Journal articles on the topic 'Hydrogel blocks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrogel blocks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wheeldon, Ian R., Joshua W. Gallaway, Scott Calabrese Barton, and Scott Banta. "Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks." Proceedings of the National Academy of Sciences 105, no. 40 (2008): 15275–80. http://dx.doi.org/10.1073/pnas.0805249105.
Full textMurphy, Robert, Shadi Kordbacheh, Dimitrios Skoulas, et al. "Three-dimensionally printable shear-thinning triblock copolypeptide hydrogels with antimicrobial potency." Biomaterials Science 9, no. 15 (2021): 5144–49. http://dx.doi.org/10.1039/d1bm00275a.
Full textSun, Xiaofeng, Guihua Li, Yanji Yin, Yiqiang Zhang, and Hongguang Li. "Carbon quantum dot-based fluorescent vesicles and chiral hydrogels with biosurfactant and biocompatible small molecule." Soft Matter 14, no. 34 (2018): 6983–93. http://dx.doi.org/10.1039/c8sm01155a.
Full textEl-Sherbiny, Ibrahim M., and Hugh D. C. Smyth. "Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol-Assisted Method for Biomedical and Drug Delivery Applications." Journal of Nanomaterials 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/910539.
Full textZaage, Franziska, Michael Dau, Cornelia Ganz, Bernhard Frerich, and Thomas Gerber. "Elastic Blocks: Hydrogel-Embedded Granules as Bone Grafting Substitutes." Key Engineering Materials 631 (November 2014): 414–19. http://dx.doi.org/10.4028/www.scientific.net/kem.631.414.
Full textKim, Hee-Jin, Sungwoo Cho, Seung Joo Oh, Sung Gyu Shin, Hee Wook Ryu, and Jae Hyun Jeong. "Tuning the Hydrophobicity of a Hydrogel Using Self-Assembled Domains of Polymer Cross-Linkers." Materials 12, no. 10 (2019): 1635. http://dx.doi.org/10.3390/ma12101635.
Full textLuo, Fang, Zhi-Gang Qian, and Xiao-Xia Xia. "Responsive Protein Hydrogels Assembled from Spider Silk Carboxyl-Terminal Domain and Resilin Copolymers." Polymers 10, no. 8 (2018): 915. http://dx.doi.org/10.3390/polym10080915.
Full textElkhoury, Kamil, Laura Sanchez-Gonzalez, Pedro Lavrador, et al. "Gelatin Methacryloyl (GelMA) Nanocomposite Hydrogels Embedding Bioactive Naringin Liposomes." Polymers 12, no. 12 (2020): 2944. http://dx.doi.org/10.3390/polym12122944.
Full textZhu, Congcong, and Christopher J. Bettinger. "Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths." J. Mater. Chem. B 2, no. 12 (2014): 1613–18. http://dx.doi.org/10.1039/c3tb21689f.
Full textLiu, Yin, Hongwu Zhang, Jianhua Wang, and Yonggang Zheng. "Anisotropic Swelling in Fiber-Reinforced Hydrogels: An Incremental Finite Element Method and Its Applications in Design of Bilayer Structures." International Journal of Applied Mechanics 08, no. 07 (2016): 1640003. http://dx.doi.org/10.1142/s1758825116400032.
Full textJia, Fei, Jake Song, Joshua M. Kubiak, et al. "Brush Polymers as Nanoscale Building Blocks for Hydrogel Synthesis." Chemistry of Materials 33, no. 14 (2021): 5748–56. http://dx.doi.org/10.1021/acs.chemmater.1c01585.
Full textXu, Zhenyu, Yongsen Zhou, Baoping Zhang, Chao Zhang, Jianfeng Wang, and Zuankai Wang. "Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application." Micromachines 12, no. 6 (2021): 608. http://dx.doi.org/10.3390/mi12060608.
Full textXin, Shangjing, David Chimene, Jay E. Garza, Akhilesh K. Gaharwar, and Daniel L. Alge. "Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting." Biomaterials Science 7, no. 3 (2019): 1179–87. http://dx.doi.org/10.1039/c8bm01286e.
Full textChiang, Min-Yu, Yao-Wen Hsu, Hsin-Yi Hsieh, San-Yuan Chen, and Shih-Kang Fan. "Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels." Science Advances 2, no. 10 (2016): e1600964. http://dx.doi.org/10.1126/sciadv.1600964.
Full textLee, Tae Hee, Young Jun Kim, Woo Sun Rou, and Hyuk Soo Eun. "Fabrication of Formalin-Fixed, Paraffin-Embedded (FFPE) Circulating Tumor Cell (CTC) Block Using a Hydrogel Core-Mediated Method." Micromachines 12, no. 9 (2021): 1128. http://dx.doi.org/10.3390/mi12091128.
Full textLiu, Kwei-Yu, Daniel G. Abebe, Elizabeth Rachel Wiley, and Tomoko Fujiwara. "Characterization and Optimization of PLA Stereocomplexed Hydrogels for Local Gene Delivery Systems." Polymers 11, no. 5 (2019): 796. http://dx.doi.org/10.3390/polym11050796.
Full textZhang, Weiwei, Guoyou Huang, Kelvin Ng, et al. "Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture." Biomaterials Science 6, no. 4 (2018): 885–92. http://dx.doi.org/10.1039/c7bm01186e.
Full textYuasa, Hirohiko, Kouichi Asakura, and Taisuke Banno. "Sequential dynamic structuralisation by in situ production of supramolecular building blocks." Chemical Communications 53, no. 61 (2017): 8553–56. http://dx.doi.org/10.1039/c7cc04301e.
Full textYao, Chen, Zhuang Liu, Chao Yang, et al. "Smart Hydrogels with Inhomogeneous Structures Assembled Using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks." ACS Applied Materials & Interfaces 8, no. 33 (2016): 21721–30. http://dx.doi.org/10.1021/acsami.6b07713.
Full textMakarenkov, D. A., E. M. Fedorova, V. A. Buchryakova, S. L. Lobastov, V. I. Nazarov, and V. S. Boldyrev. "Investigating the Process of Producing Composite Hydrogel Particle Slurry." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (91) (August 2020): 123–37. http://dx.doi.org/10.18698/1812-3368-2020-4-123-137.
Full textValentin, Thomas M., Eric M. DuBois, Catherine E. Machnicki, Dhananjay Bhaskar, Francis R. Cui, and Ian Y. Wong. "3D printed self-adhesive PEGDA–PAA hydrogels as modular components for soft actuators and microfluidics." Polymer Chemistry 10, no. 16 (2019): 2015–28. http://dx.doi.org/10.1039/c9py00211a.
Full textAvila-Salas, Fabián, Yeray Rodriguez Nuñez, Adolfo Marican, et al. "Rational Development of a Novel Hydrogel as a pH-Sensitive Controlled Release System for Nifedipine." Polymers 10, no. 7 (2018): 806. http://dx.doi.org/10.3390/polym10070806.
Full textMiramond, Thomas, E. Aguado, E. Goyenvalle, Pascal Borget, Serge Baroth, and G. Daculsi. "In Vivo Comparative Study of Two Injectable/Moldable Calcium Phosphate Bioceramics." Key Engineering Materials 529-530 (November 2012): 291–95. http://dx.doi.org/10.4028/www.scientific.net/kem.529-530.291.
Full textLyu, Shanshan, Jing Fang, Tianyu Duan, Linglan Fu, Junqiu Liu, and Hongbin Li. "Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa." Chemical Communications 53, no. 100 (2017): 13375–78. http://dx.doi.org/10.1039/c7cc06991j.
Full textKascholke, Christian, Tina Loth, Caroline Kohn-Polster, et al. "Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks." Biomacromolecules 18, no. 3 (2017): 683–94. http://dx.doi.org/10.1021/acs.biomac.6b01355.
Full textDing, Hongyao, Xiaoxu Liang, Si Yu Zheng, Qiao Wang, Zongjin Li, and Guoxing Sun. "Actuators assembled from hydrogel blocks of various shapes via condensation reactions." Materials Chemistry and Physics 253 (October 2020): 123332. http://dx.doi.org/10.1016/j.matchemphys.2020.123332.
Full textda Silva, Marcelo A., Samuel Lenton, Matthew Hughes, David J. Brockwell, and Lorna Dougan. "Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks." Biomacromolecules 18, no. 2 (2017): 636–46. http://dx.doi.org/10.1021/acs.biomac.6b01877.
Full textLiang, Yongzhi, Jinqiao Xue, Binyang Du, and Jingjing Nie. "Ultrastiff, Tough, and Healable Ionic–Hydrogen Bond Cross-Linked Hydrogels and Their Uses as Building Blocks To Construct Complex Hydrogel Structures." ACS Applied Materials & Interfaces 11, no. 5 (2019): 5441–54. http://dx.doi.org/10.1021/acsami.8b20520.
Full textSher, Praveen, Clara R. Correia, Rui R. Costa, and João F. Mano. "Compartmentalized bioencapsulated liquefied 3D macro-construct by perfusion-based layer-by-layer technique." RSC Advances 5, no. 4 (2015): 2511–16. http://dx.doi.org/10.1039/c4ra11674g.
Full textMelo, Raphael AC, Marçal HA Jorge, Adriel Bortolin, Leonardo S. Boiteux, Caue R. Oliveira, and José M. Marconcini. "Growth of tomato seedlings in substrates containing a nanocomposite hydrogel with calcium montmorillonite (NC-MMt)." Horticultura Brasileira 37, no. 2 (2019): 199–203. http://dx.doi.org/10.1590/s0102-053620190210.
Full textJuriga, Dávid, Evelin Sipos, Orsolya Hegedűs, et al. "Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery." Beilstein Journal of Nanotechnology 10 (December 27, 2019): 2579–93. http://dx.doi.org/10.3762/bjnano.10.249.
Full textLiu, Chen, Jialun Han, Yuxuan Pei, and Jie Du. "Aptamer Functionalized DNA Hydrogel for Wise-Stage Controlled Protein Release." Applied Sciences 8, no. 10 (2018): 1941. http://dx.doi.org/10.3390/app8101941.
Full textXu, Chunyu, and Jindřich Kopeček. "Genetically Engineered Block Copolymers: Influence of the Length and Structure of the Coiled-Coil Blocks on Hydrogel Self-Assembly." Pharmaceutical Research 25, no. 3 (2007): 674–82. http://dx.doi.org/10.1007/s11095-007-9343-z.
Full textXing, Zhongyang, Alessio Caciagli, Tianyang Cao, et al. "Microrheology of DNA hydrogels." Proceedings of the National Academy of Sciences 115, no. 32 (2018): 8137–42. http://dx.doi.org/10.1073/pnas.1722206115.
Full textAmorim, Carolina, Sérgio R. S. Veloso, Elisabete M. S. Castanheira, et al. "Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems." Gels 7, no. 2 (2021): 52. http://dx.doi.org/10.3390/gels7020052.
Full textPhan, Thi Ha My, Ching-Chia Huang, Yi-Jen Tsai, Jin-Jia Hu, and Jeng-Shiung Jan. "Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly(L-lysine)-Based Amphiphilic Copolypeptides." Gels 7, no. 3 (2021): 131. http://dx.doi.org/10.3390/gels7030131.
Full textLyu, Yaqi, and Helena S. Azevedo. "Supramolecular Hydrogels for Protein Delivery in Tissue Engineering." Molecules 26, no. 4 (2021): 873. http://dx.doi.org/10.3390/molecules26040873.
Full textBalion, Zbigniev, Vytautas Cėpla, Nataša Svirskiene, et al. "Cerebellar Cells Self-Assemble into Functional Organoids on Synthetic, Chemically Crosslinked ECM-Mimicking Peptide Hydrogels." Biomolecules 10, no. 5 (2020): 754. http://dx.doi.org/10.3390/biom10050754.
Full textAeridou, Eleni, David Díaz Díaz, Carlos Alemán, and Maria M. Pérez-Madrigal. "Advanced Functional Hydrogel Biomaterials Based on Dynamic B–O Bonds and Polysaccharide Building Blocks." Biomacromolecules 21, no. 10 (2020): 3984–96. http://dx.doi.org/10.1021/acs.biomac.0c01139.
Full textHanauer, Nicolas, Pierre Luc Latreille, and Xavier Banquy. "Mechanistic Insights into the Directed Assembly of Hydrogel Blocks Mediated by Polyelectrolytes or Microgels." Langmuir 33, no. 15 (2017): 3864–70. http://dx.doi.org/10.1021/acs.langmuir.7b00924.
Full textBilliet, Thomas, Bjorn Van Gasse, Elien Gevaert, Maria Cornelissen, José C. Martins, and Peter Dubruel. "Quantitative Contrasts in the Photopolymerization of Acrylamide and Methacrylamide-Functionalized Gelatin Hydrogel Building Blocks." Macromolecular Bioscience 13, no. 11 (2013): 1531–45. http://dx.doi.org/10.1002/mabi.201300143.
Full textSoares, Antonio Gabriel Ataide, Ruthanna Isabelle De Oliveira, Thaynara Mota Venança, et al. "Water-retaining polymers on the early growth and quality of bushy cashew (Anacardium humile A. St. Hill) seedlings." Comunicata Scientiae 11 (May 13, 2020): e3277. http://dx.doi.org/10.14295/cs.v11i0.3277.
Full textScremin, Osmar B., José A. G. da Silva, Ângela T. W. de Mamann, Rubia D. Mantai, Ana P. Brezolin, and Anderson Marolli. "Nitrogen efficiency in oat yield through the biopolymer hydrogel." Revista Brasileira de Engenharia Agrícola e Ambiental 21, no. 6 (2017): 379–85. http://dx.doi.org/10.1590/1807-1929/agriambi.v21n6p379-385.
Full textIshikawa, Rina, Ryota Nagasaki, Naohiko Kawamura, et al. "Characterization and Application of Bioactive Glass and Chitosan Nanoparticles for Tooth Enamel Remineralization." Journal of Biomaterials and Tissue Engineering 11, no. 7 (2021): 1236–43. http://dx.doi.org/10.1166/jbt.2021.2703.
Full textYin, Jie, David J. Wood, Stephen J. Russell, and Giuseppe Tronci. "Hierarchically Assembled Type I Collagen Fibres as Biomimetic Building Blocks of Biomedical Membranes." Membranes 11, no. 8 (2021): 620. http://dx.doi.org/10.3390/membranes11080620.
Full textFroimowicz, Pablo, Daniel Klinger, and Katharina Landfester. "Photoreactive Nanoparticles as Nanometric Building Blocks for the Generation of Self-Healing Hydrogel Thin Films." Chemistry - A European Journal 17, no. 44 (2011): 12465–75. http://dx.doi.org/10.1002/chem.201100685.
Full textCarlomagno, Tiziano, Maria C. Cringoli, Slavko Kralj, et al. "Biocatalysis of d,l-Peptide Nanofibrillar Hydrogel." Molecules 25, no. 13 (2020): 2995. http://dx.doi.org/10.3390/molecules25132995.
Full textCavalcante, Adailza G., Lourival F. Cavalcante, Alian C. P. Cavalcante, Antônio G. de L. Souto, Carlos E. M. dos Santos, and Danila L. de Araújo. "Variation of Thermal Time, Phyllochron and Plastochron in Passion Fruit Plants With Irrigation Depth and Hydrogel." Journal of Agricultural Science 10, no. 5 (2018): 229. http://dx.doi.org/10.5539/jas.v10n5p229.
Full textMay, Patrick, Soraya Laghmari, and Mathias Ulbricht. "Concentration Polarization Enabled Reactive Coating of Nanofiltration Membranes with Zwitterionic Hydrogel." Membranes 11, no. 3 (2021): 187. http://dx.doi.org/10.3390/membranes11030187.
Full textLübtow, Mrlik, Hahn, et al. "Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel." Journal of Functional Biomaterials 10, no. 3 (2019): 36. http://dx.doi.org/10.3390/jfb10030036.
Full text