Academic literature on the topic 'Hydrogele'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogele.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrogele"

1

Bigall, Nadja C, Anne-Kristin Herrmann, Maria Vogel, Marcus Rose, Paul Simon, Wilder Carrillo-Cabrera, Dirk Dorfs, Stefan Kaskel, Nikolai Gaponik, and Alexander Eychmüller. "Hydrogele und Aerogele aus Edelmetallnanopartikeln." Angewandte Chemie 121, no. 51 (November 13, 2009): 9911–15. http://dx.doi.org/10.1002/ange.200902543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nöll, Tanja, Sabine Wenderhold-Reeb, Holger Schönherr, and Gilbert Nöll. "DNA-Hydrogele aus Plasmid-DNA." Angewandte Chemie 129, no. 39 (August 17, 2017): 12167–71. http://dx.doi.org/10.1002/ange.201705001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sano, Koki, Yasuhiro Ishida, and Takuzo Aida. "Anisotrope Hydrogele - Synthese und Anwendungen." Angewandte Chemie 130, no. 10 (January 10, 2018): 2558–70. http://dx.doi.org/10.1002/ange.201708196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vigier-Carrière, Cécile, Fouzia Boulmedais, Pierre Schaaf, and Loïc Jierry. "Oberflächenunterstützte Selbstorganisationsstrategien für supramolekulare Hydrogele." Angewandte Chemie 130, no. 6 (January 4, 2018): 1462–71. http://dx.doi.org/10.1002/ange.201708629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thiel, J., G. Maurer, and J. M. Prausnitz. "Hydrogele - Thermodynamische Eigenschaften und Einsatzmöglichkeiten." Chemie Ingenieur Technik 67, no. 9 (September 1995): 1121. http://dx.doi.org/10.1002/cite.330670957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thiel, Joachim, Gerd Maurer, and John M. Prausnitz. "Hydrogele: Verwendungsmöglichkeiten und thermodynamische Eigenschaften." Chemie Ingenieur Technik 67, no. 12 (December 1995): 1567–83. http://dx.doi.org/10.1002/cite.330671203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stannek, M., and H. J. Bart. "Adsorptionsverhalten in imprägnierte PVA/PAA-Hydrogele." Chemie Ingenieur Technik 81, no. 8 (August 2009): 1084. http://dx.doi.org/10.1002/cite.200950593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jain, Mehak, and Bart Jan Ravoo. "Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele." Angewandte Chemie 133, no. 38 (August 11, 2021): 21231–38. http://dx.doi.org/10.1002/ange.202107917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schwarze-Benning, K., A. Nellesen, H. Wack, G. Deerberg, J. Antes, and S. Löbbecke. "Smarte Hydrogele für die reversible Immobilisierung von Enzymen." Chemie Ingenieur Technik 80, no. 9 (September 2008): 1395. http://dx.doi.org/10.1002/cite.200750701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wack, H., and M. Ulbricht. "Polymere Hydrogele in der Abdichtungstechnik – Untersuchungen zum Quellungsdruck." Chemie Ingenieur Technik 79, no. 1-2 (February 2007): 147–52. http://dx.doi.org/10.1002/cite.200600080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hydrogele"

1

Gramm, Stefan. "Thermisch schaltbare Hydrogele - Synthese - Charakterisierung - Anwendung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1163522282581-78351.

Full text
Abstract:
Gegenstand dieser Arbeit war die Synthese von thermisch schaltbaren Kammcopolymeren auf Basis von N-(Isopropylacrylamid) (NiPAAm) und Polyethylenglykolmakromonomeren (PEGMA). Die intensive Charakterisierung der aus diesen Copolymeren hergestellten Schichten und deren Anwendung als Zellkultursubstrate war ein weiteres Forschungsziel dieser Arbeit. Die mit Hilfe der neuartigen Schichten erhaltenen Zellkultursubstrate wurden anhand verschiedener adhärenter Zelllinien erfolgreich getestet. Alle getesten Zelltypen (Mausfibroblasten, humane Endothelzellen der Nabelschnurvene und humane korneale Endothelzellen) proliferierten auf den angebotenen Zellkultursubstraten bei 37°C und konnten durch senken der Temperatur geerntet werden.
APA, Harvard, Vancouver, ISO, and other styles
2

Rohn, Mathias. "Strukturcharakterisierung photochemisch vernetzter tetra-PEG Hydrogele mit unterschiedlichem Aufbau." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229602.

Full text
Abstract:
Die Funktionalisierung von tetra-PEG Makromolekülen mit fotoreaktiven Gruppen und die anschließende Umsetzung zu Hydrogelen durch fotochemische Vernetzung werden beschrieben. Die Funktionalisierung der Makromoleküle wird mittels UV-Vis- und NMR-Spektroskopie nachgewiesen, während der Verlauf der Vernetzung über die dynamische Lichtstreuung und IR-Spektroskopie betrachtet wird. Die hergestellten Hydrogele werden hinsichtlich des Sol-Anteils und der Quelleigenschaften untersucht. Über den Umsatz wird die Konzentration der Netzketten theoretisch berechnet. Einen weiteren Schwerpunkt bildet die Charakterisierung der Hydrogele hinsichtlich der mechanischen Eigenschaften. Über den Speichermodul wird die Konzentration der Netzketten experimentell bestimmt. Mittels dynamischer Lichtstreuung werden die kooperativen Diffusionskoeffizienten und Maschenweiten der Hydrogele bestimmt.
APA, Harvard, Vancouver, ISO, and other styles
3

Schädel, Nicole [Verfasser]. "Synthese modularer Vernetzer für maßgeschneiderte Hydrogele / Nicole Schädel." München : Verlag Dr. Hut, 2019. http://d-nb.info/1196415676/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fänger, Christian. "Schaltbare polymere Hydrogele für die reversible Immobilisierung von Enzymen." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=980461995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mateescu, Markus [Verfasser]. "Pyridin-basierte Acryl-Vernetzer für bioinspirierte Hydrogele / Markus Mateescu." München : Verlag Dr. Hut, 2014. http://d-nb.info/105237560X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pfeifer, Christoph [Verfasser], and M. [Akademischer Betreuer] Wilhelm. "Separation Media Based on Defined Hydrogel Systems = Hydrogele als Separationsmedien auf Basis definierter Porengrößen / Christoph Pfeifer ; Betreuer: M. Wilhelm." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1216949476/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leiendecker, Mai-Thi [Verfasser], and Alexander [Akademischer Betreuer] Böker. "Physikalische Hydrogele auf Polyurethan-Basis / Mai-Thi Leiendecker ; Betreuer: Alexander Böker." Potsdam : Universität Potsdam, 2017. http://d-nb.info/1218401745/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baumann, Bernhard Harry [Verfasser]. "Synthese und Charakterisierung hybrider Hydrogele für die Geweberekonstruktion / Bernhard Harry Baumann." Ulm : Universität Ulm, 2018. http://d-nb.info/1166757315/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen-Kim, Mai Thi [Verfasser], and Alexander [Akademischer Betreuer] Böker. "Physikalische Hydrogele auf Polyurethan-Basis / Mai-Thi Leiendecker ; Betreuer: Alexander Böker." Potsdam : Universität Potsdam, 2017. http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wenz, Annika [Verfasser], and Günter [Akademischer Betreuer] Tovar. "Mikroextrudierbare Hydrogele für den Aufbau vaskularisierter Knochengewebeäquivalente / Annika Wenz ; Betreuer: Günter Tovar." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2018. http://d-nb.info/1163604062/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hydrogele"

1

Thakur, Vijay Kumar, and Manju Kumari Thakur, eds. Hydrogels. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6077-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barbucci, Rolando. Hydrogels. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Thakur Raghu Raj. Hydrogels. Boca Raton, FL: CRC Press/Taylor & Francis Group, [2017]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315152226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rimmer, Steve. Biomedical hydrogels: Biochemistry, manufacture and medical applications. Oxford: Woodhead, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sadowski, Gabriele, and Walter Richtering, eds. Intelligent Hydrogels. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01683-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jose, Jiya, Sabu Thomas, and Vijay Kumar Thakur, eds. Nano Hydrogels. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7138-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lavrentieva, Antonina, Iliyana Pepelanova, and Dror Seliktar, eds. Tunable Hydrogels. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76769-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Hua. Smart hydrogel modelling. Heidelberg: New York, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Hua. Smart Hydrogel Modelling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02368-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Corkhill, Philip Harold. Novel hydrogel polymers. Birmingham: Aston University. Department of Chemical Engineering and AppliedChemistry, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Hydrogele"

1

Bährle-Rapp, Marina. "Hydrogele." In Springer Lexikon Kosmetik und Körperpflege, 263. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dörfler, Hans-Dieter. "Hydrogele und Aerogele." In Grenzflächen und kolloid-disperse Systeme, 603–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-15326-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lauth, Günter Jakob, and Jürgen Kowalczyk. "Gele: Hydrogele und Aerogele." In Einführung in die Physik und Chemie der Grenzflächen und Kolloide, 429–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47018-3_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zavan, Barbara, Roberta Cortivo, and Giovanni Abatangelo. "Hydrogels and Tissue Engineering." In Hydrogels, 1–8. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dash, Mamoni, Anna Maria Piras, and Federica Chiellini. "Chitosan-Based Beads for Controlled Release of Proteins." In Hydrogels, 111–20. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arndt, Karl-Friedrich, Andreas Richter, and Ingolf Mönch. "Synthesis of Stimuli-Sensitive Hydrogels in the μm and sub-μm Range by Radiation Techniques and their Application." In Hydrogels, 121–40. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huynh, Dai Phu, Chaoliang He, and Doo Sung Lee. "Novel pH/Temperature-Sensitive Hydrogels Based on Poly(β-Amino Ester) for Controlled Protein Delivery." In Hydrogels, 157–77. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Akiyama, Yoshikatsu, and Teruo Okano. "On-Off Switching Properties of ultra thin Intelligent Temperature-Responsive Polymer Modified Surface." In Hydrogels, 179–97. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Borzacchiello, Assunta, and Luigi Ambrosio. "Structure-Property Relationships in Hydrogels." In Hydrogels, 9–20. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pollack, Gerald H. "Water and Surfaces: a Linkage Unexpectedly Profound." In Hydrogels, 21–24. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrogele"

1

Franke, D., and G. Gerlach. "4.6 - Poröse Poly-N-Isopropylacrylamid-Hydrogele für piezoresistive Sensoren mit schnellem Ansprechverhalten." In 14. Dresdner Sensor-Symposium 2019. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2019. http://dx.doi.org/10.5162/14dss2019/4.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Posseckardt, J., M. Mertig, R. Zimmermann, and C. Werner. "F11 - Detektion der Bindung von Biomolekülen an Biohybrid- Hydrogele mittels SPR und elektrokinetischen Messungen." In 11. Dresdner Sensor-Symposium 2013. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2013. http://dx.doi.org/10.5162/11dss2013/f11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wallmersperger, Thomas, and Gabriele Sadowski. "Hydrogel research in Germany: the priority programme, Intelligent Hydrogels." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Yoseph Bar-Cohen and Thomas Wallmersperger. SPIE, 2009. http://dx.doi.org/10.1117/12.815430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vicente, Adam, Zachary McCreery, and Karen Chang Yan. "Printability of Hydrogels for Hydrogel Molding Based Microfluidic Device Fabrication." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11545.

Full text
Abstract:
Abstract Microfabrication-free methods have been developed in recent years for fabricating microfluidic devices to enable the applications of microfluidic devices to a broader range. Our group has been working on developing a process for fabricating electrospun fiber embedded microfluidic devices by integrating hydrogel molding (HGM) and electrospinning (ES), and the feasibility of this integrated method has been demonstrated through our initial study. Recently, we have modified an extrusion based 3D printer kit to deposit hydrogels and form microchannels. Agarose has been used for our previous studies owning to its temperature dependent gelation. In this study, we examined the feasibility of using gelatin gel as an alternative material for hydrogel molding. Gel materials with various concentrations were examined via printability assessments; and optimal gel materials were identified. Upon completion of pattern printing, the samples were then encapsulated in polydimethylsiloxane (PDMS) and cured; formed microchannels were then characterized via micrographic image analysis. The results show that three gels, 2% w/v agarose gel, 7.5% w/v gelatin gel, and a mixture of 2% w/v agarose gel and 7.5% w/v gelatin gel (1:1 ratio), yield consistent printed patterns and form consistent microchannels subsequently.
APA, Harvard, Vancouver, ISO, and other styles
5

Mehner, Philipp J., Sebastian Haefner, Markus Franke, Andreas Voigt, Uwe Marschner, and Andreas Richter. "Finite Element Model of a Hydrogel-Based Micro-Valve." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9181.

Full text
Abstract:
Micro-valves play an important role in controlling and operating microfluidic systems. Utilizing stimuli-sensitive hydrogels facilitates the construction of smart micro-valves controlled by temperature, concentration (salt, organic solvent) or pH level. We propose a finite element model which uses the thermal domain as an auxiliary domain for the volume change response of hydrogels. Behaviors like local displacements within the hydrogel are difficult to measure, but can be reproduced with finite elements. For the application of the micro-valve, the hydrogel model is connected to the fluid domain. The hydrogel is placed directly into the fluid flow and opens or closes the flow path. For this, a full iterative cycle with material properties and remeshing in each simulation step is implemented in ANSYS®. This model concept and the results will help to better understand, predict and visualize the behavior of hydrogels and support the development of highly integrated hydrogel-based microfluidic circuits.
APA, Harvard, Vancouver, ISO, and other styles
6

Erikson, Isaac E., Cindy Chung, Jason A. Burdick, and Robert L. Mauck. "Hyaluronic Acid Macromer Concentration Influences Functional MSC Chondrogenesis in Photocrosslinked MSC-Laden Hydrogels." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193096.

Full text
Abstract:
Intrinsic repair of articular cartilage is poor, and so numerous tissue engineering strategies have been developed for producing functional cartilage replacements. Photopolymerizable methacrylated hyaluronic acid (MeHA) hydrogels have been developed as a potential hydrogel that possesses the distinct advantage of being biologically relevant as well as easily modified to generate a range of hydrogel properties [1]. To date, optimization of this hydrogel has been carried out by adjusting macromer molecular weight, concentration, and extent of methacrylation. Recent studies using MeHA hydrogels with auricular chondrocytes have shown that adjustments in these parameters can have significant impact on cell viability and construct maturation. [1, 2].
APA, Harvard, Vancouver, ISO, and other styles
7

Voigt, Andreas, Uwe Marschner, and Andreas Richter. "Multiphysics Equivalent Circuit of a Thermally Controlled Hydrogel-Micro Valve." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8996.

Full text
Abstract:
Hydrogels consist of a network of cross-linked polymers that swell when put into water. For temperature-sensitive smart hydrogels the equilibrium hydrogel size depends on the temperature of the liquid. These hydrogels are used to build temperature-controlled fluidic valves. Here we present an equivalent circuit model of such a hydrogel valve. The transient behavior is based on the model by Tanaka with three additional assumptions: 1. Only the fundamental mode of the deformation field, i.e. the slowest-decaying exponential temporal behavior, is relevant. 2. There are distinct equilibrium sizes for the swollen and the de-swollen state. 3. As observed in experiment, the swollen gel and the de-swollen gel have different elastic moduli, which affect the time constants of swelling vs. de-swelling. The resulting network model includes three physical subsystems: the thermal subsystem, the polymeric subsystem and the fluidic subsystem. The thermal subsystem considers the temperature of the heater, of the adhesive and of the hydrogel. It is assumed that adhesive, housing and hydrogel act as heat capacities in combination with heat resistors. The modeled polymeric subsystem causes in addition time delays for swelling and de-swelling of first order with different delay constants. The fluidic subsystem basically includes the fluidic channel between hydrogel and housing with time varying cross section, which is modeled as controlled source. All subsystems are described and coupled within one single circuit. Thus the transient behavior of the hydrogel can be calculated using a circuit simulator. Simulation results for an assumed hydrogel setup are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Saeednia, L., A. Usta, and R. Asmatulu. "Preparation and Characterization of Drug-Loaded Thermosensitive Hydrogels." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66489.

Full text
Abstract:
Hydrogels are the promising classes of polymeric drug delivery systems with the controlled release rates. Among them, injectable thermosensitive hydrogels with transition temperature around the body temperature have been wildly considered. Chitosan is one of the most abundant natural polymers, and its biocompatibility and biodegradability makes it a favorable thermosensitive hydrogel that has been attracted much attention in biomedical field worldwide. In this work, a thermosensitive and injectable hydrogel was prepared using chitosan and β-glycerophosphate (β-GP) incorporated with an antibacterial drug (gentamycin). This drug loaded hydrogel is liquid at room temperature, and becomes more solidified gel when heated to the body temperature. Adding β-GP into chitosan and drug molecules and heating the overall solution makes the whole homogenous liquid into gel through a 3D network formation. The gelation time was found to be a function of temperature and concentration of β-GP. This thermosensitive chitosan based hydrogel system was characterized using FTIR and visual observation to determine the chemical structure and morphology. The results confirmed that chitosan/(β-GP) hydrogels could be a promising controlled-release drug delivery system for many deadly diseases.
APA, Harvard, Vancouver, ISO, and other styles
9

Trehan, Kartik, Christopher Yu, Sasha Bakhru, and Hai-Quan Mao. "Novel Hydrogel Microfibers for Tissue Engineering." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38066.

Full text
Abstract:
Cell encapsulation in hydrogels or microcapsules is one of the approaches for providing a biomimetic microenvironment to support cell survival, proliferation and functions. Microcapsules in particular have been used to improve the mass transport properties and ease of delivery through injection. More importantly, the microenvironment in hydrogels or hydrogel microcapsules can be tailored by incorporation of relevant adhesion molecules and growth factors through chemical conjugation and physical encapsulation. These functionalized hydrogels have been shown to effectively influence cell adhesion, proliferation and differentiation. In this study, we describe the preparation and characterization of a novel hydrogel fiber by polyelectrolyte complexation. This unique fiber geometry can be useful for regeneration of cylindrical tissues and for coculture of two different cell types inside and outside the fiber membrane.
APA, Harvard, Vancouver, ISO, and other styles
10

Pick, C., M. Boresi, C. Kim, and D. Henthorn. "Photopatternable hydrogel materials for reversible optical hydrogen peroxide and glucose sensors." In SPIE Defense, Security, and Sensing, edited by Brian M. Cullum and D. Marshall Porterfield. SPIE, 2009. http://dx.doi.org/10.1117/12.818816.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrogele"

1

Kolodziejczyk, Bart. Unsettled Issues Concerning the Use of Green Ammonia Fuel in Ground Vehicles. SAE International, February 2021. http://dx.doi.org/10.4271/epr2021003.

Full text
Abstract:
While hydrogen is emerging as a clean alternative automotive fuel and energy storage medium, there are still numerous challenges to implementation, such as the economy of hydrogen production and deployment, expensive storage materials, energy intensive compression or liquefaction processes, and limited trial applications. Synthetic ammonia production, on the other hand, has been available on an industrial scale for nearly a century. Ammonia is one of the most-traded commodities globally and the second most-produced synthetic chemical after sulfuric acid. As an energy carrier, it enables effective hydrogen storage in chemical form by binding hydrogen atoms to atmospheric nitrogen. While ammonia as a fuel is still in its infancy, its unique properties render it as a potentially viable candidate for decarbonizing the automotive industry. Yet, lack of regulation and standards for automotive applications, technology readiness, and reliance on natural gas for both hydrogen feedstocks to generate the ammonia and facilitate hydrogen and nitrogen conversion into liquid ammonia add extra uncertainty to use scenarios. Unsettled Issues Concerning the Use of Green Ammonia Fuel in Ground Vehicles brings together collected knowledge on current and future prospects for the application of ammonia in ground vehicles, including the technological and regulatory challenges for this new type of clean fuel.
APA, Harvard, Vancouver, ISO, and other styles
2

Skone, Timothy J. Hydrogen Production. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/1509398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ruckman, M. W., H. Wiesmann, M. Strongin, K. Young, and M. Fetcenko. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/770461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Willis, Elisha Cade. Review of calcium carbonate incorporated hydrogels. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1441290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Allcock, Harry R. Water-Soluble Polyphosphazenes and Their Hydrogels. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada279695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gennett, Thomas. Position Paper: Hydrogen Spillover Limitations for Onboard Hydrogen Storage. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1489894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elias Stefanakos, Burton Krakow, and Jonathan Mbah. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants. Office of Scientific and Technical Information (OSTI), July 2007. http://dx.doi.org/10.2172/927111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ohi, J. 2005 DOE Hydrogen Program Review: Hydrogen Codes and Standards. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/15016867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Lisa S., Vipin K. Rastogi, Laura Burton, Pooja R. Rastogi, and Kristina Parman. A Novel Hydrogel-Based Biosampling Approach. Fort Belvoir, VA: Defense Technical Information Center, March 2016. http://dx.doi.org/10.21236/ad1006005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yuzhan, Vera Bocharova, Seung Pyo Jeong, Navin Kumar, Som Shrestha, Kyle Gluesenkamp, and Diana Hun. Fabrication of New PCM Hydrogel Composites. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1779119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography