To see the other types of publications on this topic, follow the link: Hydrogen cycle.

Dissertations / Theses on the topic 'Hydrogen cycle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Hydrogen cycle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Staats, Wayne Lawrence. "Analysis of a supercritical hydrogen liquefaction cycle." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45208.

Full text
Abstract:
Includes bibliographical references (p. 72-76).
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
In this work, a supercritical hydrogen liquefaction cycle is proposed and analyzed numerically. If hydrogen is to be used as an energy carrier, the efficiency of liquefaction will become increasingly important. By examining some difficulties of commonly used industrial liquefaction cycles, several changes were suggested and a readily scalable, supercritical, helium-cooled hydrogen liquefaction cycle was proposed. A novel overlap in flow paths of the two coldest stages allowed the heat exchanger losses to be minimized and the use of a single-phase liquid expander eliminated the pressure reduction losses associated with a Joule-Thomson valve. A simulation program was written in MATLAB to investigate the effects of altering component efficiencies and various system parameters on the cycle efficiency. In addition to performing the overall cycle simulations, several of the system components were studied in greater detail. First, the required volume of the ortho-para catalyst beds was estimated based on published experimental data. Next, the improvement in cycle efficiency due to the use of a single-phase liquid expander to reduce the pressure of the hydrogen stream was estimated. Finally, a heat exchanger simulation program was developed to verify the feasibility and to estimate the approximate size of the heat exchangers in the cycle simulation. For a large, 50-ton-per-day plant with reasonable estimates of achievable component efficiencies, the proposed cycle offered a modest improvement in efficiency over the current state of the art. In comparison to the 30-40% Second Law efficiencies of today's most advanced industrial plants, efficiencies of 39-44% were predicted for the proposed cycle, depending on the heat exchange area employed.
by Wayne Lawrence Staats, Jr.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
2

DeGolyer, Jessica Suzanne. "Fuel Life-Cycle Analysis of Hydrogen vs. Conventional Transportation Fuels." NCSU, 2008. http://www.lib.ncsu.edu/theses/available/etd-08192008-124223/.

Full text
Abstract:
Fuel life-cycle analyses were performed to compare the affects of hydrogen on annual U.S. light-duty transportation emissions in future year 2030. Five scenarios were developed assuming a significant percentage of hydrogen fuel cell vehicles to compare different feedstock fuels and technologies to produce hydrogen. The five hydrogen scenarios are: Central Natural Gas, Central Coal Gasification, Central Thermochemical Nuclear, Distributed Natural Gas, and Distributed Electrolysis. The Basecase used to compare emissions was the Annual Energy Outlook 2006 Report that estimated vehicle and electricity mix in year 2030. A sixth scenario, High Hybrid, was included to compare vehicle technologies that currently exist to hydrogen fuel cell vehicles that commercially do not exist. All hydrogen scenarios assumed 30% of the U.S. light-duty fleet to be hydrogen fuel cell vehicles in year 2030. Energy, greenhouse emissions, and criteria pollutant emissions including volatile organic compounds, particulate matter, sulfur dioxides, nitrogen dioxides, and carbon monoxide were evaluated. Results show that the production of hydrogen using thermochemical nuclear technology is the most beneficial in terms of energy usage, greenhouse gas emissions, and criteria pollutant emissions. Energy usage decreased by 36%, greenhouse gas emissions decreased by 46% or 9.6 x 108 tons, and criteria emissions were reduced by 28-47%. The centrally-produced hydrogen scenarios proved to be more energy efficient and overall release fewer emissions than the distributed hydrogen production scenarios. The only hydrogen scenario to show an increase in urban pollution is the Distributed Natural Gas scenario with a 60% increase in SOx emissions..
APA, Harvard, Vancouver, ISO, and other styles
3

Peck, Michael S. "Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4860.

Full text
Abstract:
Thesis (Ph. D.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed Feb. 27, 2008). Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Rosyid, Oo Abdul. "System analytic safety evaluation of the hydrogen cycle for energetic utilization." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980572371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tupper, Kendra. "A life cycle analysis of hydrogen production for buildings and vehicles." Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p1430188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morra, Matthew John. "Gaps in the sulfur cycle : biogenic hydrogen sulfide production and atmospheric deposition /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487323583619796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mapamba, Liberty Sheunesu. "Simulation of the copper–chlorine thermochemical cycle / Mapamba, L.S." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7052.

Full text
Abstract:
The global fossil reserves are dwindling and there is need to find alternative sources of energy. With global warming in mind, some of the most commonly considered suitable alternatives include solar, wind, nuclear, geothermal and hydro energy. A common challenge with use of most alternative energy sources is ensuring continuity of supply, which necessitates the use of energy storage. Hydrogen has properties that make it attractive as an energy carrier. To efficiently store energy from alternative sources in hydrogen, several methods of hydrogen production are under study. Several literature sources show thermochemical cycles as having high potential but requiring further development. Using literature sources, an initial screening of thermochemical cycles was done to select a candidate thermochemical cycle. The copper–chlorine thermochemical cycle was selected due to its relatively low peak operating temperature, which makes it flexible enough to be connected to different energy sources. Once the copper–chlorine cycle was identified, the three main copper–chlorine cycles were simulated in Aspen Plus to examine which is the best configuration. Using experimental data from literature and calculating optimal conditions, flowsheets were developed and simulated in Aspen Plus. The simulation results were then used to determine the configuration with the most favourable energy requirements, cycle efficiency, capital requirements and product cost. Simulation results show that the overall energy requirements increase as the number of steps decrease from five–steps to three–steps. Efficiencies calculated from simulation results show that the four and five–step cycles perform closely with 39% and 42%, respectively. The three–step cycle has a much lower efficiency, even though the theoretical calculations imply that the efficiency should also be close to that of the four and five–step cycles. The five–step reaction cycle has the highest capital requirements at US$370 million due to more equipment and the three–step cycle has the lowest requirement at US$ 275 million. Payback analysis and net present value analysis indicate that the hydrogen costs are highest for the three–step cycle at between US$3.53 per kg for a 5–10yr payback analysis and the five–step cycle US$2.98 per kg for the same payback period.
Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.
APA, Harvard, Vancouver, ISO, and other styles
8

Stone, Howard Brian James. "Thermochemical hydrogen production from the sulphur-iodine cycle powered by solar or nuclear sources." Thesis, University of Southampton, 2007. https://eprints.soton.ac.uk/65716/.

Full text
Abstract:
Since mankind's adoption of fossil fuels as its primary energy carrier for heating, elec- tricity and transportation, the release of greenhouse gases into the atmosphere has increased constantly . A potential replacement energy carrier is hydrogen. Current industrial techniques for dissociating hydrogen from its common substances are con- ventionally reliant on fossil fuels and thus greenhouse gases are still released. As a mechanism to develop a hydrogen economy current industrial techniques will suffice; however, a long-term sustainable solution to hydrogen mass production that does not release greenhouses gases is desired. The United States of America Government be- lieves that the Sulphur-Iodine thermochemical hydrogen production cycle, thermally powered by a nuclear source, is the most likely long-term solution. A critical part of the Sulphur-Iodine cycle is the point of interaction between the thermal source and sulphuric acid used within the cycle. A novel bayonet heat exchanger made from silicon carbide is theoretically applied to the point of interaction. Through a combination of experiments and theoretical modelling, the bayonet heat exchanger is characterised. The bayonet model is then modified to simulate the intended nuclear reactor favoured by the United States Department of Energy. In addition, the bayo- net heat exchanger is analysed for a solar thermal application. An advanced design of the bayonet is also presented and theoretically analysed for its increased thermal efficiency.
APA, Harvard, Vancouver, ISO, and other styles
9

Hajjaji, Noureddine. "Analyse de cycle de vie exergétique de systèmes de production d’hydrogène." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL002N/document.

Full text
Abstract:
Considéré comme vecteur énergétique du futur, l'hydrogène semble être la solution miracle pour sortir de la crise énergétique et environnementale actuelle. Ceci peut être vrai à condition de résoudre tous les problèmes inhérents à son cycle de vie (production, distribution, stockage et utilisation). Face aux nombreux impacts environnementaux générés au cours de la production d’hydrogène, la complexité de leur évaluation et les éventuelles interactions entre eux, le recours à des méthodes d’évaluation environnementale semble nécessaire. Ainsi, l’Analyse de Cycle de Vie Exergétique (ACVE) a été choisie comme l’outil le plus intéressant pour l’étude des scénarios de production d’hydrogène. Elle va, d’une part, comparer des systèmes de production d’hydrogène dans le but de déterminer lequel est le plus éco-efficace et, d’autre part, localiser leurs possibilités d’amélioration environnementale. Huit scénarios de production d’hydrogène ont été étudiés par cette approche ACVE. Ces scénarios se basent essentiellement sur des techniques de reformage du méthane fossile, du biométhane et du bioéthanol. Les résultats obtenus montrent que les scénarios de production d’hydrogène à partir du méthane fossile, technique mûre et largement utilisée, sont les plus gros consommateurs de ressources abiotiques et les plus émetteurs de gaz à effet de serre (GES). Par contre, le recours au biométhane comme source d’hydrogène peut présenter, dans certaines configurations, une bonne solution. Le profil environnemental d’une filière hydrogène ex-biométhane peut encore être rendu plus attrayant par amélioration du système de digestion anaérobie avec un système de reformage sur site. Le recours au bioéthanol produit à partir du blé comme source d’hydrogène présente des effets néfastes sur l’environnement. En effet, ces procédés sont caractérisés par de grands pouvoirs d’eutrophisation et d’acidification en plus de leurs émissions importantes des gaz effet de serre (GES). Toutefois, le bioéthanol peut constituer une source durable et renouvelable pour la production d’hydrogène si sa production ne nuit pas à l’environnement
Considered as the future energy carrier, hydrogen appears to be the miracle solution to overcome the current energy crisis and environmental problems. This can be possible only by solving all the problems associated with its life cycle (production, distribution, storage and final use).Due to the large number of environmental impacts generated during hydrogen production, the complexity of their evaluation and the possible interactions among them the use of environmental assessment methods is necessary. The Exergetic Life Cycle Assessment (ELCA) approach was chosen as the most useful tool for hydrogen production scenarios investigation. It compares hydrogen production systems in order to identify which one is more eco-efficient and recognizes their opportunities for environmental improvement. Eight scenarios for hydrogen production were studied by the ELCA approach. These scenarios are essentially based on reforming techniques of fossil methane, biomethane and bioethanol. The results show that the hydrogen produced by fossil methane scenarios, a mature and widely used technique, are the largest consumers of abiotic resources and emitters of greenhouse gases (GHG). The use of biomethane as hydrogen source presents an interesting solution. The environmental profile of a hydrogen ex-bio-methane can be made even more attractive solution by improving anaerobic digestion system with on-site reforming process. The use of bio-ethanol produced from wheat as a hydrogen source has large environmental impacts. In fact, these processes are characterized by large eutrophication and acidification potentials in addition to their emissions of large amount of greenhouse gases (GHG). However, bio-ethanol can be a sustainable and renewable source for hydrogen production on condition that it is produced by environmentally friendly manners
APA, Harvard, Vancouver, ISO, and other styles
10

Solli, Christian. "Fission or Fossil? : A Comparative Hybrid Life Cycle Assessment of Two Different Hydrogen Production Methods." Thesis, Norwegian University of Science and Technology, Industrial Ecology Programme, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1417.

Full text
Abstract:

A comparative hybrid life cycle assessment was conducted to assess two different methods for hydrogen production. Environmental impacts from nuclear assisted thermochemical water splitting are compared to hydrogen production from natural gas steam reforming with CO2-sequestration. The results show that the two methods have significantly different impacts. The nuclear alternative has lower impacts on global warming potential, acidification and eutrophication, but very much higher for some of the other impact categories. A weighting procedure is not applied, hence no overall ”winner” can be proclaimed. The different impacts relative importance remains a challenge for eventual decision makers.

Further the assessment has demonstrated the importance of including economic inputs in a comparative assessment; ordinary process-LCA may produce distorted results since a larger fraction of impacts can be accounted for in one case than in another.

Another analytical finding is that avoiding double counting of material inputs in the input-output part of the assessment, significantly affects the results of some impact categories. A procedure to avoid double counting should therefore always be applied when performing a hybrid LCA.

APA, Harvard, Vancouver, ISO, and other styles
11

Kong, Fanhe. "Chemical Looping Partial Oxidation and Hydrogen Production: Process Simulation, Exergy Analysis and Life Cycle Assessment." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587591727870495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lee, Man Su. "Theoretical studies of UT-3 thermochemical hydrogen production cycle and development of calcium oxide reactant for UT-3 cycle and carbon dioxide capture." [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0021178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kemp, Dian. "Technical evaluation of the copper chloride water splitting cycle / D. Kemp." Thesis, North-West University, 2011. http://hdl.handle.net/10394/6862.

Full text
Abstract:
The global energy sector is facing a crisis caused by the increasing demand for energy. Non-renewable energy sources, such as fossil fuels produce greenhouse gases that are largely blamed for climate change. The Kyoto protocol requires industrialised nations to reduce their collective greenhouse gas emissions. Hydrogen as an alternative fuel can serve as a substitute. Hydrogen production is expensive and the gas is largely derived from fossil fuels by a process that releases large quantities of greenhouse gases. In South Africa work on hydrogen production was first done on the Hybrid Sulphur cycle. The high operating temperature and highly corrosive environment involved in the process makes this cycle difficult to work with. The copper-chloride cycle has a lower operating temperature and uses less corrosive materials, making the cycle potentially more economical. Evaluation of the cycle started with the development of four models: the Base model, the Canadian model (developed in Canada) the Kemp model and the Excess model. The Kemp model has the best overall efficiency of 40.89 %, producing hydrogen at a cost of US$4.48/kg. The model does not however provide the excess steam required for the cycle. The Excess model which is based on the Kemp model does provide the excess steam and produces an overall efficiency of 39 % and hydrogen at a cost of US$4.60/kg. The copper-chloride cycle has an improved efficiency and produces hydrogen at a lower cost when compared to the hybrid sulphur cycle. The final conclusion of this thesis is that the copper-chloride cycle should be investigated further and an expected capital and operational costs estimate should be developed to obtain more accurate figures.
Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
APA, Harvard, Vancouver, ISO, and other styles
14

Vozniuk, Olena. "L’APPROCHE PAR CYCLE REDOX AU REFORMAGE DES BIOALCOOLS." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2017. http://www.theses.fr/2017ENCM0002.

Full text
Abstract:
Les recherches présentées dans cette thèse portent sur l'étude et l'évaluation d'un nouveau procédé de génération d'hydrogène. De nos jours, la production d'hydrogène est principalement basée sur le reformage du gaz naturel ou de naphta. Des procédés moins énergivores et plus durables pour la production d'hydrogène sont attractifs aussi bien pour l'industrie que pour les applications domestiques. Une voie très intéressante est le reformage de bio-alcools, en principe CO2-neutre. Des procédés de séparation coûteux peuvent être évités en séparant le procédé en deux étapes successives (combustion en boucle chimique), dans le but de réaliser deux flux séparés de H2 et de COx. De plus, un avantage supplémentaire en termes de durabilité est l'utilisation du bioéthanol comme source d'hydrogène, au lieu du gaz naturel.Le principe essentiel du cycle de boucle thermochimique est qu'un matériau de stockage d'oxygène est d'abord réduit par un courant d'éthanol, puis ré-oxydé par l'eau, afin de produire de l'hydrogène et de restaurer l'état d'oxydation d'origine du matériau en boucle.L’objectif initial du projet était de définir des conditions et des matériaux qui pourraient conduire à un processus optimisé, permettant de produire un flux d'hydrogène qui ne nécessite aucun traitement supplémentaire de purification ou de séparation. Différents oxydes mixtes de type spinelle modifiés TYPE I – MFe2O4 et TYPE II – M0,6Fe2,4Oy avec : (M = Cu, Co, Mn, Mg, Ca et Cu / Co, Cu / Mn, Co / Mn), en tant que matériaux potentiellement intéressants pour l’oxygène ionique et le bouclage de porteurs d'électrons, ont été préparés par co-précipitation et testés à la fois afin d’étudier leurs propriétés redox et de leur activité catalytique pour générer de l'hydrogène par oxydation à la vapeur d'eau, après une étape de réduction réalisée avec de l'éthanol. En particulier, nous nous sommes focalisés sur le comportement de réactivité des matériaux binaires/ternaires qui se traduit par leur capacité à former des oxydes de spinelle thermodynamiquement stables qui permettent de réobtenir la phase spinelle initiale lors du cycle et, à son tour, d'augmenter la stabilité du matériau en boucle par lui-même. De plus, ces travaux de recherche incluent des analyses DRIFTS in situ et des études XPS in situ qui ont permis d'extraire des informations au niveau moléculaire et de suivre les changements de surface dans les processus de réduction / réoxydation pendant le reformage d'éthanol en boucle chimique. Plusieurs caractérisations ont été effectuées à l'aide de techniques DRX, TPR / O, MET / MEB / EDS, mesures magnétiques et techniques spectroscopiques Raman / Mössbauer. De plus, nous avons effectué une modification du procédé CLR conventionnel avec l’addition d’une 3ème étape de régénération (réalisée avec de l'air) afin d'augmenter la stabilité du matériau en boucle et de résoudre les problèmes de désactivation tels que: dépôt / accumulation de coke et la réoxydation incomplète de M0 au cours de la 2ème étape
The current research is focused on the study and evaluation of a new process for the hydrogen generation. Nowadays, hydrogen production is mainly based on the reforming of natural gas or naphtha. Less energy intensive and more sustainable processes for hydrogen production are appealing for both industry and consumer applications. A highly attractive route is steam reforming of bio-alcohols, in principle CO2 neutral. Costly separation processes can be avoided by splitting the process into two alternated steps (chemical-loop reforming), in the aim of achieving two separate streams of H2 and COx. Moreover, an additional advantage in terms of sustainability is the use of bio-ethanol as the source of hydrogen, instead of natural gas.The main principle of the thermochemical-loop cycle is that an oxygen-storage material is first reduced by an ethanol stream, and then re-oxidized by water, in order to produce hydrogen and restore the original oxidation state of the looping-material.The initial task of the project was to define conditions and materials that may lead to an optimized process, allowing producing a hydrogen stream that does not require any additional purification or separation treatment. Different M-modified spinel-type mixed oxides: TYPE I – MFe2O4 and TYPE II – M0.6Fe2.4Oy viz. modified ferrospinels (where M=Cu, Co, Mn, Mg, Ca and Cu/Co, Cu/Mn, Co/Mn), as potentially attractive ionic oxygen and electron carrier looping materials, were prepared via co-precipitation method and tested in terms of both redox properties and catalytic activity to generate hydrogen by oxidation with steam, after a reductive step carried out with ethanol. Particularly, the focus on the reactivity behaviour of binary/ternary materials explained by their ability to form thermodynamically stable spinel oxides which allow us to re-obtain the initial spinel phase upon cycling and in turn increase the stability of looping material itself. In addition, the research includes in-situ DRIFTS and in-situ XPS studies that allowed to extract information at molecular level and to follow surface changes within the reduction/re-oxidation processes during ethanol chemical-loop reforming. Bulk characterizations have been done using XRD, TPR/O, TEM/SEM/EDS, Magnetic measurements and Raman/Mössbauer spectroscopic techniques. Moreover, a modification of the conventional CLR process with an addition of the 3rd regeneration step (carried out with air) was done in order to increase the stability of the looping material and to overcome the deactivation problems, such as: a coke deposition/accumulation and an incomplete re-oxidation of M0 during the 2nd step
APA, Harvard, Vancouver, ISO, and other styles
15

Karayilan, Dilek. "Removal Of Hydrogen Sulfide By Regenerable Metal Oxide Sorbents." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605046/index.pdf.

Full text
Abstract:
ABSTRACT REMOVAL OF HYDROGEN SULFIDE BY REGENERABLE METAL OXIDE SORBENTS Karayilan, Dilek M.S., Department of Chemical Engineering Supervisor : Prof. Dr. Timur Dogu Co-Supervisor: Prof. Dr. Gü
lSen Dogu June 2004, 166 pages High-temperature desulfurization of coal-derived fuel gases is an essential process in advanced power generation technologies. It may be accomplished by using metal oxide sorbents. Among the sorbents investigated CuO sorbent has received considerable attention. However, CuO in uncombined form is readily reduced to copper by the H2 and CO contained in fuel gases which lowers the desulfurization efficiency. To improve the performance of CuO-based sorbents, they have been combined with other metal oxides, forming metal oxide sorbents. Sulfidation experiments were carried out at 627 oC using a gas mixture composed of 1 % H2S and 10 % H2 in helium. Sorbent regeneration was carried out in the same reactor on sulfided samples at 700 oC using 6 % O2 in N2. Total flow rate of gas mixture was kept at 100 ml/min in most of the experiments. In this study, Cu-Mn-O, Cu-Mn-V-O and Cu-V-O sorbents were developed by using complexation method. Performance of prepared sorbents were investigated in a fixed-bed quartz microreactor over six sulfidation/regeneration cycles. During six cycles, sulfur retention capacity of Cu-Mn-O decreased slightly from 0.152 to 0.128 (g S)/(g of Sorbent) while some decrease from 0.110 to 0.054 (g S)/(g of Sorbent) was observed with Cu-Mn-V-O. Cu-V-O showed a very good performance in the first sulfidation and excessive thermal sintering in the first regeneration prevented further testing. Sulfur retention capacity of Cu-V-O was calculated as 0.123 (g S)/(g of Sorbent) at the end of the first sulfidation. In addition, SO2 formation in sulfidation experiments was observed only with Cu-V-O sorbent.
APA, Harvard, Vancouver, ISO, and other styles
16

Van, Norden Vincent Ray. "Reducing emissions of a large bore two stroke cycle engine using a natural gas and hydrogen mixture." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hettinger, Benjamin G. "Development of calcium oxide solid reactants for the UT-3 thermochemical cycle to produce hydrogen from water." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Doyle, Tygue Stuart. "Decentralized power and heat derived from an eco-innovative integrated gasification fuel cell combined cycle." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/12929.

Full text
Abstract:
This research investigates the energy, financial and environmental performance of an innovative integrated gasification fuel cell combined cycle fuelled by municipal solid waste that includes hydrogen storage and electrolysis. The suitability for fuel cells to run on synthesis gas coming from the gasification of waste is determined by the sensitivity of the fuel cell to run on contaminated fuel. Out of the available fuel cell technologies solid oxide fuel cells (SOFCs), because of their ceramic construction and high operating temperatures, are best suited for syngas operation. Their high operating temperature ( > 650°C) and the presence of nickel at the anode means that it is possible to reform hydrocarbons to provide further hydrogen. A major contaminant to be considered in gasification systems is tar which can foul pipework and cause substantial performance losses to the plant. Experimental research on the effects of tar on a SOFC at varying concentrations and operating conditions show; that some carbon deposition serves to improve the performance of the fuel cell by reducing the ohmic resistance, and there is a tendency for the tar to reform which improves overall performance. These improvements are seen at moderate tar concentrations but at higher concentrations carbon deposition causes substantial performance degradation. Numerical simulations representing all aspects of the proposed system have been developed to understand the energy performance of the system as a whole as well as the financial and environmental benefits. Taking into account variations in the waste composition, and the wholesale electricity price the proposed system, scaled to process 100,000 tonnes of waste per year (40,000 removed for recycling), has a simple payback period of 7.2 years whilst providing CO2 savings of 13%. Over the year the proposed system will provide enough electricity to supply more than 23,000 homes and enough heat for more than 5,800 homes (supplying 25% of the electrically supplied homes).
APA, Harvard, Vancouver, ISO, and other styles
19

Hofmann, Lukas. "Structural Endeavors in the Retinoid (Visual) Cycle." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1497045464455384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Takács, Marcell Péter. "Hydrogen burning: Study of the 22Ne(p,gamma)23Na, 3He(alpha,gamma)7Be and 7Be(p, gamma)8B reactions at ultra-low energies." Helmholtz-Zentrum Dresden - Rossendorf, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-233508.

Full text
Abstract:
The neon-sodium cycle (NeNa cycle) of hydrogen burning is active in stars of the Asymptotic Giant Branch, in classical novae, and in supernovae of type Ia. The thermonuclear reaction rate of the 22Ne(p,γ)23Na reaction is determined by a large number of resonances, and it represents the most uncertain rate in the NeNa cycle. This PhD thesis reports on an experiment to study tentative 22Ne(p,γ)23Na resonances at Elab = 71 and 105 keV, as well as the direct capture component of the reaction rate for Elab ≤ 400 keV. The measurements were performed deep underground at the Laboratory for Un- derground Nuclear Astrophysics - LUNA (Gran Sasso, Italy), taking advantage of the strong reduction in the cosmic ray induced background. The LUNA-400-kV electrostatic accelerator and a differentially pumped, windowless gas target of iso- topically enriched 22Ne gas were used. The γ-rays from the reaction were detected with a 4π bismuth germanate scintillator. The data show upper limits on the strengths of the resonances at Elab = 71 and 105 keV of 5.8 × 10−11 and 7.0 × 10−11 eV respectively. The resonances at Elab = 156.2, 189.5 and 259.7 keV have been re-studied and show 20% higher strength than the literature. The present experiment did not show any evidence for the direct capture process at the low energies studied. In addition to the experimental work at LUNA, the 3He(α, γ)7Be and 7Be(p, γ)8B reactions were studied using the most recent solar neutrino data available. Based on the standard solar model and the experimentally measured fluxes of solar 7Be and 8B neutrinos, the astrophysical S-factors of both reactions were evaluated directly in the solar Gamow peak.
APA, Harvard, Vancouver, ISO, and other styles
21

Sundin, Camilla. "Environmental Assessment of Electrolyzers for Hydrogen Gas Production." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260069.

Full text
Abstract:
Hydrogen has the potential to become an important energy carrier in the future with many areas of applications, as a clean fuel for transportation, heating, power generation in places where electricity use is not fit, etc. Already today hydrogen plays a key role in numerous industries such as petroleum refineries and chemical industries. There are different production methods for hydrogen. Today, natural gas reforming is the most commonly used. With the growing importance of green production paths, hydrogen production by electrolysis is expected to grow. Two main electrolyzer technologies are used today; alkaline and polymer electrolyte membrane electrolyzer. High-temperature electrolyzers are also interesting techniques, where solid oxide is under development and molten carbonate electrolyzers is researched. In this thesis, a comparative life cycle analysis was performed on the alkaline and molten carbonate electrolyzer. Due to inaccurate inventory data for the molten carbonate electrolyzer, those results are excluded from the published thesis. The environmental performance of the alkaline electrolyzer technology was compared to that of the solid oxide and the polymer electrolyte membrane electrolyzers. The system boundaries were set as cradle to gate. Thereby, the life cycle steps included in the study are raw material extraction, electrolyzer manufacturing, hydrogen production, and transports in between these steps. The functional unit was chosen as 100 kg produced hydrogen gas. The results show that the polymer electrolyte membrane electrolyzer has the lowest environmental impact out of the compared technologies. It is also determined that the lifetime and the current density of the electrolyzers have significant impact on their environmental performance. Moreover, it is established that electricity for hydrogen production has the highest environmental impact out of the electrolyzers life cycle steps. Therefore, it is important to make sure that the electricity used for hydrogen production derives from renewable sources.
Vätgas har potential att spela en viktig roll som energibärare i framtiden med många användningsområden, såsom ett rent bränsle för transporter, uppvärmning, kraftförsörjning där elproduktion inte är lämpligt, med mera. Redan idag är vätgas ett viktigt inslag i flera industrier, där ibland raffinaderier och kemiska industrier. Det finns flera metoder för att producera vätgas, där reformering av naturgas är den största produktionsmetoden idag. I framtiden spås vätgasproduktion med elektrolys bli allt viktigare, då hållbara produktionsprocesser prioriteras allt mer. Idag används främst två elektrolysörtekniker, alkalisk och polymerelektrolyt. Utöver dessa är högtemperaturelektrolysörer också intressanta tekniker, där fastoxidelektrolysören är under utveckling och smältkarbonatelektrolysören är på forskningsstadium. I det här examensarbetet har en jämförande livscykelanalys utförts på alkalisk- och smältkarbonatelektrolysören. På grund av felaktiga indata för smältkarbonatelektrolysören har dessa resultat uteslutits från den publika rapporten. Miljöpåverkan från den alkaliska elektrolysören har sedan jämförts med miljöpåverkan från fastoxid- och polymerelektrolytelektrolysörerna. Systemgränserna sattes till vagga till grind. De livscykelsteg som inkluderats i studien är därmed råmaterialutvinning, elektrolysörtillverkning, vätgasproduktion och transporter mellan dessa steg. Den funktionella enheten valdes till 100 kg producerad vätgas.  Resultaten visar att polymerelektrolytteknologin har den lägsta miljöpåverkan utav de tekniker som jämförts. Resultaten påvisar också att livstiden och strömtätheten för de olika teknikerna har signifikant påverkan på teknikernas miljöpåverkan. Dessutom fastslås att elektriciteten för vätgasproduktion har högst miljöpåverkan utav de studerade livscykelstegen. Därför är det viktigt att elektriciteten som används för vätgasproduktionen kommer ifrån förnybara källor.
APA, Harvard, Vancouver, ISO, and other styles
22

Patterson, Tim. "Life cycle analysis of biomass derived hydrogen and methane as fuel vectors, and a critical analysis of their future development in the UK." Thesis, University of South Wales, 2013. https://pure.southwales.ac.uk/en/studentthesis/life-cycle-analysis-of-biomass-derived-hydrogen-and-methane-as-fuel-vectors-and-a-critical-analysis-of-their-future-development-in-the-uk(3a1ece33-8a70-435f-bb36-af55785b6003).html.

Full text
Abstract:
Concerns over environmental impacts and long term availability of liquid fossil fuels means that sourcing alternative, renewable transport fuels has increased in importance. To date, implemented approaches have concentrated on the production of liquid biofuels biodiesel and bioethanol from crops. Even though technology for implementation is readily available in the form of biogas production and upgrading, gaseous fuels have been largely overlooked in the UK. Research completed showed that if produced from indigenous crops using currently viable technology, it is energetically more favourable to produce gaseous fuels rather than biodiesel or bioethanol with gaseous fuels also delivering some emission benefits at end use. To date, the subsidy system supporting biofuel production has not functioned well. Research showed that if the subsidies approached the maximum allowable value, and when produced from waste materials, the production of gaseous fuels can be economic compared to liquid biofuels. Life cycle assessment has showed that utilising biomethane as a vehicle fuel could be an environmentally appropriate approach if the conventional use for biogas of combusting in a combined heat and power plant cannot utilise the majority of the excess heat produced. A two stage process to produce a hydrogen / methane blend was shown to be energetically favourable when utilising wheat feed, although hydrogen production was low. The process was not energetically favourable when food waste was utilised, indicating the importance of optimising process according to feedstock characteristics. Life cycle assessment of electrolytic hydrogen production using a range of energy sources found that electrolysis driven by renewable energy was a valid option for future deployment. However, given current feedstock availability, indigenous biofuel production, regardless of the fuel produced, could only make minor contributions to overall fuel requirements. As such, a range of fuel vectors, or a significantly greater commitment of land resources to fuel production, will be required in the future.
APA, Harvard, Vancouver, ISO, and other styles
23

Elghobashi, Nadia. "Theory of using few cycle IR and UV laser pulses to control the orientation and selective dissociation of hydrogen bonded anions." [S.l.] : [s.n.], 2005. http://www.diss.fu-berlin.de/2006/23/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Davis, Shelby Taylor. "The Effects of Synergistic Hydrogen Bonding and Pi-Pi Interactions on the Cycle Stability and Charge Storage Mechanism of Organic Electrode Materials." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1605683661067324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Uteyev, Rakhim. "Etude thermodynamique et expérimentale du cycle géochimique du soufre dans les bassins sédimentaires." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10018/document.

Full text
Abstract:
Le soufre est présent dans les systèmes pétroliers à la fois sous forme organique et minérale. Il est impliqué dans de nombreuses réactions d'oxydoréduction qui affectent la qualité des huiles (par des réactions de sulfuration ou de désulfuration) et du gaz naturel (par la génération de H2S en contexte de réduction thermochimique des sulfates), ainsi que la porosité des roches réservoirs (par la dissolution de l'anhydrite ou la précipitation de soufre élémentaire ou de pyrobitume). Ces réactions sont gouvernées par la température (et dans une moindre mesure la pression), les conditions d'oxydoréduction et la composition chimique globale du système. La thèse comporte trois parties : (1) une étude thermodynamique des réactions chimiques impliquant le soufre dans les bassins sédimentaires ; (2) une étude expérimentale des réactions de sulfuration et de désulfuration des composés organiques ainsi que de la réduction thermochimique des sulfates; (3) une étude pétrographique et d'inclusions fluides sur des échantillons d'un réservoir carbonaté du bassin Pré-Caspien
Sulfur occurs in petroleum systems as both organic compounds and minerals as well as under different oxidation states. It is involved in a number of redox reactions which may impact the quality of crude oils (through sulfurization or desulfurization reactions) and natural gas (through the generation of H2S during thermochemical sulfate reduction), as well as the petrophysical properties of reservoir rocks (through the dissolution of anhydrite and the precipitation of elemental sulfur and pyrobitumen). These reactions are controlled by temperature (and to a lesser extent pressure), the redox conditions, and the overall chemical composition of the system representing the petroleum reservoir. The thesis consists of three parts: (1) a thermodynamic study of chemical reactions involving sulfur which occur in sedimentary basins; (2) an experimental simulation of sulfurization and desulfurization reactions of organic compounds, as well as of thermochemical sulfate reduction; and (3) a petrographic and fluid inclusion study of carbonate rock samples from a sulfur-rich hydrocarbon reservoir of the northern Caspian Sea
APA, Harvard, Vancouver, ISO, and other styles
26

Gaddam, Raghuveer. "Effect of boron and hydrogen on microstructure and mechanical properties of cast Ti-6Al-4V." Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17757.

Full text
Abstract:
Titanium and its alloys are widely used in applications ranging from aeroengines and offshore equipment to biomedical implants and sporting goods, owing to their high ratio of strength to density, excellent corrosion resistance, and biomedical compatibility. Among the titanium alloys used in aerospace, Ti-6Al-4V (an α+β alloy) is the most widely used, in applications in which the temperature may reach 350°C, at which point it retains good fatigue and fracture properties as well as moderate tensile strength and ductility. These alloy properties are dependent on variables such as crystalline structure, alloy chemistry, manufacturing techniques and environmental conditions during service. These variables influence the microstructure and mechanical properties of titanium alloys. With regard to the alloy chemistry and operating environment, the focus of the present work is to understand the influence of boron and hydrogen on the microstructure and selected mechanical properties of cast Ti-6Al-4V. The addition of boron to cast Ti-6Al-4V (0.06 and 0.11 wt% in this work) refines the coarse “as cast” microstructure, which is evaluated quantitatively using FoveaPro image analysis software. Compression testing was performed using a Gleeble 1500 instrument, by applying a 10% strain at different strain rates (0.001, 0.1 and 1 s-1) for temperatures in the range 25-1100°C. The tests were performed to evaluate the effect of boron on the mechanical properties of the alloy. It was observed that there is an increase in the compressive strength, predominantly at room temperature, of cast Ti-6Al-4V after the addition of boron. Metallographic evaluation showed that this increase in strength is a likely result of reductions in both the prior β grain and α colony dimensions, which is caused by boron addition. Studies in a hydrogen environment at 150 bar showed that cast Ti-6Al-4V exhibited lower yield strength and lower ultimate tensile strength in comparison with those properties measured in an air environment. No significant change in the ductility was observed. It was also noted that in a high strain range (≈2%) the low cycle fatigue (LCF) life was significantly reduced in hydrogen compared with air. Microstructural and fractographic characterization techniques were used to establish the role of hydrogen on the deformation mechanism by analysing the crack propagation path through the microstructure. It is seen that cracks tend to propagate along the interface between prior β grain boundaries and/or along the α colony boundaries
Godkänd; 2011; 20110823 (raggad); LICENTIATSEMINARIUM Ämnesområde: Konstruktionsmaterial/Engineering Materials Examinator: Docent Marta-Lena Antti, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: PhD Magnus Hörnqvist, Volvo Aero Corp. Materials Technology, Trollhättan Tid: Torsdag den 22 september 2011 kl 10.00 Plats: E246, Luleå tekniska universitet
APA, Harvard, Vancouver, ISO, and other styles
27

Jarrett, Colby Lewis. "Quantifying the impact of pump performance, chemical conversion, and material properties on solar hydrogen production." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54297.

Full text
Abstract:
As renewable energy production becomes more prevalent, the challenge of producing renewable dispatchable fuel for the transportation sector remains unresolved. One promising approach is to produce hydrogen from solar energy with a two step thermochemical cycle which utilizes an oxygen storage material (OSM) to split water through two reversible reactions. Due to the strong coupling between reactor design, operational parameters, and OSM properties, the direct comparison of two OSMs is not straightforward. In order to guide the designs of OSMs for two-step thermochemical hydrogen production, a methodology is developed to model the max performance possible for a two-step thermochemical cycle. The novel contribution of this model considers the strong coupling between reactor operation, OSM properties, and reactor performance. Next, a method for screening and evaluating new OSMs which utilizes thermogravimetric analysis (TGA) is proposed. With this data, the modeling method previously developed is applied to determine maximum reactor efficiency possible with new materials. This allows many materials to be evaluated quickly, and facilitates further characterization new OSMs. Additionally, by comparing the predicted maximum efficiency of a new material with the efficiency of current ones, this method facilitates the comparison of two different OSMs on equal footing.
APA, Harvard, Vancouver, ISO, and other styles
28

Reed, Robert Joseph. "Study of the feasibility and energy savings of producing and pre-cooling hydrogen with a 5-kW ammonia based combined power/cooling cycle." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0009201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Potter, Alan J. "The cell cycle phase specificity of DNA damage induced by radiation, peroxide and chemotherapeutic drugs targeting topoisomerase II, and CD4 and CD8 receptor expression on apoptotic human lymphocytes /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/6338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

FUKUROZAKI, SANDRA H. "Avaliação do ciclo de vida de potenciais rotas de produção de hidrogênio: estudo dos sistemas de gaseificação da biomassa e de energia solar fotovoltaica." reponame:Repositório Institucional do IPEN, 2011. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9993.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:33:38Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:05:54Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles
31

Goto, Tiago Gonçalves. "Estudo experimental do processo de oxidação do ferro com vapor de água para a produção de gás hidrogênio." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-09122016-102952/.

Full text
Abstract:
Neste trabalho, foi estudado a oxidação do ferro com vapor d\'água em forno elétrico, para a produção de gás hidrogênio. Partindo-se da revisão bibliográfica, escolheu-se o ferro devido suas propriedades e por apresentar um bom rendimento, além disso o ferro é um material barato e abundante. Na estudo experimental foi três experimentos diferentes. No primeiro, o ferro foi oxidado em forno elétrico em temperaturas de 600 a 1000ºC, variando a cada 100ºC, e tempo fixado em 3 horas. Na segunda série de experimento, foi fixado a temperatura em 800ºC e variou a duração do processo de oxidação de 1 a 4 horas, com variação de 1 hora. E na terceira série de experimentos foi realizado a análise termogravimétrica para avaliação da cinética química do processo de oxidação. Os resultados dos experimentos indicaram a produção de gás hidrogênio em quantidades maiores em temperatura de 1000ºC. Além disso foi possível observar que a taxa de oxidação do ferro é maior durante a primeira hora de ensaio. A estimativa de hidrogênio produzido é de 0,9549 g/min -m2 em oxidação a 1000ºC. Já nos resultados da termogravimetria foi obtido a energia de ativação de 147 kJ/mol.
In this work was studied the oxidation of iron by steam in the electric furnace to produce hydrogen. The first step was the literature review and iron oxide was chose to be oxidized, due to its characteristics and good yield. Furthermore, the iron is a cheap and abundant in the earth. In the experimental studies was conducted three different experiments. The First one, the iron was oxidized in the electric furnace in the temperature range of 600 - 1000ºC with a variation of 100ºC and the oxidation time was fixed in 3 hours. The second experiment was conducted with fixed temperature of 800ºC and varied the oxidation time, the range of time was from 1 to 4 hours with a variation of 1 hour. The third experiment was the thermogravimetric analysis to study the chemical kinetics, with three different temperature, 600, 800 and 1000ºC. The result of studies showed that a high temperature the hydrogen production increased and decreased with low temperature. Furthermore, the high oxidation rate was observed in the first hour of the experiment. The hydrogen production was estimated in 0.9549 g/min - m2 at 1000ºC. Another result was the activation energy Ea= 147 kJ/mol.
APA, Harvard, Vancouver, ISO, and other styles
32

Assefa, Getachew. "Environmental Systems Analysis of Waste Management : Prospects of Hydrogen Production from Waste for use in FCVs." Thesis, KTH, Industriell ekologi, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32426.

Full text
Abstract:
ORWARE, an evolving systems analysis based computer model is used to assess the performance of different waste management options from a life cycle perspective. The present version of the model consists of different submodels for transport, treatment, and disposal of different types of liquid and solid wastes and recycling of materials. Flows between submodels are described by a vector of several substances of different relevance to the system. The model calculates emissions to water and air, amount of residues returned to arable land and energy flows using the tools of life cycle analysis (LCA) and substance flow analysis (SFA). In going in the direction of stringent environmental standards and policies, there is a need for maximizing energy recovery from waste for both environmental and economic benefits. Sweden has already experience of recovering energy from waste for district heating. Recovering energy not only of high value but also of higher quality from waste would be of interest. Hydrogen is one carrier of such energy. The possibility of using hydrogen from waste as a fuel in the transport sector would contribute in heading for creating a clean environment. In this thesis a new submodel for steam reforming of biogas recovered from an anaerobic digester is developed and used with other submodels within the ORWARE framework. Four scenarios representing alternative ways of energy recovery from the organic waste in Stockholm have been simulated to compare the associated energy turnover and different environmental impacts. Digestion of the organic waste and using the biogas to fuel cars is compared against steam reforming of biogas to hydrogen or thermal gasification of the waste and processing the product gases to hydrogen. In the latter two cases hydrogen produced is used in fuel cell cars. Avoided impacts of using the biogas and hydrogen are analyzed using the fourth scenario where the waste is incinerated to generate heat and electricity. Functional equivalence between scenarios is achieved by external supply of heat, electricity and petrol. While recognizing the uncertainties during modelling and simulation, it is possible to conclude that the results indicate that there is advantage of reduced environmental impact and high energy turnover in introducing the technologies of producing hydrogen from waste into the waste management system. Further and thorough investigation is recommended to come up with a sound and firm conclusion. Key words: Systems analysis, Life cycle analysis, Substance flow analysis, Waste management, Environmental impact, Steam reforming, Thermal gasification, Fuel cell vehicles, Hydrogen
www.ima.kth.se
APA, Harvard, Vancouver, ISO, and other styles
33

Bareiß, Kay [Verfasser], Thomas [Akademischer Betreuer] Hamacher, Ulrich [Gutachter] Wagner, and Thomas [Gutachter] Hamacher. "An enhanced methodology for energy system modeling including life-cycle analysis : Hydrogen as Power-to-X element / Kay Bareiß ; Gutachter: Ulrich Wagner, Thomas Hamacher ; Betreuer: Thomas Hamacher." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1228536082/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ahmed, Shehzad, Marcos H. K. Conradt, and Valeria De Fusco Pereira. "Alternative Fuels for Transportation : A Sustainability Assessment of Technologies within an International Energy Agency Scenario." Thesis, Blekinge Tekniska Högskola, Avdelningen för maskinteknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3628.

Full text
Abstract:
Transport sector is an essential driver of economic development and growth, and at the same time, one of the biggest contributors to climate change, responsible for almost a quarter of the global carbon dioxide emissions. The sector is 95 percent dependent on fossil fuels. International Energy Agency (IEA) scenarios present different mixes of fuels to decrease both dependence on fossil fuels and emissions, leading to a more sustainable future. The main alternative fuels proposed in the Blue map scenario, presented in the Energy Technologies Perspective 2008, were hydrogen and second-generation ethanol. An assessment of these fuels was made using the tools SLCA (Sustainability Life Cycle Assessment) and SWOT Analysis. A Framework for Strategic Sustainable Development (FSSD) is the background used to guide the assessment and to help structure the results and conclusions. The results aim to alert the transport sector stakeholders about the sustainability gaps of the scenario, so decisions can be made to lead society towards a sustainable future.

Phone number 0708293568

APA, Harvard, Vancouver, ISO, and other styles
35

Maxamhud, Mahamed, and Arkam Shanshal. "SELF-SUFFICIENT OFF-GRID ENERGY SYSTEM FOR A ROWHOUSE USING PHOTOVOLTAIC PANELS COMBINED WITH HYDROGEN SYSTEM : Master thesis in energy system." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49379.

Full text
Abstract:
It is known that Sweden is categorised by being one of the regions that experience low solar radiation because it is located in the northern hemisphere that has a low potential of solar radiation during the colder seasons. The government of Sweden aim to promote a more sustainable future by applying more renewable initiative in the energy sector. One of the initiatives is by applying more renewable energy where PV panels will play a greater role in our society and in the energy sector. However, the produced energy from the PV panels is unpredictable due to changes in radiation throughout the day. One great way to tackle this issue is by combining PV panels with different energy storage system. This thesis evaluates an off-grid rowhouse in Eskilstuna Sweden where the PV panels are combined with a heat pump, thermal storage tank, including batteries and hydrogen system. The yearly electrical demand is met by utilizing PV panels, battery system for short term usage and hydrogen system for long-term usage during the colder seasons. The yearly thermal demand is met by the thermal storage tank. The thermal storage tank is charged by heat losses from the hydrogen system and thermal energy from heat pump.The calculations were simulated in Excel and MATLAB where OPTI-CE is composed with different components in the energy system. Furthermore, the off-grid household was evaluated from an economic outlook with respect to today’s market including the potential price decrease in 2030.The results indicated that the selected household is technically practicable to produce enough energy. The PV panels produces 13 560 kWh annually where the total electrical demand reaches 6 125 kWh yearly (including required electricity for the heat pump). The annual energy demand in terms of electricity and thermal heat reaches 12 500 kWh which is covered by the simulated energy system. The overproduction is stored in the batteries and hydrogen storage for later use. The back-up diesel generator does not need to operate, indicating that energy system supplies enough energy for the off-grid household. The thermal storage tank stores enough thermal energy regarding to the thermal load and stores most of the heat during the summer when there are high heat losses due to the charge of the hydrogen system. The simulated energy system has a life cycle cost reaching approximately k$318 with a total lifetime of 25 years. A similar off-grid system has the potential to reduce the life cycle cost to k$195 if the energy system is built in 2030 with a similar lifespan. The reduction occurs due to the potential price reduction for different components utilized in the energy system.
APA, Harvard, Vancouver, ISO, and other styles
36

Menzel, Marie-Luise. "Experimental Study of the 22Ne(p,γ)23Na Reaction and its Implications for Novae Scenarios." Forschungszentrum Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-113917.

Full text
Abstract:
The 22Ne(p,γ)23Na reaction belongs to the catalytic neon-sodium cycle and has an important role in the explosive hydrogen burning. The neon-sodium cycle takes place at temperatures of T = 0:1 - 0:5GK and is assumed to occur in di erent astrophysical systems: e.g. in novae, in super novae of type Ia and during the shell-burning of red giant branch stars. The implications of 22Ne(p,γ)23Na and the neon-sodium cycle in a nova scenario have been studied by using the nuclear network code libnucnet at GSI in Darmstadt. A nova is an outburst of matter in a binary system consisting of a white dwarf and a red giant star. It is therefore a representative phenomenon for explosive hydrogen burning. For the calculation of the nucleosynthesis during the nova outburst, the code libnucnet requires the initial mass composition of the novae partners, the temperature and density pro les of the nova explosion and the thermonuclear reaction rates of the participating reactions. In the following, the code determined the ow and the nal atomic abundance in the neon-sodium cycle during the entire nova process. Additionally, the in uence of the temperature pro le of the novae outburst as well as the thermonuclear reaction rate of the 22Ne(p,γ)23Na reaction on the nal atomic abundance in the outburst has been studied. A characteristic measure for the reactions in astrophysical environments is the thermonuclear reaction rate. The reaction rate of 22Ne(p,γ)23Na has still strong uncertainties in the temperature range of T = 0:03-0:3 GK. These uncertainties are based on insu cient upper limits of the resonance strengths as well as the possible existence of tentative states that are populated in the energy range of Elabp = 30 - 300 keV. The research presented in this thesis is dedicated to the experimental study of the 22Ne(p,γ)23Na reaction for an improved determination of the thermonuclear reaction rate. Furthermore, the implications of 22Ne(p,γ)23Na and the neon-sodium-cycle in novae scenarios are discussed. The data taking has been performed at the Laboratori Nazionali del Gran Sasso, Italy. This laboratory provides the LUNA facility (Laboratory for Underground Nuclear Astrophysics) for the measurement of small reaction cross sections. The LUNA facility includes a 400 kV ion accelerator, a windowless gas target system and a HPGe-detector. Based on the measurements of the 22Ne(p,γ)23Na reaction at LUNA, upper limits for the strengths of ve isolated resonances in the energy range of Elabp = 150 - 340 keV have been determined. For the nuclear resonance at Elabres = 186 keV, a positive resonance strength has been measured for the rst time in literature.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhou, Rongwei. "New Polyazine-Bridged Ru(II),Rh(III) and Ru(II),Rh(I) Supramolecular Photocatalysts for Water Reduction to Hydrogen Applicable for Solar Energy Conversion and Mechanistic Investigation of the Photocatalytic Cycle." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50832.

Full text
Abstract:
The goal of this research is to test the design constraints of active dpp-bridged RuII,RhIII (dpp = 2,3-bis(2-pyridyl)pyrazine)) supramolecular photocatalysts for water reduction to H2 and provide mechanistic insights into the catalytic cycle. Two member of a new RuII,RhIII motifs with only one Rh-'Cl bond, [(bpy)2Ru(dpp)RhCl(tpy)](PF6)4 ( bpy = 2,2'-bipyridine, tpy = 2,2':6,2"-terpyridine) and [(bpy)2Ru(dpp)RhCl(tpm)](PF6)4, (tpm = tris(1-pyrazolyl)methane), and a cis-RhCl2 model system, [(bpy)2Ru(dpp)RhCl2(bpy)](PF6)3, were prepared. This new motif was to test whether two Rh-'Cl bonds on RhIII are required for the photocatalytic water reduction. 1H NMR spectroscopic analysis of complexes prepared using deuterated ligands was used to characterize these three RuII,RhIII supramolecular complexes. Electrochemical studies suggested that replacing bpy with a tridentate ligand on RhIII shifts the RhIII/II and RhII/I reduction couples positively, which can modulate the orbital energetics of the RhIII LUMO (lowest-unoccupied molecular orbital). This substitute also changes the rate of ligand dissociation following the reduction of RhIII. In tpm and bpy systems, RhII intermediate is more stable than that in the tpy system. All three complexes were good light absorbers in the visible region and weak emitters from their emissive Ru(dπ)-'dpp(π*) 3MLCT (metal-to-ligand charge transfer) excited states at room temperature. The population of a low-lying 3MMCT (metal-to-metal charge transfer) ES (excited state) from the 3MLCT ES contributed to the weak emission, indicating an important intramolecular electron transfer process from dpp' to RhIII upon photoexcitation. The lower-lying 3MMCT excited state in the tpm and tpy systems relative to the bpy system result in a higher rate constant (ket = 2.6 x 10^7 vs 1.7 x 10^7 s-1) for intramolecular electron transfer. Spectrophotochemical analysis suggested that all three complexes were photoinitiated electron collectors capable of collecting two electrons on the RhIII center to generate the RuII,RhI species in the presence of DMA (N,N-dimethylaniline). The observed H2 production from water using [(bpy)2Ru(dpp)RhCl(tpm)](PF6)4 and [(bpy)2Ru(dpp)RhCl(tpy)](PF6)4 established that two halides on RhIII are not necessary in the dpp-bridge RuII,RhIII supramolecular photocatalytic-water-reduction system. This new discovery opens a new approach to the design of different RuII,RhIII motifs for photocatalysis. The active species for water reduction is proposed to be [(bpy)2Ru(dpp)RhICl(TL)]3+ from [(bpy)2Ru(dpp)RhCl(TL)](PF6)4 (TL (terminal ligand) = tpy or tpm) and [(bpy)2Ru(dpp)Rh(bpy)]3+ from [(bpy)2Ru(dpp)RhCl2(bpy)](PF6)3 respectively. Included here is the design and study of a RuII,RhI complex, [(bpy)2Ru(dpp)RhCl(COD)](PF6)3 (COD =1,5-cyclooctadiene) to provide more insights into the photophysical and photochemical properties of polypyridyl RuII,RhI species. Electrochemical and photophysical studies revealed a dpp-based LUMO in this RuII,RhI complex, suggesting dpp reduction upon photoexcitation. Photochemical study found that [(bpy)2Ru(dpp)RhCl(COD)](PF6)3 is an active photocatalyst for water reduction and that additional reduction(s) is (are) required after the generation of the RuII,RhI active species in the RuII,RhIII supramolecular photocatalytic H2 production system. This hypothesis was supported by the electrocatalytic behaviors of the RuII,RhIII supramolecular complexes for proton reduction. Cyclic voltammetry results in the presence of an acid suggested that the protonolysis of the RuII,RhIIH and RuII,RhIH species are electrocatalytic H2-evolution pathways. The mechanism is acid-dependent and influenced by terminal ligand. The studies of electrocatalytic proton reduction on these RuII,RhIII complexes suggested several possible intermediates involved in the photocatalytic water reduction cycle. The insights gained from this research can provide guidance in designing new type of RuII,RhIII and RuII,RhI complexes with better photocatalytic and/or electrocatalytic H2 production performance.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
38

Schäfer, Caspar. "Proteinbiochemische, spektroskopische und röntgenkristallographische Untersuchung der Actinobakteriellen [NiFe]-Hydrogenase aus Ralstonia eutropha." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/17009.

Full text
Abstract:
Im biogeochemischen Wasserstoffkreislauf erfolgt der überwiegende Teil der H2-Aufnahme aus der Atmosphäre durch die Böden. Erst seit kurzem ist bekannt, dass die Oxidation von Wasserstoff in Böden mutmaßlich durch eine Reihe von Bodenbakterien vermittelt wird, die zur Aufnahme von Wasserstoff in atmosphärischen Konzentrationen befähigt sind. Diese Bakterien codieren [NiFe]-Hydrogenasen einer neuen Gruppe, die als Gruppe 5 der [NiFe]-Hydrogenasen klassifiziert wurde. Auch das beta Proteobakterium Ralstonia eutropha besitzt die Gene einer derartigen Hydrogenase, die aufgrund ihrer Ähnlichkeit zu den sonst überwiegend in Actinobakterien gefundenen Vertretern der Gruppe 5 als „Actinobakterielle Hydrogenase“ (AH) benannt wurde. In der vorliegenden Arbeit wurde die AH aus R. eutropha als erste Gruppe 5-[NiFe]-Hydrogenase in reiner Form isoliert und eingehend durch unterschiedliche biochemische, spektroskopische und röntgenkristallographische Verfahren untersucht. Die hierbei erhaltenen Ergebnisse unterstützen die für Gruppe-5-[NiFe]-Hydrogenasen postulierte Funktion im Erhaltungsstoffwechsel der Organismen unter besonderen Bedingungen, schließen jedoch eine Beteiligung der AH an der hochaffinen Oxidation von Wasserstoff in Böden aus. Jedoch zeigt das Enzym die neuartige Eigenschaft der sauerstoffinsensitiven Wasserstoff-Oxidation, was auf die Anwesenheit eines ungewöhnlichen, durch 1 Aspartat und 3 Cysteine koordinierten [4Fe4S]-Clusters und der vermuteten Kopplung der Elektronentransportketten in der mutmaßlich physiologischen doppeldimeren Form des Enzyms zurückzuführen sein dürfte. Die Arbeit erweitert somit die Kenntnisse auf dem Gebiet der Sauerstofftoleranz von Hydrogenasen sowie der Eigenschaften der Gruppe 5-[NiFe]-Hydrogenasen und ihrer physiologischen Rolle in den betreffenden Organismen.
In the biogeochemical hydrogen cycle, the dominating process for hydrogen uptake from the atmosphere is performed in soils. Only recently it was shown that hydrogen oxidation in soils is presumably mediated by a number of soil-dwelling actinobacteria, which are enabled in high-affinity hydrogen uptake. These bacteria encode [NiFe] hydrogenases of a novel group classified as group 5 of [NiFe] hydrogenases. A hydrogenase of this group is also found in the beta proteobacterium Ralstonia eutropha and was named „Actinobacterial Hydrogenase“ (AH) for its similarity to the group 5 [NiFe] hydrogenases found in actinobacteria. In this work, the AH from R. eutropha was, as the first group 5 [NiFe] hydrogenase, purified to homogeinity and thoroughly characterized by various biochemical, spectroscopic and X-ray crystallographic methods. The results obtained hereby support the function in maintaining a basal metabolism under challenging conditions, that was postulated for group 5 [NiFe] hydrogenases. Yet, the results also exclude the possibility of the AH contributing to high-affinity hydrogen uptake in soils. However, the enzyme shows the novel property of being able of oxygen-insensitive hydrogen oxidation. This property is obviously connected to an unusual [4Fe4S] cluster coordinated by 1 aspartate and 3 cysteines, as well as to a supposed coupling of the electron transport chains in the double dimeric native form of the enzyme. Hence, this work broadens the knowledge in the field of oxygen tolerant hydrogen oxidation and provides new insights in the function of group 5 [NiFe] hydrogenases and their physiological role in the organisms.
APA, Harvard, Vancouver, ISO, and other styles
39

Bravo, Irina Moncayo. "Influência da carga orgânica na produção de biohidrogênio em AnSBBR com recirculação da fase líquida tratando o efluente do processo de produção de biodiesel." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-27082014-102814/.

Full text
Abstract:
O presente trabalho de pesquisa teve como objetivo principal avaliar o efeito da carga orgânica volumétrica aplicada (COVA) na produção de hidrogênio usando o reator AnSBBR com recirculação operado em batelada e biomassa imobilizada. Para este efeito, o reator foi operado a 30ºC com dois tempos de ciclo (3 e 4 h), alimentado com três concentrações afluentes (3000, 4000 e 5000 mgDQO.L-1), uma velocidade de recirculação de 30 L.h-1, usando glicerol como única fonte de carbono e a biomassa de uma estação de tratamento de abatedouro de aves. A combinação destes fatores fez com que o reator fosse operado com seis cargas orgânicas volumétricas aplicadas diferentes (7565, 9764, 12911, 10319, 13327 e 16216 mgDQO.L-1.d-1). Os resultados mostraram que não existiu uma tendência clara entre a carga orgânica aplicada e a produção de hidrogênio. Porém, os melhores resultados quanto à produção de hidrogênio foram atingidos quando o reator foi operado com 4 horas de tempo de ciclo e alimentado com uma concentração afluente de 5000 mgDQO.L-1 (COVA de 12911 mgDQO.L-1.d-1), sendo sua produtividade molar média de hidrogênio (PrM) de 67,5 molH2.m-3.d-1. Esta condição também atingiu o melhor rendimento molar de hidrogênio por carga orgânica aplicada RMCAS,m e o melhor rendimento molar de hidrogênio por carga orgânica removida (RMCRS,m), sendo estes de 5,2 e 21,1 molH2.kgDQO-1, respectivamente. Adicionalmente foi estudada a diferença na produção de hidrogênio entre o uso de biomassa pré-tratada e não tratada termicamente, cuja análise de variância (ANOVA) mostrou que a diferença não foi estatisticamente significativa. Finalmente o reator foi operado usando glicerina bruta industrial para comparar os resultados com aqueles obtidos operando com glicerol, observando-se uma clara desvantagem na produção de hidrogênio quando foi usada glicerina bruta. Em geral, o reator AnSBBR operado em batelada sequencial apresentou resultados promissores na produção de hidrogênio usando glicerol como fonte de carbono, porém estudos mais profundos ainda são necessários no intuito de otimizar o sistema para a utilização de glicerina bruta.
This study evaluated the influence of applied volumetric organic load on biohydrogen production in an anaerobic sequencing batch biofilm reactor (AnSBBR) with 3.5 L of liquid medium and treating 1.5 L of glycerin based wastewater per cycle at 30ºC. The reactor was operated with two cycle periods (3 and 4 hours), three influent concentrations (3000, 4000 and 5000 mgCOD.L-1), recirculation rate of 30 L.h-1 and an inoculum from a poultry slaughterhouse. Six applied volumetric organic loads (AVOLCT) were generated from the combination of cycle period and influent concentrations (7565, 9764, 12911, 10319, 13327 e 16216 mgCOD.L-1.d-1). There was not a clear relation between the applied volumetric organic load and hydrogen production. However, the highest hydrogen molar production (MPr: 67.5 molH2.m-3 .d-1) was reached when the reactor was operated with a cycle period of 4 h and an influent concentration of 5000 mgCOD.L-1 (AVOLCT: 12911 mgCOD.L-1. d-1). This condition also reached the highest molar yield per removed load based on organic matter (MYRLC,m: 5.2 molH2.kgCOD-1) and the highest molar yield per applied load based on organic matter (MYALC,m: 21.1 molH2.kgCOD-1). In addition, it was studied whether existed or not a statistical significant difference on molar productivity averages pre-treating and not pre-treating the inoculum. It was observed that this was not statistically significant (p>0.05). Finally, the reactor was operated using crude glycerol as a sole source of carbon to evaluate hydrogen production. The disadvantage on hydrogen production when crude glycerol was used comparing to pure glycerol was clearly observed. The AnSBBR used on hydrogen production experiments operated with pure glycerol as a sole carbon XIV source showed an important potential. Nevertheless, additional studies are required in order to optimize results.
APA, Harvard, Vancouver, ISO, and other styles
40

El, Gemayel Gemayel. "Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23274.

Full text
Abstract:
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
APA, Harvard, Vancouver, ISO, and other styles
41

Ulin, Sofia, and Julia Wiebert. "Framtidens hållbara elbilskoncept : En jämförande LCA-studie mellan en elbil och en bränslecellsbil." Thesis, KTH, Industriell ekologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170593.

Full text
Abstract:
Transportsektorn så som den ser ut i dagens samhälle är inte hållbar då den står för ungefär 30 % av Sveriges totala utsläpp av koldioxid. Detta beror framför allt på att fossila bränslen utgör det främsta drivmedlet inom transportsektorn, och alternativa lösningar måste därför undersökas. Två sådana alternativ är elbilar och bränslecellsbilar. För att ta reda på vilket av dessa elbilskoncept som har störst möjlighet att skapa en utsläppsfri transportsektor har livscykelanalyser genomförts för att jämföra de olika bilmodellerna ur ett livscykelperspektiv. De två bilmodeller som betraktas i studien är elbilen Tesla Model S och bränslecellsbilen Hyundai ix35 Fuel Cell. Analysen omfattar produktionen av de för bilmodellernas specifika komponenter, vilket för elbilen är batteriet och för bränslecellsbilen bränslecellen, vätgastankarna och batteriet, samt användningsfasen där även produktion av bränsle ingår. Distribution och återvinning av bilmodellerna har uteslutits ur denna studie. För genomförandet av livscykelanalyserna har programvaran SimaPro 7 som ger tillgång till ett stort antal databaser använts. Resultatet av studien visar att bränslecellsbilen har en lägre klimatpåverkan än en elbil sett ur ett livscykelperspektiv, med antagandet att vätgasen produceras med vattenkraftsproducerad el. Dock finns det en del osäkerheter i studien så som val av bilmodeller, material och processer vid produktionsfasen som kan ha påverkat resultatet. För att minska eventuella osäkerheter i beräkningarna undersöktes ytterligare två scenarion; ett där vätgasen som används i bränslecellsbilen producerats med en genomsnittlig svensk elproduktion och ett där ett mindre batteri användes i elbilen. Enligt resultatet av det första scenariot är bränslecellsbilen även då det bästa alternativet ur miljösynpunkt, medan elbilen skulle vara ett bättre alternativ om storleken på batteriet var mindre. Avslutningsvis kan konstateras att den största klimatpåverkan för de båda elbilskoncepten sker under produktionsfasen. Särskilt utmärkande är detta för elbilen, medan bränslecellsbilen har en högre klimatpåverkan under användningsfasen. Oavsett vilket av de undersökta elbilskoncepten som används kommer Sveriges transportsektor inte kunna bli koldioxidneutral inom den närmsta framtiden, och det är även svårt att avgöra vilket av koncepten som lämpar sig bäst för användning i större skala i en framtida svensk transportsektor.
The transport sector in today’s society is not sustainable since it contributes to about 30% of Sweden’s total greenhouse gas emissions. This is mainly due to the fact that the primary fuels used in the transport sector are fossil fuels. Therefore, alternative solutions must be investigated. Two such options that will be investigated in this report are battery electric vehicles and fuel cell vehicles. To find out which of these would have a greater possibility to create a zero-emission transport sector, the vehicles have been compared from a life cycle perspective by the performance of a life cycle assessment. The investigated vehicle models are the battery electric vehicle Tesla Model S and the fuel cell vehicle Hyundai ix35 Fuel Cell. The assessment includes production of the specific components for each vehicle, which are defined as the battery in the battery electric vehicle and the fuel cell, hydrogen tanks and battery in the fuel cell vehicle, along with the use phase and production of the fuel. Distribution and recycling of the vehicles have been excluded from the study. The software SimaPro 7, which gives access to several life cycle inventory databases, was used when performing the life cycle assessments. According to the result of the study, fuel cell vehicles have a lower impact on the climate than battery electric vehicles from a life cycle perspective, if the hydrogen is produced using hydroelectric energy. However, a number of uncertainties such as differences in the chosen vehicle models, and assumptions made regarding the materials and processes used in the production phase of the vehicles could have affected the result. Two additional scenarios were investigated to decrease these uncertainties; one where the hydrogen used in the fuel cell vehicle was produced using an average Swedish electricity production and one where a smaller size of the battery in the battery electric vehicle was used. In the first scenario, the fuel cell vehicle would still be the better option, but in the scenario where a smaller size of the battery was used, the battery electric vehicle would be the option with the lowest impact on the climate. It can be concluded that the greater part of the climate impact from the two vehicle concepts occurs during the production phase, particularly for the battery electric vehicle. The fuel cell vehicle, on the other hand, has a greater impact on the climate during the use phase. Regardless of which of the investigated electric vehicle concepts is used, it is not possible for the Swedish transport sector to become climate neutral within the near future, and it is also difficult to determine which concept would be more suitable for a large-scale usage in the future Swedish transport sector.
APA, Harvard, Vancouver, ISO, and other styles
42

Dumont, Yohann. "Thermodynamique des cycles associés et application au couplage entre le cycle thermochimique iode-soufre et un réacteur nucléaire pour la production d’hydrogène." Aix-Marseille 3, 2008. http://www.theses.fr/2008AIX30069.

Full text
Abstract:
Cette thèse est consacrée à la conception d’un schéma de couplage entre un procédé de production d’hydrogène par le cycle thermochimique iode-soufre et un réacteur nucléaire. Le schéma du couplage proposé utilise un cycle moteur dont le travail produit sert directement au fonctionnement d’une pompe à chaleur. Cette association de cycles thermodynamiques a pour but de récupérer les rejets énergétiques à basse température d’un procédé afin de les revaloriser pour les besoins énergétiques à haute température de ce même procédé. Cette association est appliquée au couplage étudié. La construction du réseau de distribution d’énergie est réalisée par la méthode des pincements. Dans le cas d’un couplage conventionnel, le rendement de production d’hydrogène est de 22,0%. En intégrant l’association de cycles au couplage, le rendement de production est de 42,6%. Le rendement exergétique, représentatif de la qualité de l’utilisation de l’énergie, augmente de 58,7% à 85,4%
This thesis is devoted to the design of an assembly of a hydrogen production process by the thermochemical iodine-sulphur cycle and a nuclear reactor. The suggested coupling network uses a power cycle which produces a work which is directly used for the heat pump running. The purpose of this thermodynamic cycle association is to recover the rejected energy at low temperature of a process to provide the energy needs of this same process at high temperature. This association is applied to the studied coupling. The construction of the energy distribution network is designed by the pinch analysis. In the case of a conventional coupling, the efficiency of hydrogen production is 22. 0%. By integrating the associated cycles into the coupling, the efficiency of production is 42. 6%. The exergetic efficiency, representative of the energy using quality, increases from 58. 7% to 85. 4%
APA, Harvard, Vancouver, ISO, and other styles
43

Fukurozaki, Sandra Harumi. "Avaliação do ciclo de vida de potenciais rotas de produção de hidrogênio: estudo dos sistemas de gaseificação da biomassa e de energia solar fotovoltaica." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-10102011-102047/.

Full text
Abstract:
No presente trabalho, o desempenho energético e ambiental de potencias rotas de produção de hidrogênio gaseificação da biomassa via leito fixo (LFX) e leito fluidizado (LFL) e de energia solar fotovoltaica foram estudados com base na metodologia de Avaliação do Ciclo de Vida (ACV). Após a revisão da literatura e a descrição dos procedimentos de análise, os resultados da ACV são apresentados e discutidos em termos de Demanda Acumulada de Energia (CED), Tempo de Retorno de Investimento em Energia (EPBT) e danos relacionados à Saúde Humana (SH), Qualidade do Ecossistema (QE) e Recursos Minerais e Combustíveis Fósseis (RMCF). No cômputo geral, o LFL é mais favorável para a produção de hidrogênio, embora os dois sistemas de gaseificação apresentem desempenho energético e ambiental similares. Comparativamente, o sistema fotovoltaico apresenta um EPBT maior (4,55 anos) do que os encontrados nos dois sistemas de conversão da biomassa (1,65 anos no LFL e 1,77 anos no LFX). Por outro lado, o sistema de energia solar fotovoltaico é o mais ambientalmente recomendável para a produção de hidrogênio, tendo em vista a menor contribuição em relação aos danos majoritários (saúde humana). Dentro do escopo do estudo, os sistemas avaliados apresentam mais características de complementaridade do que competição. Neste caso, enfatiza-se a importância de uma análise dos fatores econômicos e sociais pertinentes a cada país ou região, bem como dos processos posteriores de reforma e/ou purificação e eletrólise da água, considerando também o seu inteiro ciclo de vida.
In the present study, the energy and environmental performance of hydrogen potential routes biomass gasification systems by fixed bed and fluidized bed and the solar photovoltaic power plant were studied based on Life Cycle Assessment (LCA) methodology. After reviewing the literature and analytical procedures description, the results of life cycle assessment are discussed in terms of Cumulative Energy Demand (CED), Energy Payback Time (EPBT) and damages related to Human Health (SH), Ecosystem Quality (QE) and Mineral and Fossil Fuels Resources (RMCF). Although the two gasification systems have similar energy and environmental performance, the LFL is more favorable for hydrogen production. Regarding the photovoltaic system, this has a greater EPBT (4.55 years) than those found in the two systems of biomass conversion (1.65 and 1.77 years in the LFL and LFX, respectively). On the other hand, the solar photovoltaic system is the more environmentally suitable for hydrogen production, since its contribution related to human health impact is smaller than gasification systems. Within the scope of the study, the evaluated systems have more features of complementarities than competition. In this case, we emphasize the importance of analyzing the economic and social factors that are relevant in each country or region, as well as the subsequent process for hydrogen production (purification and water electrolysis) also considering the entire life cycle of systems.
APA, Harvard, Vancouver, ISO, and other styles
44

Roos, Kevin. "Polyethers and polyamide-3 synthesis by monomer activated anionic polymerization." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0331/document.

Full text
Abstract:
Ces travaux de thèse traitent de la polymérisation anionique combinée à deux méthodologies différentes d’activation du monomère visant à contrôler les réactivités des monomères et/ou des espèces actives lors de la propagation pour la synthèse de polyéthers et de polyamide-3. L’étude de nouveaux systèmes efficaces d’amorçage/propagation à base de magnésium et d’aluminium pour la polymérisation anionique par ouverture de cycles des époxydes substitués est présentée. Deux types de polyéthers réticulables ont également été synthétisés par l’utilisation de bromure de tétraoctylammonium et de triisobutyl-aluminium. Dans le premier cas, l’objectif est d’incorporer des fonctions furane pendantes le long des chaînes polyéthers. Dans le second cas il s’agit d’introduire des doubles liaisons au sein même du squelette polyéther. Les réticulations ont ensuite été effectuées thermiquement par le biais d’une chimie réversible de type Diels-Alder entre groupement furane et maléimide pour le premier cas et par vulcanisation pour le deuxième. Enfin, une étude menant à une compréhension mécanistique a été conduite sur la synthèse de polyamide-3 en masse par polymérisation par transfert d’hydrogène à partir de l’acrylamide
The studies presented in this thesis report on the use of the anionic polymerization with two different methodologies of monomer activation aiming to control the reactivity of monomers and/or growing species for the synthesis of polyethers and polyamide-3. New magnesium/aluminium active systems efficient for the anionic ringopening polymerization of substituted epoxides are proposed and developed. Cross-linkable polyethers were also synthesized by using the combination of tetraoctylammonium bromide with triisobutylaluminum. Furan groups or double bonds were introduced as pendant or inchain functions respectively in polyether-based materials. The so-formed polymers were cross-linked using reversible Diels-Alder reaction between furan and maleimide, and vulcanization for the double bonds. Finally, we investigated the mechanism of the hydrogentransfer polymerization of acrylamide in bulk conditions as a sustainable route to get polyamide-3
APA, Harvard, Vancouver, ISO, and other styles
45

Bernadet, Philippe. "Propriétés spectroscopiques de complexes formes entre un hydracide (HCl, HBr, HI)) et l'oxyde d'éthylène (EO) en matrice d'argon et d'azote : analyse du profil de la bande d'absorption HCl des complexes H(D)Cl:EO et H(D)Cl:dimethylether et étude." Paris 6, 1986. http://www.theses.fr/1986PA066355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Arora, Divyesh. "Hybridation directe d’une pile à combustible PEM et d’un organe supercapacitif de stockage : étude comparative du vieillissement en cyclage urbain, et gestion optimale de la consommation d’hydrogène." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0097.

Full text
Abstract:
La pile à combustible (FC) est peu adaptée aux variations brusques de puissance rencontrées dans les applications transport. L’hybridation de la pile à un supercondensateur (SC) a alors été étudiée, puisque cet organe de stockage capacitif permet de gérer les transitoires de puissance. L’hybridation est directe/passive, permettant ainsi de réduire le volume, la masse et le coût du système. Initialement, la faisabilité et l’impact de la taille du SC sur la performance de la FC en mono-cellule ont été examinés numériquement. Cette modélisation montre que l’augmentation de la taille du SC renforce l’effet de lissage induit par l’utilisation du SC sur le courant de la FC. Il en résulte des variations lentes et une réduction des amplitudes de courant et de tension, une diminution du courant efficace de la FC, et donc des pertes électriques de celle-ci. L’hybridation de la FC, comparativement à son fonctionnement seule, permet en outre de réduire la surconsommation en H2 de près de 50 % dans les mêmes conditions opératoires. Ces résultats ont été validés par des essais expérimentaux réalisés en mono-cellule et 3-cellules de 100 cm2 hybridée ou non. Par la suite, toujours en utilisant le protocole de cyclage urbain (FC-DLC), la durabilité de la FC a été étudiée lors d’essais de longue durée. La durabilité de la FC, qu’elle soit hybridée ou non, est la même. L’hybridation n’améliore donc pas la durée de vie de la FC mais ne lui nuit pas non plus. Par la suite, afin d’encore réduire la surconsommation en H2 en longue durée cyclage, différentes stratégies ont été étudiées : diminution du débit minimum des gaz imposé par le cyclage et diminution du coefficient de surstœchiométrie en H2. Ces changements n’ont pas d’influence sur la durabilité de la pile hybridée et ont permis de réduire à 10 % la surconsommation en hydrogène. La FC non hybridée, quant à elle, a vu sa durabilité divisée par deux lors de la diminution des débits minimum et ne fonctionnait pas avec le coefficient de surstœchiométrie ramené à 1,1. Ensuite, les travaux ont été étendus à un stack FC de forte puissance (Système Ballard de 1,2 kW) hybridé à deux modules de SC de 165 F (Maxwell Technologies). En final, un système hybride de 34 kW (FC de 10 kW et SC de 566.67 F) a montré des performances suffisantes pour une application transport urbain et péri-urbain. De plus, comparativement à une pile de 34 kW 21 % d’hydrogène sont économisés et l'investissement des équipements peut être réduit de près 50 %
The fuel cell (FC) is poorly adapted to the sudden variations in power encountered in transport applications. The FC hybridization to a supercapacitor (SC) was then studied, since this capacitive storage device allows to manage the power transients. Hybridization is direct/passive, thus reducing the volume, mass and cost of the system. Initially, the feasibility and the impact of SC size on FC performance have been examined numerically. Theoretical investigations show that increasing the size of SC enhances the smoothing effect introduced by the supercapacitor on FC current. This results into slow variations and reduction in both current and voltage amplitudes, a decrease in the fuel cell’s effective current, and therefore in FC electrical losses. Hybridization, compared to its FC operation alone, still reduces hydrogen overconsumption by nearly 50 % under the same operating conditions. These results have been validated by experimental tests carried out on a 100 cm2 single FC and a 3 cell stack. Later, the durability of the FC system has been investigated through long term tests. These durability tests have been conducted on the 100 cm2 single FC test bench using urban cycling protocol (FC-DLC), for both hybridized and unhybridized FC system, with continuous evaluation of degradation extent and causes. These tests suggest no detrimental impact on durability of the FC. For these two operating modes, a progressive aging of the gas diffusion layer seems to appear. Subsequently, in order to further reduce the overconsumption of hydrogen in long-term FC-DLC cycling, different strategies were studied: reducing the minimum gas flow rate imposed by FC-DLC cycling from 0.2 to 0.05 A cm-2, and reducing the hydrogen overstoichiometry coefficient from 1.2 to 1.1. These changes have no influence on the durability of the hybrid cell and have reduced hydrogen overconsumption to 10 %. On the contrary, in case of the unhybridized FC, durability was halved as minimum flows were reduced and it did not work when the overstoichiometry reduced coefficient. Further, work has been extended to high power FC systems (1.2 kW FC system, hybridized with two modules of 165 F, SC module). Finally, the FC downsizing has been demonstrated from 34kW FC system to hybrid source system of 10kW FC hybridized with 566.64 F SC, presenting 21 % hydrogen saving and nearly 50 % net cost savings
APA, Harvard, Vancouver, ISO, and other styles
47

Wolf, Jens. "CO2 mitigation in advanced power cycles." Doctoral thesis, KTH, Kemiteknik, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-77.

Full text
Abstract:
This thesis encompasses CO2 mitigation using three different processes: i) natural gas-fired combined cycle with chemical looping combustion (CLC), ii) trigeneration of electrical power, hydrogen and district heating with extended CLC, iii) steam-based gasification of biomass integrated in an advanced power cycle. In CLC, a solid oxygen carrier circulates between two fluidised-bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In this thesis, CLC has been studied as an alternative process for CO2 capture in a natural gas-fired combined cycle (NGCC). The potential efficiency of such a process using a turbine inlet temperature of 1200 °C and a pressure ratio of 13 is between 52 and 53 % when including the penalty for CO2 compression to 110 bar. It is shown that this efficiency cannot be further improved by including an additional CO2 turbine. Two conceivable reactor designs for CLC in an NGCC are presented. Top-firing has been studied as an option to overcome a temperature limitation in the CLC reactor system. The degree of CO2 capture is shown versus the temperature in the CLC reactor and its combustion efficiency. CLC has the potential to reach both a higher efficiency and a higher degree of CO2 capture than conventional post combustion CO2 capture technique. However, further research is needed to solve technical problems as, for example, temperature limitations in the reactor to reach this potential. Extended CLC (exCLC) is introduced, in which hydrogen is not only produced but also inherently purified. The potential efficiency of a novel tri-generation process for hydrogen, electricity and district heating using exCLC for CO2 capture is investigated. The results show that a thermal efficiency of about 54% might be achieved. A novel power process named evaporative biomass air turbine (EvGT-BAT) for biomass feedstock is presented. This process contains a steam-based gasification of biomass, which is integrated in an externally fired gas turbine cycle with top-firing. In the EvGT-BAT process, the steam-based gasification is conducted in an entrained-flow tubular reactor that is installed in the SFC as a heat exchanger. The EvGT-BAT process has the potential to generate electrical power from biomass with an efficiency of 41 %.
APA, Harvard, Vancouver, ISO, and other styles
48

Wolf, Jens. "CO2 mitigation in advanced power cycles." Doctoral thesis, KTH, Chemical Engineering and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-77.

Full text
Abstract:

This thesis encompasses CO2 mitigation using three different processes: i) natural gas-fired combined cycle with chemical looping combustion (CLC), ii) trigeneration of electrical power, hydrogen and district heating with extended CLC, iii) steam-based gasification of biomass integrated in an advanced power cycle.

In CLC, a solid oxygen carrier circulates between two fluidised-bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In this thesis, CLC has been studied as an alternative process for CO2 capture in a natural gas-fired combined cycle (NGCC). The potential efficiency of such a process using a turbine inlet temperature of 1200 °C and a pressure ratio of 13 is between 52 and 53 % when including the penalty for CO2 compression to 110 bar. It is shown that this efficiency cannot be further improved by including an additional CO2 turbine. Two conceivable reactor designs for CLC in an NGCC are presented. Top-firing has been studied as an option to overcome a temperature limitation in the CLC reactor system. The degree of CO2 capture is shown versus the temperature in the CLC reactor and its combustion efficiency. CLC has the potential to reach both a higher efficiency and a higher degree of CO2 capture than conventional post combustion CO2 capture technique. However, further research is needed to solve technical problems as, for example, temperature limitations in the reactor to reach this potential.

Extended CLC (exCLC) is introduced, in which hydrogen is not only produced but also inherently purified. The potential efficiency of a novel tri-generation process for hydrogen, electricity and district heating using exCLC for CO2 capture is investigated. The results show that a thermal efficiency of about 54% might be achieved.

A novel power process named evaporative biomass air turbine (EvGT-BAT) for biomass feedstock is presented. This process contains a steam-based gasification of biomass, which is integrated in an externally fired gas turbine cycle with top-firing. In the EvGT-BAT process, the steam-based gasification is conducted in an entrained-flow tubular reactor that is installed in the SFC as a heat exchanger. The EvGT-BAT process has the potential to generate electrical power from biomass with an efficiency of 41 %.

APA, Harvard, Vancouver, ISO, and other styles
49

Meyer, Patrick E. "Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 289 p, 2010. http://proquest.umi.com/pqdweb?did=1993328861&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Le, Gal Alex. "Développement d’oxydes mixtes supportés pour la production solaire d’hydrogène par cycles thermochimiques de dissociation de l’eau." Perpignan, 2011. http://www.theses.fr/2011PERP1072.

Full text
Abstract:
Ce travail de thèse porte sur l’étude et le développement d’oxydes mixtes de type ferrite ou cérine dopée pour la production d’hydrogène par voie solaire. Le procédé thermochimique étudié consiste à réaliser la dissociation de molécules d’eau en deux étapes distinctes. Dans un premier temps l’oxyde métallique est réduit thermiquement en utilisant la chaleur issue du rayonnement solaire concentré puis la seconde étape consiste à faire réagir de la vapeur d’eau avec les matériaux précédemment réduit afin que ceux-ci se ré-oxydent et que de l’hydrogène soit produit. Les familles de matériaux que constituent les ferrites et les cérines permettent de réaliser la première étape en phase solide à une température de 1400°C. Les cycles reposent sur les couples redox Fe3+/Fe2+ et Ce4+/Ce3+. De nouvelles compositions ont été étudiées afin d’optimiser les performances de production d’hydrogène. L’influence de différents paramètres tels que la température, la stœchiométrie ou la morphologie des poudres a été étudiée. Les ferrites de nickel permettent une bonne production d’hydrogène mais une perte de réactivité au cours des cycles est observée suite aux traitements thermiques. Les cérines dopées au zirconium permettent une production d’hydrogène similaire aux ferrites de nickel mais la stabilité thermique des matériaux est meilleure et la réactivité au cours de plusieurs cycles est supérieure aux ferrites (350 µmol/g d’H2 au bout de plusieurs cycles). Des travaux sur la mise en forme des matériaux en les déposant sur des mousses céramiques ont montré quelques limitations telles que la réactivité du support avec l’eau ou la difficulté de réaliser des dépôts conséquents. Un réacteur solaire a été conçu et construit afin d’étudier par la suite les systèmes thermochimiques intégrés dans un procédé et ainsi évaluer la production d’hydrogène par voie solaire en conditions réelles
This PhD-thesis deals with the development of mixed oxides, especially ferrite and doped ceria, for solar hydrogen production. The thermochemical process consists in realizing the water-splitting reaction in two steps. First the metal oxide is thermally reduced using heat generated by concentrated solar energy and then, during the second step, water vapor reacts with the reduced species to re-oxidize it and produce hydrogen. By using ferrites or ceria, the first step is realized in a solid state at a temperature of 1400°C. These cycles are based on Fe3+/Fe2+ and Ce4+/Ce3+ redox pairs. New compositions have been studied to improve the hydrogen production. The influence of different parameters such as temperature, stoichiometry, or powder morphology was investigated. Nickel ferrites allow a high production of hydrogen but a reactivity decrease is observed during cycling caused by thermal treatments. Zirconia-doped ceria permits lower hydrogen production compared to Ni-ferrites but the thermal stability of these materials and the hydrogen production during cycling are better (350 µmol/g of H2 after cycling). Investigations were done on materials shaping by coating ceramic foams and several limitations were observed such as the reactivity of the support with water or the difficulties to coat important quantity of reactive material. A solar reactor was built with the final aim of thermochemical systems integration in a solar process and evaluation of the hydrogen production in real conditions
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography