To see the other types of publications on this topic, follow the link: Hydrogen bonding.

Journal articles on the topic 'Hydrogen bonding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hydrogen bonding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Breugst, Martin, Daniel von der Heiden та Julie Schmauck. "Novel Noncovalent Interactions in Catalysis: A Focus on Halogen, Chalcogen, and Anion-π Bonding". Synthesis 49, № 15 (2017): 3224–36. http://dx.doi.org/10.1055/s-0036-1588838.

Full text
Abstract:
Noncovalent interactions play an important role in many biological and chemical processes. Among these, hydrogen bonding is very well studied and is already routinely used in organocatalysis. This Short Review focuses on three other types of promising noncovalent interactions. Halogen bonding, chalcogen bonding, and anion-π bonding have been introduced into organocatalysis in the last few years and could become important alternate modes of activation to hydrogen bonding in the future.1 Introduction2 Halogen Bonding3 Chalcogen Bonding4 Anion-π Bonding5 Conclusions
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Xinyu, Huiyuan Wang, Hongmin Zhang, Tianxi Yang, Bin Zhao, and Juan Yan. "Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels." Biosensors 13, no. 7 (2023): 755. http://dx.doi.org/10.3390/bios13070755.

Full text
Abstract:
DNA hydrogels have gained significant attention in recent years as one of the most promising functional polymer materials. To broaden their applications, it is critical to develop efficient methods for the preparation of bulk-scale DNA hydrogels with adjustable mechanical properties. Herein, we introduce a straightforward and efficient molecular design approach to producing physically pure DNA hydrogel and controlling its mechanical properties by adjusting the degree of hydrogen bonding in ultralong single-stranded DNA (ssDNA) precursors, which were generated using a dual rolling circle amplif
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Zhangkang, Cheng Yu, Hitendra Kumar, et al. "The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion." Gels 8, no. 10 (2022): 682. http://dx.doi.org/10.3390/gels8100682.

Full text
Abstract:
The development of adhesive hydrogel materials has brought numerous advances to biomedical engineering. Hydrogel adhesion has drawn much attention in research and applications. In this paper, the study of hydrogel adhesion is no longer limited to the surface of hydrogels. Here, the effect of the internal crosslinking degree of hydrogels prepared by different methods on hydrogel adhesion was explored to find the generality. The results show that with the increase in crosslinking degree, the hydrogel adhesion decreased significantly due to the limitation of segment mobility. Moreover, two simple
APA, Harvard, Vancouver, ISO, and other styles
4

Ghafouri, Reza, Fatemeh Ektefa, and Mansour Zahedi. "Characterization of Hydrogen Bonds in the End-Functionalized Single-Wall Carbon Nanotubes: A DFT Study." Nano 10, no. 03 (2015): 1550036. http://dx.doi.org/10.1142/s1793292015500368.

Full text
Abstract:
A systematic computational study is carried out to shed some light on the structure of semiconducting armchair single-wall carbon nanotubes (n, n) SWCNTs, n = 4, 5 and 6, functionalized at the end with carboxyl (– COOH ) and amide (– CONH 2) from the viewpoint of characterizing the intramolecular hydrogen bondings at the B3LYP/6-31++G(d, p) level. Geometry parameters display different types of intramolecular hydrogen bonding possibilities in the considered functionalized SWCNTs. All of the hydrogen bondings are confirmed by natural bonding orbitals (NBO) analysis as well as nuclear magnetic re
APA, Harvard, Vancouver, ISO, and other styles
5

Dai, Bailin, Ting Cui, Yue Xu, et al. "Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors." Gels 8, no. 6 (2022): 374. http://dx.doi.org/10.3390/gels8060374.

Full text
Abstract:
Recently, flexible sensors based on conductive hydrogels have been widely used in human health monitoring, human movement detection and soft robotics due to their excellent flexibility, high water content, good biocompatibility. However, traditional conductive hydrogels tend to freeze and lose their flexibility at low temperature, which greatly limits their application in a low temperature environment. Herein, according to the mechanism that multi−hydrogen bonds can inhibit ice crystal formation by forming hydrogen bonds with water molecules, we used butanediol (BD) and N−hydroxyethyl acrylami
APA, Harvard, Vancouver, ISO, and other styles
6

Kamalkrishna, Majumdar, K. Majumder (Mrs.), and Lahiri S.C. "Studies on weak interactions : charge transfer and hydrogen bonding interactions of chloranil with substituted benzoic acids, amines and naphthols." Journal of Indian Chemical Society Vol. 79, Oct 2002 (2002): 811–14. https://doi.org/10.5281/zenodo.5847732.

Full text
Abstract:
Department of Chemistry, F. C. College, Diamond Harbour, 24-Parganas(S), India Department of Chemistry, Barrackpore Rastraguru Surendra Nath College, 24-Parganas(N), India Department of Chemistry, University of Kalyani, Kalyani-741 235, India <em>Manuscript received 12 November 2001, revised 26 April 2002, accepted 14 May 2002</em> Stability constants for the charge transfer and hydrogen bonding interactions of chloranil with substituted benzoic acids, amines and naphthols have been determined in hydrogen-bonded solvent CHCl<sub>3</sub> and aprotic solvent C<sub>6</sub>H<sub>6</sub>. The chang
APA, Harvard, Vancouver, ISO, and other styles
7

ZHANG, YAN, CHANG-SHENG WANG та ZHONG-ZHI YANG. "ESTIMATION ON THE INTRAMOLECULAR 8- AND 12-MEMBERED RING N–H…O=C HYDROGEN BONDING ENERGIES IN β-PEPTIDES". Journal of Theoretical and Computational Chemistry 08, № 02 (2009): 279–97. http://dx.doi.org/10.1142/s0219633609004708.

Full text
Abstract:
Computation of accurate hydrogen bonding energies in peptides is of great importance in understanding the conformational stabilities of peptides. In this paper, the intramolecular 8- and 12-membered ring N – H … O = C hydrogen bonding energies in β-peptide structures were evaluated. The optimal structures of the β-peptide conformers were obtained using MP2/6-31G(d) method. The MP2/6-311++G(d,p) calculations were then carried out to evaluate the single-point energies. The results show that the intramolecular 8-membered ring N – H … O = C hydrogen bonding energies in the five β-dipeptide structu
APA, Harvard, Vancouver, ISO, and other styles
8

Faust, Bruce C. "Hydrogen Bonding." Science 258, no. 5081 (1992): 381. http://dx.doi.org/10.1126/science.258.5081.381.c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kollman, Peter A. "Hydrogen bonding." Current Biology 9, no. 14 (1999): R501. http://dx.doi.org/10.1016/s0960-9822(99)80319-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abraham, Michael H., Gary S. Whiting, Jenik Andonian-Haftvan, Jonathan W. Steed, and Jay W. Grate. "Hydrogen bonding." Journal of Chromatography A 588, no. 1-2 (1991): 361–0364. http://dx.doi.org/10.1016/0021-9673(91)85048-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty, and Wendel J. Shuely. "Hydrogen bonding." Journal of Chromatography A 587, no. 2 (1991): 213–28. http://dx.doi.org/10.1016/0021-9673(91)85158-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty, and Wendel J. Shuely. "Hydrogen bonding." Journal of Chromatography A 587, no. 2 (1991): 229–36. http://dx.doi.org/10.1016/0021-9673(91)85159-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Abraham, Michael H., and Gary S. Whiting. "Hydrogen bonding." Journal of Chromatography A 594, no. 1-2 (1992): 229–41. http://dx.doi.org/10.1016/0021-9673(92)80335-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Abraham, Michael H., and David P. Walsh. "Hydrogen bonding." Journal of Chromatography A 627, no. 1-2 (1992): 294–99. http://dx.doi.org/10.1016/0021-9673(92)87210-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Abraham, Michael H. "Hydrogen bonding." Journal of Chromatography A 644, no. 1 (1993): 95–139. http://dx.doi.org/10.1016/0021-9673(93)80123-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Toccalino, Patricia L., Kenneth M. Harmon, and Jennifer Harmon. "Hydrogen bonding." Journal of Molecular Structure 189, no. 3-4 (1988): 373–82. http://dx.doi.org/10.1016/s0022-2860(98)80137-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Harmon, K. M., and A. C. Webb. "Hydrogen bonding." Journal of Molecular Structure 508, no. 1-3 (1999): 119–28. http://dx.doi.org/10.1016/s0022-2860(99)00009-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Abraham, Michael H., Gary S. Whiting, Ruth M. Doherty, and Wendel J. Shuely. "Hydrogen bonding." Journal of Chromatography A 518 (January 1990): 329–48. http://dx.doi.org/10.1016/s0021-9673(01)93194-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Faust, B. C. "Hydrogen Bonding." Science 258, no. 5081 (1992): 381. http://dx.doi.org/10.1126/science.258.5081.381-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Harmon, Kenneth M., Dawn M. Brooks, and Patricia K. Keefer. "Hydrogen bonding." Journal of Molecular Structure 317, no. 1-2 (1994): 17–31. http://dx.doi.org/10.1016/0022-2860(93)07855-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Abraham, Michael H., Jenik Andonian-Haftvan, Ian Hamerton, Colin F. Poole, and Theophilus O. Kollie. "Hydrogen bonding." Journal of Chromatography A 646, no. 2 (1993): 351–60. http://dx.doi.org/10.1016/0021-9673(93)83348-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Abraham, Michael H., Harpreet S. Chadha, and Albert J. Leo. "Hydrogen bonding." Journal of Chromatography A 685, no. 2 (1994): 203–11. http://dx.doi.org/10.1016/0021-9673(94)00686-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Harmon, Kenneth M., and Günsel F. Avci. "Hydrogen bonding." Journal of Molecular Structure 140, no. 3-4 (1986): 261–68. http://dx.doi.org/10.1016/0022-2860(86)87009-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Harmon, Kenneth M., Günself F. Avci, and Anne C. Thiel. "Hydrogen bonding." Journal of Molecular Structure 145, no. 1-2 (1986): 83–91. http://dx.doi.org/10.1016/0022-2860(86)87031-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Harmon, Kenneth M., Günsel F. Avci, Julie M. Gabriele, and Marsha J. Jacks. "Hydrogen bonding." Journal of Molecular Structure 159, no. 3-4 (1987): 255–63. http://dx.doi.org/10.1016/0022-2860(87)80044-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Harmon, Kenneth M., Günsel F. Avci, and Anne C. Thiel. "Hydrogen bonding." Journal of Molecular Structure 161 (October 1987): 205–18. http://dx.doi.org/10.1016/0022-2860(87)85075-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Harmon, Kenneth M., Günsel F. Avci, Jennifer Harmon, and Anne C. Thiel. "Hydrogen bonding." Journal of Molecular Structure 160, no. 1-2 (1987): 57–66. http://dx.doi.org/10.1016/0022-2860(87)87004-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Harmon, Kenneth M., Joan E. Cross, and Patricia L. Toccalino. "Hydrogen bonding." Journal of Molecular Structure 178 (August 1988): 141–45. http://dx.doi.org/10.1016/0022-2860(88)85012-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lovelace, Ronald R., and Kenneth M. Harmon. "Hydrogen bonding." Journal of Molecular Structure 193 (February 1989): 247–62. http://dx.doi.org/10.1016/0022-2860(89)80137-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Harmon, Kenneth M., Patricia L. Toccalino, and Marcia S. Janos. "Hydrogen bonding." Journal of Molecular Structure 213 (October 1989): 193–200. http://dx.doi.org/10.1016/0022-2860(89)85119-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Harmon, Kenneth M., Lisa M. Pappalardo, and Patricia K. Keefer. "Hydrogen bonding." Journal of Molecular Structure 221 (April 1990): 189–94. http://dx.doi.org/10.1016/0022-2860(90)80402-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Harmon, Kenneth M., Anne C. Akin, Günsel F. Avci, Lydia S. Nowos, and Mary Beth Tierney. "Hydrogen bonding." Journal of Molecular Structure 244 (April 1991): 223–36. http://dx.doi.org/10.1016/0022-2860(91)80158-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Harmon, Kenneth M., Susan L. Madeira, Marshan J. Jacks, Günsel F. Avci, and Anne C. Thiel. "Hydrogen bonding." Journal of Molecular Structure 128, no. 4 (1985): 305–14. http://dx.doi.org/10.1016/0022-2860(85)85006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Harmon, Kenneth M., Günsel F. Avci, Nancy J. Desantis, and Anne C. Thiel. "Hydrogen bonding." Journal of Molecular Structure 128, no. 4 (1985): 315–26. http://dx.doi.org/10.1016/0022-2860(85)85007-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

IKEDA, Takashi, and Kiyoyuki TERAKURA. "Hydrogen Bonding. Hydrogen Bonding of Hydrogen Halides and Its Pressure Dependence." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 10, no. 1 (2000): 26–32. http://dx.doi.org/10.4131/jshpreview.10.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Purohit, Dr S. J., Rajan Mishra, and Akhil Subramanian. "Hydrogen Bonding - The Key to Desalination (A Review)." International Journal of Environmental and Agriculture Research 3, no. 6 (2017): 49–52. http://dx.doi.org/10.25125/agriculture-journal-ijoear-may-2017-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hoffmann, Roald. "Bonding to Hydrogen." American Scientist 100, no. 5 (2012): 1. http://dx.doi.org/10.1511/2012.98.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hoffmann, Roald. "Bonding to Hydrogen." American Scientist 100, no. 5 (2012): 374. http://dx.doi.org/10.1511/2012.98.374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gallagher, James. "Hydrogen bonding boost." Nature Energy 4, no. 10 (2019): 822. http://dx.doi.org/10.1038/s41560-019-0488-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Harmon, Kenneth M., Thomas E. Nelson та Marcia S. Janos. "β Hydrogen bonding". Journal of Molecular Structure 213 (жовтень 1989): 185–91. http://dx.doi.org/10.1016/0022-2860(89)85118-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Etim, Emmanuel E., Prasanta Gorai, Ankan Das, Sandip K. Chakrabarti, and Elangannan Arunan. "Interstellar hydrogen bonding." Advances in Space Research 61, no. 11 (2018): 2870–80. http://dx.doi.org/10.1016/j.asr.2018.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yokura, Miyoshi, Kenichi Uehara, Guo Xiang, et al. "Ultralong Lifetime of Active Surface of Oxygenated PET Films by Plasma-irradiation and Bonding Elements." MRS Proceedings 1454 (2012): 201–6. http://dx.doi.org/10.1557/opl.2012.1128.

Full text
Abstract:
ABSTRACTBiaxially oriented polyethylene terephthalate (PET) films can be bonded directly by oxygen plasma irradiation and low temperature heat press around 100°C. The irradiated films were kept in the atmosphere for six years, yet they can be bonded tightly as well. Dry- and wet-peel tests indicate that two bonding elements can be suggested, hydrogen bonding and chemical bonding. The films are bonded by these two elements at lower temperatures, but by the pure chemical bonding at higher temperatures. FTIR results on the non-irradiated, irradiated and bonded samples indicate that OH and COOH gr
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Bing, Xu Zhang, Kening Wan, et al. "Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection." Research 2021 (April 15, 2021): 1–14. http://dx.doi.org/10.34133/2021/9761625.

Full text
Abstract:
The construction of ionic conductive hydrogels with high transparency, excellent mechanical robustness, high toughness, and rapid self-recovery is highly desired yet challenging. Herein, a hydrogen-bonding network densification strategy is presented for preparing a highly stretchable and transparent poly(ionic liquid) hydrogel (PAM-r-MVIC) from the perspective of random copolymerization of 1-methyl-3-(4-vinylbenzyl) imidazolium chloride and acrylamide in water. Ascribing to the formation of a dense hydrogen-bonding network, the resultant PAM-r-MVIC exhibited an intrinsically high stretchabilit
APA, Harvard, Vancouver, ISO, and other styles
44

Yang, H. H., F. C. Jin, and L. M. Wei. "The hydrogen bonding characteristic of (H2O)n (n=14-17):quantum theory of atoms in molecules." Digest Journal of Nanomaterials and Biostructures 16, no. 4 (2021): 1401–9. http://dx.doi.org/10.15251/djnb.2021.164.1401.

Full text
Abstract:
The hydrogen bonding characteristics of water clusters (H2O)n (n=14-17) are investigated by using Quantum Theory of Atoms in Molecules (QTAIM). The stabilities of the water clusters are related to the strength and number of hydrogen bonding. The strength of hydrogen bonding is primarily concerned with the characteristic of the donor molecule. The electron densities of bonding critical points of hydrogen bonding formed by DAA, DDAA and DDA molecule as hydrogen-donor (H-donor) are about 0.045 a.u., 0.035 a.u. and 0.025 a.u. respectively. The strength of hydrogen bonding formed by DAA as H-donor
APA, Harvard, Vancouver, ISO, and other styles
45

Zierkiewicz, Wiktor, Petr Jure?ka, and Pavel Hobza. "On Differences between Hydrogen Bonding and Improper Blue-Shifting Hydrogen Bonding." ChemPhysChem 6, no. 4 (2005): 609–17. http://dx.doi.org/10.1002/cphc.200400243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Devi, Periasamy, Packianathan Thomas Muthiah, Tayur N. Guru Row, and Vijay Thiruvenkatam. "Hydrogen bonding in pyrimethamine hydrogen adipate." Acta Crystallographica Section E Structure Reports Online 63, no. 10 (2007): o4065—o4066. http://dx.doi.org/10.1107/s1600536807044364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Hernández-Trujillo, Jesús, and Chérif F. Matta. "Hydrogen–hydrogen bonding in biphenyl revisited." Structural Chemistry 18, no. 6 (2007): 849–57. http://dx.doi.org/10.1007/s11224-007-9231-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Smith, G., DE Lynch, KA Byriel, and CHL Kennard. "Molecular Cocrystals of Carboxylic Acids. XX. The Crystal Structures of 3,5-Dinitrosalicylic Acid and Its Adducts With the Isomeric Monoaminobenzoic Acids." Australian Journal of Chemistry 48, no. 6 (1995): 1133. http://dx.doi.org/10.1071/ch9951133.

Full text
Abstract:
The crystal structure of 3,5-dinitrosalicylic acid monohydrate (1) and its adducts with 2- aminobenzoic acid (2-aba) [( dnsa )(2-aba)] (2), 3-aminobenzoic acid (3-aba) [( dnsa )(3-aba)] (3), and 4-aminobenzoic acid (4-aba) [( dnsa )(4-aba)2] (4), have been determined and the hydrogen bonding associations in each analysed . The acid (1), which is essentially planar, forms strong hydrogen-bonding network associations involving the carboxylic, nitro and phenolic oxygens as well as the lattice water. In all adducts, protonation of the amino group of the second acid occurs, with subsequent hydrogen
APA, Harvard, Vancouver, ISO, and other styles
49

Lu, Liangmei, Wen Zhou, Zhuzuan Chen, et al. "A Supramolecular Hydrogel Enabled by the Synergy of Hydrophobic Interaction and Quadruple Hydrogen Bonding." Gels 8, no. 4 (2022): 244. http://dx.doi.org/10.3390/gels8040244.

Full text
Abstract:
The increasing preference for minimally invasive surgery requires novel soft materials that are injectable, with rapid self-healing abilities, and biocompatible. Here, by utilizing the synergetic effect of hydrophobic interaction and quadruple hydrogen bonding, an injectable supramolecular hydrogel with excellent self-healing ability was synthesized. A unique ABA triblock copolymer was designed containing a central poly(ethylene oxide) block and terminal poly(methylmethacrylate) (PMMA) block, with ureido pyrimidinone (UPy) moieties randomly incorporated (termed MA-UPy-PEO-UPy-MA). The PMMA blo
APA, Harvard, Vancouver, ISO, and other styles
50

Robertson, Craig C., James S. Wright, Elliot J. Carrington, Robin N. Perutz, Christopher A. Hunter, and Lee Brammer. "Hydrogen bonding vs. halogen bonding: the solvent decides." Chemical Science 8, no. 8 (2017): 5392–98. http://dx.doi.org/10.1039/c7sc01801k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!