Journal articles on the topic 'Hydrogele'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrogele.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bigall, Nadja C, Anne-Kristin Herrmann, Maria Vogel, Marcus Rose, Paul Simon, Wilder Carrillo-Cabrera, Dirk Dorfs, Stefan Kaskel, Nikolai Gaponik, and Alexander Eychmüller. "Hydrogele und Aerogele aus Edelmetallnanopartikeln." Angewandte Chemie 121, no. 51 (November 13, 2009): 9911–15. http://dx.doi.org/10.1002/ange.200902543.
Full textNöll, Tanja, Sabine Wenderhold-Reeb, Holger Schönherr, and Gilbert Nöll. "DNA-Hydrogele aus Plasmid-DNA." Angewandte Chemie 129, no. 39 (August 17, 2017): 12167–71. http://dx.doi.org/10.1002/ange.201705001.
Full textSano, Koki, Yasuhiro Ishida, and Takuzo Aida. "Anisotrope Hydrogele - Synthese und Anwendungen." Angewandte Chemie 130, no. 10 (January 10, 2018): 2558–70. http://dx.doi.org/10.1002/ange.201708196.
Full textVigier-Carrière, Cécile, Fouzia Boulmedais, Pierre Schaaf, and Loïc Jierry. "Oberflächenunterstützte Selbstorganisationsstrategien für supramolekulare Hydrogele." Angewandte Chemie 130, no. 6 (January 4, 2018): 1462–71. http://dx.doi.org/10.1002/ange.201708629.
Full textThiel, J., G. Maurer, and J. M. Prausnitz. "Hydrogele - Thermodynamische Eigenschaften und Einsatzmöglichkeiten." Chemie Ingenieur Technik 67, no. 9 (September 1995): 1121. http://dx.doi.org/10.1002/cite.330670957.
Full textThiel, Joachim, Gerd Maurer, and John M. Prausnitz. "Hydrogele: Verwendungsmöglichkeiten und thermodynamische Eigenschaften." Chemie Ingenieur Technik 67, no. 12 (December 1995): 1567–83. http://dx.doi.org/10.1002/cite.330671203.
Full textStannek, M., and H. J. Bart. "Adsorptionsverhalten in imprägnierte PVA/PAA-Hydrogele." Chemie Ingenieur Technik 81, no. 8 (August 2009): 1084. http://dx.doi.org/10.1002/cite.200950593.
Full textJain, Mehak, and Bart Jan Ravoo. "Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele." Angewandte Chemie 133, no. 38 (August 11, 2021): 21231–38. http://dx.doi.org/10.1002/ange.202107917.
Full textSchwarze-Benning, K., A. Nellesen, H. Wack, G. Deerberg, J. Antes, and S. Löbbecke. "Smarte Hydrogele für die reversible Immobilisierung von Enzymen." Chemie Ingenieur Technik 80, no. 9 (September 2008): 1395. http://dx.doi.org/10.1002/cite.200750701.
Full textWack, H., and M. Ulbricht. "Polymere Hydrogele in der Abdichtungstechnik – Untersuchungen zum Quellungsdruck." Chemie Ingenieur Technik 79, no. 1-2 (February 2007): 147–52. http://dx.doi.org/10.1002/cite.200600080.
Full textVázquez‐González, Margarita, and Itamar Willner. "Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen." Angewandte Chemie 132, no. 36 (July 20, 2020): 15458–96. http://dx.doi.org/10.1002/ange.201907670.
Full textBlache, Ulrich, and Martin Ehrbar. "Synthetische Hydrogele als 3D-Matrix für definierte Gewebemodelle." BIOspektrum 26, no. 4 (June 2020): 398–401. http://dx.doi.org/10.1007/s12268-020-1409-z.
Full textFänger, C. F., M. U. Ulbricht, G. D. Deerberg, J. B. Büchs, and M. A. S. Ansorge-Schumacher. "Intelligente Hydrogele: Ein neuer Weg zur reversiblen Immobilisierung von Enzymen." Chemie Ingenieur Technik 76, no. 9 (September 2004): 1254. http://dx.doi.org/10.1002/cite.200490105.
Full textKönig, Myriam, W. Vanscheidt, and Nicole Denig. "Wundauflagen in der Praxis." Phlebologie 28, no. 03 (1999): 100–104. http://dx.doi.org/10.1055/s-0037-1617056.
Full textSun, Shengtong, Li-Bo Mao, Zhouyue Lei, Shu-Hong Yu, and Helmut Cölfen. "Hydrogele aus amorphem Calciumcarbonat und Polyacrylsäure: bioinspirierte Materialien für “Mineral-Kunststoffe”." Angewandte Chemie 128, no. 39 (July 22, 2016): 11939–43. http://dx.doi.org/10.1002/ange.201602849.
Full textKretschmann, Oliver, Soo Whan Choi, Masahiko Miyauchi, Itsuro Tomatsu, Akira Harada, and Helmut Ritter. "Schaltbare Hydrogele durch supramolekulare Vernetzung adamantylhaltiger LCST-Copolymere mit Cyclodextrin-Dimeren." Angewandte Chemie 118, no. 26 (June 26, 2006): 4468–72. http://dx.doi.org/10.1002/ange.200504539.
Full textWack, H., and R. Kümmel. "Zincon-Natriumsalz- und 2,3-Dihydroxybenzoesäure-imprägnierte Hydrogele auf Basis von N-Isopropylacrylamid." Chemie Ingenieur Technik 75, no. 8 (August 25, 2003): 1157–58. http://dx.doi.org/10.1002/cite.200390437.
Full textSingh, Smriti, Fuat Topuz, Kathrin Hahn, Krystyna Albrecht, and Jürgen Groll. "Einbau aktiver Proteine und lebender Zellen in redoxsensitive Hydrogele und Nanogele durch enzymatische Vernetzung." Angewandte Chemie 125, no. 10 (February 5, 2013): 3074–77. http://dx.doi.org/10.1002/ange.201206266.
Full textSun, Shengtong, Li-Bo Mao, Zhouyue Lei, Shu-Hong Yu, and Helmut Cölfen. "Rücktitelbild: Hydrogele aus amorphem Calciumcarbonat und Polyacrylsäure: bioinspirierte Materialien für “Mineral-Kunststoffe” (Angew. Chem. 39/2016)." Angewandte Chemie 128, no. 39 (July 21, 2016): 12290. http://dx.doi.org/10.1002/ange.201606536.
Full textSkopinska-Wisniewska, Joanna, Silvia De la Flor, and Justyna Kozlowska. "From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances." International Journal of Molecular Sciences 22, no. 14 (July 9, 2021): 7402. http://dx.doi.org/10.3390/ijms22147402.
Full textZhang, Rui, Hongwei Peng, Tianxu Zhou, Min Li, Xuhong Guo, and Yuan Yao. "Selective Adsorption and Separation of Organic Dyes by Poly(acrylic acid) Hydrogels Formed with Spherical Polymer Brushes and Chitosan." Australian Journal of Chemistry 71, no. 11 (2018): 846. http://dx.doi.org/10.1071/ch18228.
Full textJiang, Zhiqiang, Ya Li, Yirui Shen, Jian Yang, Zongyong Zhang, Yujing You, Zhongda Lv, and Lihui Yao. "Robust Hydrogel Adhesive with Dual Hydrogen Bond Networks." Molecules 26, no. 9 (May 4, 2021): 2688. http://dx.doi.org/10.3390/molecules26092688.
Full textJiang, Yuchen, Guihua Li, Chenyu Yang, Fangong Kong, and Zaiwu Yuan. "Multiresponsive Cellulose Nanocrystal Cross-Linked Copolymer Hydrogels for the Controlled Release of Dyes and Drugs." Polymers 13, no. 8 (April 9, 2021): 1219. http://dx.doi.org/10.3390/polym13081219.
Full textXing, Wenjin, Amin Jamshidi Ghahfarokhi, Chaoming Xie, Sanaz Naghibi, Jonathan A. Campbell, and Youhong Tang. "Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers." Polymers 13, no. 5 (March 6, 2021): 805. http://dx.doi.org/10.3390/polym13050805.
Full textJiang, Weihui, Peiyao Shen, and Ju Gu. "Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels." Journal of Polymer Engineering 40, no. 1 (December 18, 2019): 67–74. http://dx.doi.org/10.1515/polyeng-2019-0258.
Full textZitouni, Mohammed Amine, and Sofia Borsali Kara Slimane. "Preparation and Characterization of Hydrogels Based on Chitsoan/Polyvinyl Alcohol Blends." Advanced Materials Research 1105 (May 2015): 203–7. http://dx.doi.org/10.4028/www.scientific.net/amr.1105.203.
Full textMaikovych, O. V., I. A. Dron, N. M. Bukartyk, O. Yu Bordeniuk, and N. G. Nosova. "Іnvestigation of gel formation peculiarities and properties of hydrogels obtained by the structuring of acrylamide prepolymers." Chemistry, Technology and Application of Substances 4, no. 1 (June 1, 2021): 179–85. http://dx.doi.org/10.23939/ctas2021.01.179.
Full textJumadilov, Talkybek, Zharylkasyn Abilov, Ruslan Kondaurov, Huangul Himersen, Gaukhar Yeskalieva, Moldir Akylbekova, and Auez Akimov. "Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel." Chemistry & Chemical Technology 9, no. 4 (December 15, 2015): 459–62. http://dx.doi.org/10.23939/chcht09.04.459.
Full textWu, Wen, and Dong Sheng Wang. "Green Synthesis of Semi-IPN Hydrogel-Silver Nanocomposites by a Biotemplate Redox Technique at Room Temperature." Advanced Materials Research 468-471 (February 2012): 1974–77. http://dx.doi.org/10.4028/www.scientific.net/amr.468-471.1974.
Full textYue, Shuai, Hui He, Bin Li, and Tao Hou. "Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review." Nanomaterials 10, no. 8 (July 31, 2020): 1511. http://dx.doi.org/10.3390/nano10081511.
Full textJiang, Ping, Shaowei Chen, Linda Lv, Hongmin Ji, Gen Li, Zhechao Jiang, and Yiqiang Wu. "Effect of 2-(dimethylamino) Ethyl Methacrylate on Nanostructure and Properties of pH and Temperature Sensitive Cellulose-Based Hydrogels." Journal of Nanoscience and Nanotechnology 20, no. 3 (March 1, 2020): 1799–806. http://dx.doi.org/10.1166/jnn.2020.17341.
Full textIresha, Harshani, and Takaomi Kobayashi. "In Situ Viscoelasticity Behavior of Cellulose–Chitin Composite Hydrogels during Ultrasound Irradiation." Gels 7, no. 3 (June 30, 2021): 81. http://dx.doi.org/10.3390/gels7030081.
Full textXu, Bo, Yuwei Liu, Lanlan Wang, Xiaodong Ge, Min Fu, Ping Wang, and Qiang Wang. "High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties." Polymers 10, no. 9 (September 14, 2018): 1025. http://dx.doi.org/10.3390/polym10091025.
Full textWang, Yangyang, and Yansong Wang. "A Composited Povidone-Iodine Silk Fibroin Hydrogel for Wound Infection." Journal of Biomaterials and Tissue Engineering 9, no. 6 (June 1, 2019): 719–30. http://dx.doi.org/10.1166/jbt.2019.2055.
Full textHan, Xiaoman, Guihua Meng, Qian Wang, Lin Cui, Hao Wang, Jianning Wu, Zhiyong Liu, and Xuhong Guo. "Mussel-inspired in situ forming adhesive hydrogels with anti-microbial and hemostatic capacities for wound healing." Journal of Biomaterials Applications 33, no. 7 (November 22, 2018): 915–23. http://dx.doi.org/10.1177/0885328218810552.
Full textOkay, Oguz. "Re-Entrant Conformation Transition in Hydrogels." Gels 7, no. 3 (July 20, 2021): 98. http://dx.doi.org/10.3390/gels7030098.
Full textTemel, Sinan, Elif Yaman, Nurgul Ozbay, and Gokmen Ozge. "Synthesis, characterization and adsorption studies of nano-composite hydrogels and the effect of SiO2 on the capacity for the removal of Methylene Blue dye." Journal of the Serbian Chemical Society 85, no. 7 (2020): 939–52. http://dx.doi.org/10.2298/jsc190517114t.
Full textErikci, Saliha, Patricia Mundinger, and Heike Boehm. "Small Physical Cross-Linker Facilitates Hyaluronan Hydrogels." Molecules 25, no. 18 (September 11, 2020): 4166. http://dx.doi.org/10.3390/molecules25184166.
Full textDuan, Jiufang. "Self-Healing Hydrogels Based on Carboxymethyl Chitosan and Acryloyl-6-aminocaproic Acid." Journal of Polymers 2015 (August 10, 2015): 1–6. http://dx.doi.org/10.1155/2015/719529.
Full textXu, Bo, Yuwei Liu, Jiugang Yuan, Ping Wang, and Qiang Wang. "Synthesis, Characterization, and Antifogging Application of Polymer/Al2O3 Nanocomposite Hydrogels with High Strength and Self-Healing Capacity." Polymers 10, no. 12 (December 8, 2018): 1362. http://dx.doi.org/10.3390/polym10121362.
Full textWen, Jie, Xiaopeng Zhang, Mingwang Pan, Jinfeng Yuan, Zhanyu Jia, and Lei Zhu. "A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking." Polymers 12, no. 1 (January 19, 2020): 239. http://dx.doi.org/10.3390/polym12010239.
Full textDicker, Michael PM, Ian P. Bond, Jonathan M. Rossiter, Charl FJ Faul, and Paul M. Weaver. "Modelling and Analysis of pH Responsive Hydrogels for the Development of Biomimetic Photo-Actuating Structures." MRS Proceedings 1718 (2015): 65–70. http://dx.doi.org/10.1557/opl.2015.20.
Full textJiang, Yuheng, Ying Wang, Qin Li, Chen Yu, and Wanli Chu. "Natural Polymer-based Stimuli-responsive Hydrogels." Current Medicinal Chemistry 27, no. 16 (June 4, 2020): 2631–57. http://dx.doi.org/10.2174/0929867326666191122144916.
Full textFawole, Olutosin, Subhashish Dolai, Hsuan-Yu Leu, Jules Magda, and Massood Tabib-Azar. "Remote Microwave and Field-Effect Sensing Techniques for Monitoring Hydrogel Sensor Response." Micromachines 9, no. 10 (October 17, 2018): 526. http://dx.doi.org/10.3390/mi9100526.
Full textStanzione, Antonella, Alessandro Polini, Velia La Pesa, Alessandro Romano, Angelo Quattrini, Giuseppe Gigli, Lorenzo Moroni, and Francesca Gervaso. "Development of Injectable Thermosensitive Chitosan-Based Hydrogels for Cell Encapsulation." Applied Sciences 10, no. 18 (September 19, 2020): 6550. http://dx.doi.org/10.3390/app10186550.
Full textYi, Chengzhi, Xiaowei Zhang, Huixian Yan, and Bo Jin. "Finite Element Simulation and the Application of Amphoteric pH-sensitive Hydrogel." International Journal of Applied Mechanics 09, no. 05 (July 2017): 1750063. http://dx.doi.org/10.1142/s1758825117500636.
Full textJeon, Dasom, Jinwoo Park, Changhwan Shin, Hyunwoo Kim, Ji-Wook Jang, Dong Woog Lee, and Jungki Ryu. "Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production." Science Advances 6, no. 15 (April 2020): eaaz3944. http://dx.doi.org/10.1126/sciadv.aaz3944.
Full textLuo, Huiyuan, Fuping Dong, Qian Wang, Yihang Li, and Yuzhu Xiong. "Construction of Porous Starch-Based Hydrogel via Regulating the Ratio of Amylopectin/Amylose for Enhanced Water-Retention." Molecules 26, no. 13 (June 30, 2021): 3999. http://dx.doi.org/10.3390/molecules26133999.
Full textTimofejeva, Anna, and Dagnija Loca. "Hydroxyapatite/Polyvinyl Alcohol Composite Hydrogels for Bone and Cartilage Tissue Engineering." Key Engineering Materials 762 (February 2018): 54–58. http://dx.doi.org/10.4028/www.scientific.net/kem.762.54.
Full textEich and Stadler. "Differentiated local therapy of chronic wounds with modern wound dressings." Vasa 28, no. 1 (February 1, 1999): 3–9. http://dx.doi.org/10.1024/0301-1526.28.1.3.
Full text