mode shapes was recorded. When the experimentally obtained frequencies and mode shapes for the ship model were compared with the numerical predictions of VAST, good agreement was found in both air and water tests for the vertical vibration modes.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Gangwei. "Drag reduction in large diameter hydraulic capsule pipeline /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9904874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guerra, Joel Tynan. "Investigating the Effect of an Upstream Spheroid on Tandem Hydrofoils." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1959.

Full text
Abstract:
This thesis documents a series of three dimensional unsteady Reynolds Averaged Navier-Stokes CFD simulations used to investigate the influence of an upstream prolate spheroid body on tandem pitching hydrofoils. The model is validated by performing separate CFD simulations on the body and pitching hydrofoils and comparing results to existing experimental data. The simulations were run for a range of Strouhal numbers (0.2-0.5) and phase differences (0-π). Results were compared to identical simulations without an upstream body to determine how the body affects thrust generation and the unsteady flow field. The combined time-averaged thrust increases with Strouhal number, and is highest when the foils pitch out of phase with each other. At intermediate phase differences between φ = 0 and φ = π the leading foil produces significantly more thrust than the trailing foil, peaking at φ = π/2. For St = 0.5 this difference is 21.7%. Results indicate that adding an upstream prolate spheroid body does not significantly alter thrust results, though it does provide a small (nearly negligible) boost. Vorticity from the body is pulled downstream from the pitching foils, which interacts with the vortex generation when the vortex being generated is of the same sign as the body vorticity. This body vorticity does not affect the vorticity magnitude of the downstream vortex pairs.
APA, Harvard, Vancouver, ISO, and other styles
6

Belloni, Clarissa S. K. "Hydrodynamics of ducted and open-centre tidal turbines." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:0721090a-d8b1-45f8-a47b-45d9cdc47222.

Full text
Abstract:
This study presents a numerical investigation of ducted tidal turbines, employing three-dimensional Reynolds-averaged Navier-Stokes simulations. Bidirectional ducted turbines are modelled with and without aperture, referred to as ducted and open- centre turbines respectively. The work consists of two investigations. In the first, the turbine rotors are represented by actuator discs, a simplification which captures changes in linear momentum and thus the primary interaction of the turbine with the flow through and around the duct, while greatly reducing computational complexity. In the second investigation, the turbine rotors are represented through a CFD-integrated blade element momentum model, employing realistic rotor data, capturing swirl and blade drag in addition to the extraction of linear momentum. Both modelling techniques were employed to investigate the performances of bare, ducted, and open-centre turbines, relating these to the flow fields exhibited. For axial flow, substantial decreases in power generated by the ducted and open-centre turbines were found, relative to a bare turbine of equal total device diameter. For open-centre turbines, an increase in aperture size leads to a further reduction in power generated. Increased blockage was shown to positively affect the performance of all devices. Two further measures of performance were employed: power density, normalising the power by the rotor area, and basin efficiency, relating the power generated to the overall power removed from the flow. Moderate increases in power density can be achieved for the ducted and open-centre devices, while their basin efficiencies are of similar value to that of the bare turbine. For yawed inflow, the performance of the bare turbine decreases, whilst that of the ducted and open-centre turbines increases. This is due to an increased flow velocity following flow acceleration around the inlet lip of the duct and also an increase in effective blockage as ducts present greater projected frontal area when approached non-axially.
APA, Harvard, Vancouver, ISO, and other styles
7

Wells, Jared Lawrence. "Effect of angular orientation on the hydrodynamic forces acting on a body in a restricted waterway." Thesis, Virginia Tech, 1985. http://hdl.handle.net/10919/41572.

Full text
Abstract:

A slender body theory method developed for a body moving parallel to a wall in shallow water is extended to include angular orientation of the body to the wall. The method satisfies only the zero normal velocity condition on the external boundaries but does not take into account the effect of induced flows on the body itself. A spheroid and a Series 60, block .80 hull were the bodies studied. The side force and yaw moment on each body were determined numerically for varying angular orientation with respect to either a single wall or canal bank. For both cases results for a range of depths and wall separation distances are presented. It is found that the method gives good qualitative side force predictions for a body moving parallel to a wall, but is unable to correctly predict the yaw moment or the side force due to angular orientation. This result dictates the need for a more complex mathematical model to properly represent the flow than the simple model and quasiâ steady method used here.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Emerson, Benjamin L. "Dynamical characteristics of reacting bluff body wakes." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49073.

Full text
Abstract:
Combustion instability plagues the combustion community in a wide range of applications. This un-solved problem is especially prevalent and expensive in aerospace propulsion and ground power generation. The challenges associated with understanding and predicting combustion instability lie in the flame response to the acoustic field. One of the more complicated flame response mechanisms is the velocity coupled flame response, where the flame responds dynamically to the acoustic velocity as well as the vortically induced velocity field excited by the acoustics. This vortically induced, or hydrodynamic, velocity field holds critical importance to the flame response but is computationally expensive to predict, often requiring high fidelity CFD computations. Furthermore, its behavior can be a strong function of the numerous flow parameters that change over the operability map of a combustor. This research focuses on a nominally two dimensional bluff body combustor, which has rich hydrodynamic stability behavior with a manageable number of stability parameters. The work focuses first on experimentally characterizing the dynamical flow and flame behavior. Next, the research shifts focus toward hydrodynamic stability theory, using it to explain the physical phenomena observed in the experimental work. Additionally, the hydrodynamic stability work shows how the use of simple, model analysis can identify the important stability parameters and elucidate their governing physical roles. Finally, the research explores the forced response of the flow and flame while systematically varying the underlying hydrodynamic stability characteristics. In the case of longitudinal combustion instability of highly preheated bluff body combustors, it shows that conditions where an acoustic mode frequency equals the hydrodynamic global mode frequency are not especially dangerous from a combustion instability standpoint, and may actually have a reduced heat release response. This demonstrates the very non-intuitive role that the natural hydrodynamic flow stability plays in the forced heat release response of the flame. For the fluid mechanics community, this work contributes to the detailed understanding of both unforced and forced bluff body combustor dynamics, and shows how each is influenced by the underlying hydrodynamics. In particular, it emphasizes the role of the density-shear layer offset, and shows how its extreme sensitivity leads to complicated flow dynamics. For the flow-combustor community as a whole, the work reviews a pre-existing method to obtain the important flow stability parameters, and demonstrates a novel way to link those parameters to the governing flow physics. For the combustion instability community, this thesis emphasizes the importance of the hydrodynamic stability characteristics of the flow, and concludes by offering a paradigm for consideration of the hydrodynamics in a combustion instability problem.
APA, Harvard, Vancouver, ISO, and other styles
9

Kreider, Marc Alan. "A numerical investigation of the global stability of ship roll : invariant manifolds, Melnikov's method, and transient basins /." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-03142009-040740/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leroy, Vincent. "Aérodynamique instationnaire pour l'analyse de la tenue à la mer des éoliennes flottantes." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0050/document.

Full text
Abstract:
La simulation numérique des éoliennes flottantes est essentielle pour le développement des Energies Marines Renouvelables. Les outils de simulation classiquement utilisés supposent un écoulement stationnaire sur les rotors. Ces théories sont généralement assez précises pour calculer les forces aérodynamiques et dimensionner les éoliennes fixes (à terre ou en mer) mais les mouvements de la plateforme d’une éolienne flottante peuvent induire des effets instationnaires conséquents. Ceux-ci peuvent par exemple impacter la force de poussée sur le rotor. Cette thèse de doctorat cherche à comprendre et à quantifier les effets de l’aérodynamique instationnaire sur la tenue à la mer des éoliennes flottantes, dans différentes conditions de fonctionnement. L’étude montre que les forces aérodynamiques instationnaires impactent les mouvements de la plateforme lorsque le rotor est fortement chargé. Les modèles quasi-stationnaires arrivent néanmoins à capturer la dynamique des éoliennes flottantes avec une précision suffisante pour des phases de design amont. Les éoliennes flottantes à axe vertical sont elles aussi étudiées pour des projets offshore puisqu’elles pourraient nécessiter des coûts d’infrastructure réduits. Après avoir étudié l’influence de l’aérodynamique instationnaire sur la tenue à la mer de ces éoliennes, une comparaison est menée entre éoliennes flottantes à axe horizontal et à axe vertical. Cette dernière subit une importante poussée aérodynamique par vents forts, induisant de très grands déplacements et chargements
Accurate numerical simulation of thesea keeping of Floating Wind turbines (FWTs) is essential for the development of Marine Renewable Energy. State-of-the-art simulation tools assume a steady flow on the rotor. The accuracy of such models has been proven for bottom-fixed turbines, but has not been demonstrated yet for FWTs with substantial platform motions. This PhD thesis focuses on the impact of unsteady aerodynamics on the seakeeping of FWTs. This study is done by comparing quasi-steady to fully unsteady models with a coupled hydro-aerodynamic simulation tool. It shows that unsteady load shave a substantial effect on the platform motion when the rotor is highly loaded. The choice of a numerical model for example induces differences in tower base bending moments. The study also shows that state of the art quasi-steady aerodynamic models can show rather good accuracy when studying the global motion of the FWTs. Vertical Axis Wind Turbines (VAWTs) could lower infrastructure costs and are hence studied today for offshore wind projects. Unsteady aerodynamics for floating VAWT sand its effects on the sea keeping modelling have been studied during the PhD thesis,leading to similar conclusions than for traditional floating Horizontal Axis Wind Turbines (HAWTs). Those turbines have been compared to HAWTs. The study concludes that, without blade pitch control strategy, VAWTs suffer from very high wind thrust at over-rated wind speeds, leading to excessive displacements and loads. More developments are hence needed to improve the performance of such floating systems
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hydrodynamics; Aerodynamics"

1

Sears, William Rees. Introduction to theoretical aerodynamics and hydrodynamics. Reston, VA: American Institute of Aeronautics and Astronautics, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marchaj, Czesław A. Aero-hydrodynamics of sailing. 2nd ed. London: Coles, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aero-hydrodynamics of sailing. 3rd ed. London: Adlard Coles Nautical, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Aerodynamic and related hydrodynamic studies using water facilities. Neuilly sur Seine, France: AGARD, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prandtl, Ludwig. Führer durch die Strömungslehre. 9th ed. Braunschweig: Vieweg, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arnold, Decker Norman, ed. Fluid dynamics of industrial equipment: Flow distribution design methods. New York: Hemisphere Pub., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

A, Aleksin V., ed. Prostranstvennye zadachi vychislitelʹnoĭ aėrogidrodinamiki. Moskva: "Nauka", 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kompaktnye raznostnye skhemy povyshennoĭ tochnosti v zadachakh aėrogidrodinamiki. Moskva: Vychislitelʹnyĭ t͡s︡entr AN SSSR, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

H, Nunn R., ed. Mechanics of liquids and gases. 6th ed. New York: Begell House, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Poli͡akhov, N. N. Izbrannye trudy. Sankt-Peterburg: Izd-vo S.-Peterburgskogo universiteta, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Hydrodynamics; Aerodynamics"

1

Palocz-Andresen, Michael. "Aerodynamics of Vehicles and Airplanes, and Hydrodynamics of Ships." In Decreasing Fuel Consumption and Exhaust Gas Emissions in Transportation, 109–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-11976-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karimirad, Madjid. "Aerodynamic and Hydrodynamic Loads." In Offshore Energy Structures, 187–221. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12175-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schlichting, Hermann, and Erich Truckenbrodt. "Inkompressible reibungslose Strömungen (Hydrodynamik)." In Aerodynamik des Flugzeuges, 22–142. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56911-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stuart, J. T. "Stewartson Memorial Lecture: Hydrodynamic Stability and Turbulent Transition." In Numerical and Physical Aspects of Aerodynamic Flows III, 23–38. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4926-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Titov, Alexander, Sergey Khrapov, Victor Radchenko, and Alexander Khoperskov. "Aerodynamic Models of Complicated Constructions Using Parallel Smoothed Particle Hydrodynamics." In Communications in Computer and Information Science, 173–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05807-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Table of Contents and Preface." In Introduction to Theoretical Aerodynamics and Hydrodynamics, i—xiii. Reston ,VA: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/5.9781600867743.0000.0000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Kinematics of Fluid Flows." In Introduction to Theoretical Aerodynamics and Hydrodynamics, 1–23. Reston ,VA: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/5.9781600867743.0001.0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Dynamics of Frictionless Fluids." In Introduction to Theoretical Aerodynamics and Hydrodynamics, 25–40. Reston ,VA: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/5.9781600867743.0025.0040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Irrotational Motion of an Incompressible Fluid: Laplace’s Equation." In Introduction to Theoretical Aerodynamics and Hydrodynamics, 41–65. Reston ,VA: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/5.9781600867743.0041.0065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Motion of Bodies in an Incompressible Frictionless Fluid." In Introduction to Theoretical Aerodynamics and Hydrodynamics, 67–119. Reston ,VA: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/5.9781600867743.0067.0119.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrodynamics; Aerodynamics"

1

Saxena, Swati, Fred Mendonca, Anton Golota, and Koushik Sengupta. "Hydrodynamics and Hydroacoustics of Flow Past a Cylinder for Underwater Radiated Noise Applications." In 2018 Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McCormick, Barnes W. "Hydrodynamics to Outboard to Rotors To Wake Turbulence to Expert Witness: The Experiences of an Aeronautical Engineer over 60 Years." In 31st AIAA Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leroy, Vincent, Jean-Christophe Gilloteaux, Maxime Philippe, Aurélien Babarit, and Pierre Ferrant. "Development of a Simulation Tool Coupling Hydrodynamics and Unsteady Aerodynamics to Study Floating Wind Turbines." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61203.

Full text
Abstract:
Depending on the environmental conditions, floating Horizontal Axis Wind Turbines (FHAWTs) may have a very unsteady behaviour. The wind inflow is unsteady and fluctuating in space and time. The floating platform has six Degrees of Freedom (DoFs) of movement. The aerodynamics of the rotor is subjected to many unsteady phenomena: dynamic inflow, stall, tower shadow and rotor/wake interactions. State-of-the-art aerodynamic models used for the design of wind turbines may not be accurate enough to model such systems at sea. For HAWTs, methods such as Blade Element Momentum (BEM) [1] have been widely used and validated for bottom fixed turbines. However, the motions of a floating system induce unsteady phenomena and interactions with its wake that are not accounted for in BEM codes [2]. Several research projects such as the OC3 [3], OC4 [4] and OC5 [5] projects focus on the simulation of FHAWTs. To study the seakeeping of Floating Offshore Wind Turbines (FOWTs), it has been chosen to couple an unsteady free vortex wake aerodynamic solver (CACTUS) to a seakeeping code (InWave [6]). The free vortex wake theory assumes a potential flow but inherently models rotor/wake interactions and skewed rotor configurations. It shows a good compromise between accuracy and computational time. A first code-to-code validation has been done with results from FAST [7]on the FHAWT OC3 test case [3] considering the NREL 5MW wind turbine on the OC3Hywind SPAR platform. The code-to-code validation includes hydrodynamics, moorings and control (in torque and blade pitch). It shows good agreement between the two codes for small amplitude motions, discrepancies arise for rougher sea conditions due to differences in the used aerodynamic models.
APA, Harvard, Vancouver, ISO, and other styles
4

Ledru, Rémi, Cédric Le Cunff, Jean-Michel Heurtier, Timothée Perdrizet, and Yann Poirette. "Influence of Hydrodynamic Modeling Assumptions on Floating Wind Turbine Behaviour." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24396.

Full text
Abstract:
This paper aims to highlight the key physical aspects that govern the dynamic behavior of a trifloater based floating wind turbine and the modeling assumptions — with a focus on hydrodynamics modeling and platform/tower interface flexibility — required to properly take into account the coupled hydrodynamics and aerodynamics effects in the fatigue analysis. Three selected load cases are simulated with different hydrodynamics models and the results are compared to each other. On this specific floating structure, Morison formulation seems to provide very similar results compared to other hydrodynamic modeling approaches based on potential flow theory and a more consistent way to model the floater damping. The use of a hybrid formulation including Morison damping on the columns instead of a quadratic damping matrix is an interesting alternative since it gathers the advantages of the different models.
APA, Harvard, Vancouver, ISO, and other styles
5

Carrico, Todd. "A Velocity Prediction Program for a Planning Dinghy." In SNAME 17th Chesapeake Sailing Yacht Symposium. SNAME, 2005. http://dx.doi.org/10.5957/csys-2005-014.

Full text
Abstract:
This paper summarizes the author’s graduate thesis in Naval Architecture accepted by the University of New Orleans, College of Engineering. The author sought to investigate the complicated interactions between the hydrodynamics and aerodynamics of a sailboat. The type of sailboat investigated was the Olympic dinghy class called the Laser. It was the author’s understanding that at that time, no work has been completed in the area of velocity prediction for this type of sailboat. Thus, the fundamental goal of this thesis was to develop a velocity prediction program specific to the Laser. In order to accomplish the goal of creating a velocity prediction program, multiple essential pieces of the data were needed. In particular, the hydrodynamic resistance data, aerodynamic drive and side force data, and hydrodynamic side forces were needed. To determine the dynamic trim of the dinghy, a series of experiments were conducted. In addition, a data acquisition system was developed in which full scale tow testing could be done. Next, a complete tow test series was conducted for the Laser. The aerodynamic sail coefficients were derived from Marchaj’s Aero-Hydrodynamics of Sailing. To determine the hydrodynamic side force, a two dimensional approach was employed. The coding of the velocity prediction program was done using Microsoft’s Visual Basic 6.0 and Excel 2000. The algorithms published in the 15th Chesapeake Sailing Yacht Symposium and Principles of Yacht Design pertaining to velocity prediction were used as a baseline. Finally, validation and verification was performed with the shareware program PCSAIL.
APA, Harvard, Vancouver, ISO, and other styles
6

Sheng, Wanan, Anthony Lewis, and Raymond Alcorn. "Numerical Studies of a Floating Cylindrical OWC WEC." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83041.

Full text
Abstract:
Oscillating water column (OWC) wave energy converters (WECs) are a popular type of wave energy devices. Generally, the OWC WECs have a simple structure and working principle, but with a high conversion efficiency, and a high reliability in power take-off due to a small torque and a high rotation speed for a certain power extraction. The OWC devices convert wave energy into pneumatic energy primarily by producing the pressured and de-pressured air (pneumatic energy) in the air chamber through the motions of the interior water surface in the water column. Conventionally, the pneumatic energy is converted into mechanical energy through an air turbine (in small scaled model, an orifice or porous membrane material is used for non-linear or linear power take-off modelling). However, these processes are very limitedly understood due to the complexities of the hydrodynamics, aerodynamics, and thermodynamics and their coupling effects. Theoretical and numerical attempts are very limited, especially when the coupling effects are included. As a result of the difficulties, in the device development, the most popular and acceptable approach may be the model tests, with different scaling factors in their corresponding development stages, as recommended by the relevant wave energy development protocols. To reduce the dependencies on the physical modelling in the OWC device development, numerical methods are very desirable to accommodate the simulation and assessment of the hydrodynamic and aerodynamic/thermodynamic performances of the OWC WECs. This is the main target of this investigation. In this numerical simulation, the hydrodynamic performances (including the motions of the structure and the interior water surface in waves) are carried out by employing a conventional boundary element method (i.e., WAMIT in this case) in frequency domain. To include the effects of the airflow passing through an orifice, its aerodynamic performance is much simplified by assuming its effects on the hydrodynamic performance through some extra damping coefficients to the motions of the floating structure and to the motion of the interior water surface. In this way, the interior water surface response can be obtained for the coupling effects of the hydrodynamics and aerodynamics of the OWC WEC. In this regard, an important issue in the numerical simulation is to seek an appropriate representation of the damping levels.
APA, Harvard, Vancouver, ISO, and other styles
7

Collu, Maurizio, Michael Borg, Andrew Shires, and Feargal P. Brennan. "FloVAWT: Progress on the Development of a Coupled Model of Dynamics for Floating Offshore Vertical Axis Wind Turbines." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10717.

Full text
Abstract:
In the present article, progress on the development of an aero-hydro-servo-elastic coupled model of dynamics for floating Vertical Axis Wind Turbines (VAWTs) is presented, called FloVAWT (Floating Vertical Axis Wind Turbine). Aerodynamics is based on Paraschivoiu’s Double-Multiple Streamtube (DMST) model [1] [2], relying on blade element momentum (BEM) theory, but also taking into account three-dimensional effects, dynamic stall, and unsteady wind profiles and platform motions. Hydrodynamics is modelled with a time domain seakeeping model [3], based on hydrodynamic coefficients estimated with a frequency analysis potential method. In this first phase of the research program, the system is considered a rigid body. The mooring system is represented through a user defined force-displacement relationship. Due to the lack of experimental data on offshore floating VAWTs, the model has initially been validated by taking each module separately and comparing it against known experimental data, showing good agreement. The capabilities of the program are illustrated through a case study, giving an insight on the relative importance of aerodynamics loads and gyroscopic effects with respect to hydrodynamic load effects.
APA, Harvard, Vancouver, ISO, and other styles
8

Duan, Lei, and Hiroyuki Kajiwara. "A Coupled Aero-Hydrodynamic Simulator for Offshore Floating Wind Turbines." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23828.

Full text
Abstract:
Offshore floating wind turbines (OFWTs) are expected as the future of wind energy. However, the analysis of OFWTs is much more complicated than that of fixed-bottom wind turbines. The simulators currently in use, based on the classic blade element momentum (BEM) theory, will be inadequate while used on OFWTs because of the unsteady motions induced by wind and waves. Thus, simulators with advanced approaches are of necessity for analyzing OFWTs. In this work, a coupled aero-hydrodynamic simulator in MATLAB/Simulink is developed, for simulating the response and aerodynamic performance of OFWTs under wind and waves in the time domain. For aerodynamics, the code uses an unsteady BEM model or the free vortex wake method (FVM) to calculate the aerodynamic loads and performance of the wind turbine. For hydrodynamics, a linearized classic marine hydrodynamic model, based on the frequency-dependent parameters obtained from the code of WAMIT, is employed to calculate the hydrodynamic loads of the platform by solving the hydrostatic, diffraction and radiation problems with fluid-memory effect. Furthermore, Morison’s equation and the strip theory are applied to calculate the nonlinear viscous drag for improving the quality of the model. Finally, a series of cases with different wind and wave conditions is tested on a sample model combining “NREL offshore 5-MW baseline wind turbine” with “OC3-Hywind platform”. The results show that the simulator is able to predict the response and aerodynamic performance of OFWTs under wind and waves. Moreover, the FVM is more suitable for analyzing the aerodynamic performance of OFWTs than the unsteady BEM model because of its higher fidelity and less limitations.
APA, Harvard, Vancouver, ISO, and other styles
9

Kanner, Samuel, and Bingbin Yu. "Evaluating the Coupledness of the Aerodynamics and Hydrodynamics on the Estimation of Fatigue Damage Equivalent Load for a Floating Offshore Wind Platform." In ASME 2018 1st International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/iowtc2018-1045.

Full text
Abstract:
In this research, the estimation of the fatigue life of a semi-submersible floating offshore wind platform is considered. In order to accurately estimate the fatigue life of a platform, coupled aerodynamic-hydrodynamic simulations are performed to obtain dynamic stress values. The simulations are performed at a multitude of representative environmental states, or “bins,” which can mimic the conditions the structure may endure at a given site, per ABS Floating Offshore Wind Turbine Installation guidelines. To accurately represent the variety of wind and wave conditions, the number of environmental states can be of the order of 103. Unlike other offshore structures, both the wind and wave conditions must be accounted for, which are generally considered independent parameters, drastically increasing the number of states. The stress timeseries from these simulations can be used to estimate the damage at a particular location on the structure by using commonly accepted methods, such as the rainflow counting algorithm. The damage due to either the winds or the waves can be estimated by using a frequency decomposition of the stress timeseries. In this paper, a similar decoupled approach is used to attempt to recover the damages induced from these coupled simulations. Although it is well-known that a coupled, aero-hydro analysis is necessary in order to accurately simulate the nonlinear rigid-body motions of the platform, it is less clear if the same statement could be made about the fatigue properties of the platform. In one approach, the fatigue damage equivalent load is calculated independently from both scatter diagrams of the waves and a rose diagram of the wind. De-coupled simulations are performed to estimate the response at an all-encompassing range of environmental conditions. A database of responses based on these environmental conditions is constructed. The likelihood of occurrence at a case-study site is used to compare the damage equivalent from the coupled simulations. The OC5 platform in the Borssele wind farm zone is used as a case-study and the damage equivalent load from the de-coupled methods are compared to those from the coupled analysis in order to assess these methodologies.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Geliang, Zhiqiang Hu, and Fei Duan. "Preliminary Analysis About Coupled Response of Offshore Floating Wind Turbine System in Time Domain." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41369.

Full text
Abstract:
This paper presents a preliminary analysis of Offshore Floating Wind Turbine system subjected to coupled wind and wave loads in time domain. Floating Wind Turbine system in deep water has the great potential in exploiting renewable wind energy in the near future due to the energy and environmental issues. Distinct structural arrangements determine the complexity of motion behaviors and loading characteristics of OFWTs. The aerodynamic loads play a dominant part in the loading pattern, which is distinguished from traditional floating offshore oil and gas structures. To simulate the response induced by wind and wave, a calculation scheme is proposed containing the coupling between aerodynamics and hydrodynamics. Accordingly, a set of time-domain numerical codes is developed and presented. With the integrated aero and hydro dynamic analysis codes, simulations are conducted to obtain performance of Hywind system. Cases for decay, white noise, wind only and the coexistence of wind and wave are investigated. The results are compared to the test statistics collected from a model test, which was carried out in Deepwater Offshore Basin in Shanghai Jiao Tong University.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography