Academic literature on the topic 'Hydrogen Bond Dimer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogen Bond Dimer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrogen Bond Dimer"
Gorski, Alexandr, Sylwester Gawinkowski, Roman Luboradzki, Marek Tkacz, Randolph P. Thummel, and Jacek Waluk. "Polymorphism, Hydrogen Bond Properties, and Vibrational Structure of 1H-Pyrrolo[3,2-h]Quinoline Dimers." Journal of Atomic, Molecular, and Optical Physics 2012 (July 26, 2012): 1–11. http://dx.doi.org/10.1155/2012/236793.
Full textKerscher, Tobias, Peter Klüfers, and Wolfgang Kügel. "Hydrogen-bond thio acceptors in O-methyl 3,4-dimethylpyrrole-2-thiocarboxylate." Acta Crystallographica Section E Structure Reports Online 63, no. 11 (October 3, 2007): o4217. http://dx.doi.org/10.1107/s1600536807047599.
Full textBegum, M. S., M. B. H. Howlader, M. C. Sheikh, R. Miyatake, and E. Zangrando. "Crystal structure ofS-hexyl (E)-3-(2-hydroxybenzylidene)dithiocarbazate." Acta Crystallographica Section E Crystallographic Communications 72, no. 3 (February 6, 2016): 290–92. http://dx.doi.org/10.1107/s2056989016001857.
Full textKumar, M. Krishna, P. Pandi, S. Sudhahar, G. Chakkaravarthi, and R. Mohan Kumar. "Crystal structure of 4-aminobenzoic acid–4-methylpyridine (1/1)." Acta Crystallographica Section E Crystallographic Communications 71, no. 2 (January 21, 2015): o125—o126. http://dx.doi.org/10.1107/s2056989015000791.
Full textAbosadiya, Hamza M., Siti Aishah Hasbullah, Bohari M. Yamin, and Adibatul H. Fadzil. "1-(4-Chlorobutanoyl)-3-(3-chlorophenyl)thiourea." Acta Crystallographica Section E Structure Reports Online 70, no. 6 (May 17, 2014): o675. http://dx.doi.org/10.1107/s1600536814009295.
Full textKashiwagi, Yukiyasu, Koji Kubono, and Toshiyuki Tamai. "Crystal structure of 7,7′-[(pyridin-2-yl)methylene]bis(5-chloroquinolin-8-ol)." Acta Crystallographica Section E Crystallographic Communications 76, no. 8 (July 14, 2020): 1271–74. http://dx.doi.org/10.1107/s2056989020009317.
Full textLIU, YU-HUI, and PAN-WANG ZHOU. "FACILITATED PHOTOLYSIS OF 9-FLUORENOL IN ALCOHOLS BY EXCITED-STATE HYDROGEN BOND REORGANIZATION." Journal of Theoretical and Computational Chemistry 11, no. 03 (June 2012): 493–504. http://dx.doi.org/10.1142/s0219633612500265.
Full textVolkova, Tatiana G., Iroda Mamirjon kizi Abdukhalimova, and Irina O. Talanova. "Hydrogen bonds in molecular crystals alanine and tyrosine: NBO analysis." Butlerov Communications 64, no. 10 (October 31, 2020): 1–6. http://dx.doi.org/10.37952/roi-jbc-01/20-64-10-1.
Full textWANG, JIAHAI. "A MOLECULAR RECOGNITION MODEL FOR ENANTIOSELECTIVITY AND AUTOINDUCTION IN CYANOHYDRIN FORMATION CATALYZED BY CYCLO[(S)-HIS-(S)-PHE]." Journal of Theoretical and Computational Chemistry 09, no. 02 (April 2010): 495–510. http://dx.doi.org/10.1142/s0219633610005803.
Full textWijaya, Karna, Oliver Moers, Armand Blaschette, and Peter G. Jones. "Polysulfonylamine, XC [1] Carbonsäure-Dimere, Wasser-Dimere und 18-Krone-6-Moleküle als Baugruppen eines supramolekularen Kettenpolymers: Darstellung und Struktur von (CH2CH2O)6 • 4H2O • 2HN(SO2C6H4-4-COOH)2 / Polysulfonylamines, XC [1] Carboxylic Acid Dimers, Water Dimers and 18-Crown-6 Molecules as Building Blocks in a Supramolecular Chain Polymer: Synthesis and Structure of (CH2CH2O)6 · 4H2O · 2HN(SO2C6H4-4-COOH)2." Zeitschrift für Naturforschung B 52, no. 8 (August 1, 1997): 997–1002. http://dx.doi.org/10.1515/znb-1997-0821.
Full textDissertations / Theses on the topic "Hydrogen Bond Dimer"
Mitchell, Erik Gordon. "Gas Phase Structures and Molecular Constants Of a Hydrogen Bonded Dimer and an Inorganic Molecule Determined Using Microwave Spectroscopy." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/217091.
Full textMiró, Richart Paula. "Hydrogen-Abstraction, Energy Transfer and Exciplex Formation in Photoactive Systems Based on Bile Acids." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/64084.
Full text[ES] Los ácidos biliares son una familia de esteroides anfifílicos que juegan un papel clave en diferentes funciones fisiológicas tales como la eliminación del colesterol o la solubilización de lípidos. Su estructura química está constituida por un esqueleto esteroideo con una fusión cis poco común entre los anillos A y B, una cadena lateral corta que termina con una función ácida y un número variable de grupos hidroxilo en la cara alfa. Por tanto, los ácidos biliares ofrecen una estructura versátil que puede ser utilizada para investigar procesos fotofísicos de interés como abstracción de hidrógeno, transferencia de energía y formación de exciplejos a larga distancia o reacciones relacionadas con el daño fotoinducido al ADN. En esta Tesis, en primer lugar, los ácidos biliares naturales se han utilizado para evaluar la abstracción de hidrógeno a carbonilos triplete en compuestos derivados de la benzofenona, demostrándose la deshidrogenación de los ácidos biliares en las posiciones C-3 y/o C-7 por un mecanismo radicalario desde el mencionado triplete de la benzofenona. En segundo lugar, se han preparado derivados de ácido litocólico que incluyen los dadores benzofenona o carbazol y los aceptores naftaleno, bifenilo o timina, que a continuación se han utilizado para investigar los procesos de transferencia de energía y formación de exciplejo intramolecular a larga distancia. De hecho, en los sistemas benzofenona/naftaleno y benzofenona/bifenilo, se demostró por fotólisis de destello láser la transferencia de energía desde benzofenona a naftaleno o bifenilo y la formación de exciplejo a larga distancia. Por último, se han preparado derivados de ácidos bliares que incorporan una unidad de benzofenona y dos de timina en diferentes posiciones del esqueleto para investigar la influencia de los diferentes grados de libertad en la formación fotosensibilizada de oxetanos o dímeros de timina. Gracias a ellos, se ha demostrado la formación fotosensibilizada de dímeros ciclobutánicos pirimidínicos a través de la generación de estados excitados triplete deslocalizados en sistemas en los que la benzofenona es intermolecular, mientras que se observa formación de oxetanos cuando los grados de libertad se ven reducidos.
[CAT] Els àcids biliars són una família d'esteroides anfifílics que juguen un paper clau en funcions fisiològiques com l'eliminació del colesterol o la solubilització de lípids. La seua estructura química està constituïda per un esquelet esteroïdal amb una fusió cis entre els anells A i B poc comuna, una cadena lateral curta que acaba amb una funció àcida i un nombre diferent de grups hidroxil en la cara alfa. D'aquesta manera, els àcids biliars ofereixen una estructura versàtil que pot ser utilitzada per investigar processos fotofísics d'interès com abstracció d'hidrogen, transferència d'energia i formació de exciplexes a llarga distància o reaccions relacionades amb el dany a l'ADN induït per llum. En primer lloc, els àcids biliars naturals s'han utilitzat per avaluar la abstracció d'hidrogen a carbonils triplets derivats de la benzofenona, demostrant-se la deshidrogenació dels àcids biliars en les posicions C-3 i/o C-7 per un mecanisme radicalari des de l'estat excitat de la benzofenona. A més, derivats d'àcid litocòlic que inclouen els donadors benzofenona o carbazol i els acceptors naftalé, bifenil o timina s'han utilitzat per investigar els processos de transferència d'energia i formació de exciplexe a llarga distància. En els sistemes benzofenona /naftalé i benzofenona/bifenil la fotòlisis làser va demostrar la transferència d'energia des de benzofenona a naftalé o bifenil i la formació d'exciplexe a llarga distància. Finalment, per tal d'investigar la formació fotosensibilitzada d'oxetans o dímers de timina, s'han preparat derivats d'àcids bliars que incorporen una unitat de benzofenona i dues de timina amb diferents graus de llibertat. La formació fotosensibilitzada de dímers ciclobutànics pirimidínics mitjançant la generació d'estats excitats triplet deslocalitzats ha estat demostrada en sistemes intermoleculars, mentre que la formació d'oxetans s'observa quan els graus de llibertat es veuen reduïts.
Miró Richart, P. (2016). Hydrogen-Abstraction, Energy Transfer and Exciplex Formation in Photoactive Systems Based on Bile Acids [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64084
TESIS
Nyberg, Borrfors André. "Energy Decomposition Analysis of Neutral and Anionic Hydrogen Bonded Dimers Using a Point-Charge Approach." Thesis, KTH, Tillämpad fysikalisk kemi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288970.
Full textA large set of dimeric hydrogen bonds of the type A – H … B, where AH is an alkyne, alcohol, or thiol and B = [Br–, Cl–, NH3, HCN] are computed and evaluated using Kohn-Sham density functional theory together with the m062x/6-311+g(2df.2p) basis set. These complexes are also evaluated using a point charge (PC) approach (using the same method and basis set), where the atoms of the hydrogen bond acceptor B are substituted for charges that are optimized to reproduce the charge distribution of the molecule, with the purpose of separating and isolating the electrostatics- and polarization energy components of the interaction energies. Using this approach it was discovered that the complexation energy of hydrogen bonds (i.e.the interaction energy with the energy cost of nuclear deformation corrected for), independent on the nature of either monomer AH or B, are largely made up of electrostatics and polarization, while charge transfer, dispersion, and other rest terms only make up a small fraction of the total interaction. The composition of electrostatics and polarization vary depending on the type of monomers in the hydrogen bond, but their sum, the PC interaction energy, correlates linearly (ΔECompl = 0.85ΔEPC ) with R2 = 0.995 over an energy span of 0 < ΔECompl < 50 kcal mol–1. This is made even more remarkable by the inclusion of halogen bonded complexation energies in the same correlation without changing the correlation coefficient significantly, indicating that the two bond types are comprised of the same components even though they are remarkably different in origin.
Devendra, Mani *. "Microwave Spectroscopic and Atoms in Molecules Theoretical Investigations on Weakly Bound Complexes : From Hydrogen Bond to 'Carbon Bond'." Thesis, 2013. http://etd.iisc.ernet.in/2005/3465.
Full text"Theoretical study of three-centered hydrogen bonds (TCHBs) in DNA dimers and trimers ion radicals: DFT and NBO studies." 2005. http://library.cuhk.edu.hk/record=b5892565.
Full textThesis submitted in: December 2004.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 109-114).
Abstracts in English and Chinese.
ABSTRACT (ENGLISH) --- p.iii
ABSTRACT (CHINESE) --- p.iv
ACKNOWLEDGMENTS --- p.v
ABBREVIATION --- p.vi
TABLE OF CONTENTS --- p.vii
LIST OF FIGURES --- p.x
LIST OF TABLES AND GRAPHS --- p.xii
Chapter CHAPTER 1 --- Introduction and Background --- p.1
Chapter 1.1 --- Introduction --- p.1
Chapter 1.2 --- Hydrogen bonds (H-bonds) in DNA --- p.2
Chapter 1.2.1 --- Experimental Evidences of Hydrogen Bonding --- p.3
Chapter 1.3 --- Three-centered hydrogen bond (TCHB) --- p.4
Chapter 1.3.1 --- Definition of Three-centered hydrogen bond (TCHB) --- p.5
Chapter 1.3.2 --- Significance of Three-centered hydrogen bond (TCHB) --- p.6
Chapter 1.3.3 --- Characterization of Three-centered hydrogen bond (TCHB) --- p.7
Chapter 1.3.4 --- Classification of Three-centered hydrogen bond (TCHB) --- p.7
Chapter 1.4 --- Charge transfer in DNA --- p.9
Chapter 1.4.1 --- Theory of DNA charge transfer --- p.9
Chapter 1.4.2 --- Short and long range hole transfer in DNA --- p.10
Chapter 1.4.3 --- Electron transfer in DNA --- p.12
Chapter 1.4.4 --- Summary of DNA charge transfer --- p.12
Chapter 1.5 --- Thesis Scope --- p.13
Chapter CHAPTER 2 --- Theory and methodology --- p.16
Chapter 2.1 --- Introduction --- p.16
Chapter 2.2 --- Theory --- p.17
Chapter 2.2.1 --- Density Functional Theory (DFT) --- p.17
Chapter 2.2.2 --- Basis set selection --- p.18
Chapter 2.2.3 --- Natural Bond Orbital (NBO) --- p.19
Chapter 2.2.3.1 --- Natural Population Analysis (NPA) --- p.20
Chapter 2.2.3.2 --- E(2) --- p.20
Chapter 2.2.3.2 --- bond index --- p.21
Chapter 2.2.4 --- spin-spin coupling constants --- p.22
Chapter 2.2.5 --- Molecular Orbital (MO) --- p.23
Chapter 2.3 --- Methodology --- p.24
Chapter 2.3.1 --- Test calculation for TCHBs by NBO --- p.24
Chapter 2.3.2 --- Geometry Optimization --- p.24
Chapter 2.3.3 --- NBO analysis --- p.25
Chapter 2.3.4 --- J-coupling constants (lhJnx) and MO calculations --- p.26
Chapter 2.4 --- Summary --- p.26
Chapter CHAPTER 3 --- Results and Discussion --- Hydrogen bonding in DNA --- p.27
Chapter 3.1 --- Introduction --- p.27
Chapter 3.2 --- Method for extracting DNA dimer models --- p.27
Chapter 3.3 --- Computed results of Inter H-bonds of the ten dimer models --- p.33
Chapter 3.3.1 --- Geometric parameters --- p.33
Chapter 3.3.2 --- Natural Bond Orbital (NBO) Analysis --- p.36
Chapter 3.3.2.1 --- E(2) and Wiberg Bond index --- p.36
Chapter 3.3.2.2 --- The relationship of E(2) and bond distance --- p.40
Chapter 3.3.2.3 --- The relationship of E(2) and bond angle --- p.42
Chapter 3.3.2.4 --- The relationship of E(2) and bond index --- p.44
Chapter 3.3.3 --- Spin-Spin Coupling Constants of inter-H bonds --- p.46
Chapter 3.3.3.1 --- The relationship of spin-spin coupling constant and distance --- p.49
Chapter 3.3.3.2 --- The relationship of spin-spin coupling constant and bond angle --- p.50
Chapter 3.3.3.3 --- The relationship of spin-spin coupling constant and E(2) energy --- p.52
Chapter 3.4 --- Experimental Characterization of Three-centered H-bonds --- p.54
Chapter 3.5 --- Theoretical Characterization of Three-centered H-bonds --- p.55
Chapter 3.5.1 --- Geometry properties (360°C Rule) --- p.55
Chapter 3.5.2 --- NMR properties (Spin-Spin Coupling Constants) --- p.55
Chapter 3.5.3 --- NBO properties (E(2) and Wiberg bond index) --- p.56
Chapter 3.6 --- Computed results of Three-centered hydrogen bonds (TCHBs) of the ten dimer models --- p.56
Chapter 3.6.1 --- Natural Bond Orbital (NBO) Analysis --- p.56
Chapter 3.6.1.1 --- Determination of TCHBs in the ten dimer models --- p.56
Chapter 3.6.1.2 --- Analysis of TCHB interactions (E(2) and bond index) --- p.62
Chapter 3.6.1.3 --- The relationship between E(2) and bond distance of TCHBs --- p.63
Chapter 3.6.1.4 --- The relationship between E(2) and bond angle of TCHBs --- p.65
Chapter 3.6.2 --- Spin-Spin Coupling Constants of TCHBs --- p.66
Chapter 3.6.2.1 --- The relationship between spin-spin coupling constant and bond distance of TCHBs --- p.68
Chapter 3.6.2.2 --- The relationship between spin-spin coupling constant and E(2) energy of TCHBs --- p.69
Chapter 3.6.3 --- Geometry of TCHBs --- p.71
Chapter 3.7 --- Summary --- p.72
Chapter CHAPTER 4 --- Results and Discussion --- Charge location and charge transfer in DNA --- p.77
Chapter 4.1 --- Introduction --- p.77
Chapter 4.2 --- Method --- p.78
Chapter 4.3 --- Computed results of the charge location of the trimer models --- p.81
Chapter 4.3.1 --- Location of excess positive charge --- p.81
Chapter 4.3.2 --- Location of excess negative charge --- p.90
Chapter 4.4 --- Role of TCHBs in charge transfer --- p.95
Chapter 4.4.1 --- Introduction --- p.95
Chapter 4.4.2 --- "Analysis of G1G2C3, C3A4A5 and A8A9C10 trimers" --- p.96
Chapter 4.4.3 --- Analysis of A7A8A9 and A8A9C10 trimers --- p.103
Chapter 4.5 --- Summary --- p.105
Chapter CHAPTER 5 --- Concluding Remarks --- p.107
REFERENCES
APPENDIX
Marta, Richard. "Mass-Selected Infrared Multiple-Photon Dissociation as a Structural Probe of Gaseous Ion-Molecule Complexes." Thesis, 2009. http://hdl.handle.net/10012/4658.
Full textBook chapters on the topic "Hydrogen Bond Dimer"
Karpfen, Alfred. "The Dimer of Cyanodiacetylene: Stacking vs. Hydrogen Bonding." In Hydrogen Bond Research, 73–86. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6419-8_5.
Full textKumagai, Takashi. "Water Dimer: Direct Observation of Hydrogen-Bond Exchange." In Visualization of Hydrogen-Bond Dynamics, 53–65. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54156-1_5.
Full textWolf, Katharina, Alexandra Simperler, and Werner Mikenda. "Proton Motion and Proton Transfer in the Formic Acid Dimer and in 5,8-Dihydroxy-1,4-naphthoquinone: A PAW Molecular Dynamics Study." In Hydrogen Bond Research, 87–101. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6419-8_6.
Full textKumagai, Takashi. "Hydroxyl Dimer: Non-linear I–V Characteristics in an STM Junction." In Visualization of Hydrogen-Bond Dynamics, 91–100. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54156-1_8.
Full textLegon, A. C. "Pulsed-Nozzle, Fourier-Transform Microwave Spectroscopy of Hydrogen-Bonded Dimers." In Structure and Dynamics of Weakly Bound Molecular Complexes, 23–42. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3969-1_2.
Full textZheliaskova, A., I. Zupancic, G. Lahajnar, and A. Derzhanski. "Hydrogen Bonds and Formation of Dimers in Some Liquid Crystals." In 25th Congress Ampere on Magnetic Resonance and Related Phenomena, 364–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_190.
Full textHenri-Rousseau, Olivier, and Paul Blaise. "The VX-HLine Shapes of Centrosymmetric Cyclic Dimers Involving Weak Hydrogen Bonds." In Advances in Chemical Physics, 245–496. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470259498.ch5.
Full textKumagai, T., and H. Okuyama. "Direct Observation of Hydrogen-Bond Exchange Reaction in a Water Dimer Using Low-Temperature Scanning Tunneling Microscopy." In Encyclopedia of Interfacial Chemistry, 74–80. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-409547-2.14231-3.
Full textKantlehner, W. "Substitution of the β-Hydrogen Atom by Ketenes and Ketene Dimers." In Three Carbon-Heteroatom Bonds: Ketenes and Derivatives, 1. Georg Thieme Verlag KG, 2006. http://dx.doi.org/10.1055/sos-sd-024-00453.
Full textHo, C., and H. W. Kim. "Design of Novel Hemoglobins." In Biological NMR Spectroscopy. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195094688.003.0013.
Full textConference papers on the topic "Hydrogen Bond Dimer"
Chatterjee, Piyali, and Tapas Chakraborty. "PHOTOIONIZATION INDUCED BARRIERLESS PROTON TRANSFER ALONG THE WEAK C-H...O HYDROGEN BOND OF METHACROLEIN DIMER UNDER SUPERSONIC JET COLD CONDITION IN THE GAS PHASE." In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.ml06.
Full text