Journal articles on the topic 'Hydrogen embrittlement of materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrogen embrittlement of materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Su, Jian-Qing, Shu-Jun Gao, and Zhuang-Qi Hu. "Hydrogen embrittlement of B-doped Ni3Al-based alloy." Journal of Materials Research 13, no. 11 (1998): 3052–59. http://dx.doi.org/10.1557/jmr.1998.0417.
Full textBhat, Nidhi, Chitra Agrawal, and Ujwal Shreenag Meda. "Hydrogen Impermeable Materials for Efficient Hydrogen Storage." ECS Transactions 107, no. 1 (2022): 4875–83. http://dx.doi.org/10.1149/10701.4875ecst.
Full textYin, Ruifeng, Ruidong Fu, Ningning Gu, and Yongjiu Liu. "A Study of Hydrogen Embrittlement of SA-372 J Class High Pressure Hydrogen Storage Seamless Cylinder (≥100 MPA)." Materials 15, no. 21 (2022): 7714. http://dx.doi.org/10.3390/ma15217714.
Full textMurakami, Yukitaka, Toshihiko Kanezaki, and Yoji Mine. "Hydrogen Effect against Hydrogen Embrittlement." Metallurgical and Materials Transactions A 41, no. 10 (2010): 2548–62. http://dx.doi.org/10.1007/s11661-010-0275-6.
Full textJayalakshmi, S., Ki Bae Kim, Young Whan Cho, and Eric Fleury. "Ti-Based Amorphous Alloys and Composites as Potential Candidate Materials for Energy Applications." Solid State Phenomena 124-126 (June 2007): 915–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.915.
Full textLi, Lingxiao, Jiyan Liu, Yuhao Wang, Guozhu Zhang, and Fengshan Du. "Study on the Effect of Microstructure Gradients Caused by Heat Gradients on Hydrogen Embrittlement Sensitivity in Heavy Forgings." Metals 12, no. 4 (2022): 610. http://dx.doi.org/10.3390/met12040610.
Full textYamamoto, Seigoro. "Hydrogen Embrittlement of Nuclear Power Plant Materials." MATERIALS TRANSACTIONS 45, no. 8 (2004): 2647–49. http://dx.doi.org/10.2320/matertrans.45.2647.
Full textDwivedi, Sandeep Kumar, and Manish Vishwakarma. "Hydrogen embrittlement in different materials: A review." International Journal of Hydrogen Energy 43, no. 46 (2018): 21603–16. http://dx.doi.org/10.1016/j.ijhydene.2018.09.201.
Full textPryadko, T. V., V. A. Dekhtyarenko, V. I. Bondarchuk, M. A. Vasilyev, and S. M. Voloshko. "Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42, no. 10 (2020): 1419–29. http://dx.doi.org/10.15407/mfint.42.10.1419.
Full textAkiyama, Eiji. "Hydrogen Embrittlement of Metallic Materials and Recent Subjects." Materia Japan 56, no. 3 (2017): 230–33. http://dx.doi.org/10.2320/materia.56.230.
Full textAyas, C., N. A. Fleck, and V. S. Deshpande. "Hydrogen embrittlement of a bimaterial." Mechanics of Materials 80 (January 2015): 193–202. http://dx.doi.org/10.1016/j.mechmat.2014.06.002.
Full textZhang, Fan, Zeen Wu, Tiebang Zhang, Rui Hu, and Xiaoye Wang. "Microstructure Sensitivity on Environmental Embrittlement of a High Nb Containing TiAl Alloy under Different Atmospheres." Materials 15, no. 23 (2022): 8508. http://dx.doi.org/10.3390/ma15238508.
Full textReddy, K. G., S. Arumugam, and T. S. Lakshmanan. "Hydrogen embrittlement of maraging steel." Journal of Materials Science 27, no. 19 (1992): 5159–62. http://dx.doi.org/10.1007/bf02403810.
Full textNishimura, Rokuro. "Hydrogen Embrittlement of Metallic Materials in Corrosive Environments." Zairyo-to-Kankyo 62, no. 11 (2013): 410–15. http://dx.doi.org/10.3323/jcorr.62.410.
Full textEliezer, Dan, and Ravit Silverstein. "Recent Studies of Hydrogen Embrittlement in Structural Materials." Procedia Structural Integrity 13 (2018): 2233–38. http://dx.doi.org/10.1016/j.prostr.2018.12.135.
Full textDadfarnia, Mohsen, Akihide Nagao, Shuai Wang, May L. Martin, Brian P. Somerday, and Petros Sofronis. "Recent advances on hydrogen embrittlement of structural materials." International Journal of Fracture 196, no. 1-2 (2015): 223–43. http://dx.doi.org/10.1007/s10704-015-0068-4.
Full textTrautmann, Anton, Gregor Mori, Markus Oberndorfer, Stephan Bauer, Christoph Holzer, and Christoph Dittmann. "Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments." Materials 13, no. 16 (2020): 3604. http://dx.doi.org/10.3390/ma13163604.
Full textKasul, David B., and Lloyd A. Heldt. "Environmental Effects on the Cracking of Engineering Materials." MRS Bulletin 14, no. 8 (1989): 37–43. http://dx.doi.org/10.1557/s0883769400061947.
Full textQu, Feng, An, et al. "Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging." Materials 12, no. 16 (2019): 2575. http://dx.doi.org/10.3390/ma12162575.
Full textAlexander Stopher, Miles, and Pedro E. J. Rivera-Diaz-del-Castillo. "Hydrogen embrittlement in bearing steels." Materials Science and Technology 32, no. 11 (2016): 1184–93. http://dx.doi.org/10.1080/02670836.2016.1156810.
Full textYan, Yingjie, Yukun Zhang, Lixian Zhao, et al. "Effect of Applied Tensile Stress on Hydrogen-Induced Delayed Fracture Mode of Fe-Ni-Cr Austenitic Alloy Weldment." Metals 12, no. 10 (2022): 1614. http://dx.doi.org/10.3390/met12101614.
Full textWatakabe, Takahito, Goroh Itoh, and Yuji Hatano. "Visualization of Diffusive Hydrogen." Materials Science Forum 654-656 (June 2010): 2903–6. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2903.
Full textYu, Haiyang, Jim Stian Olsen, Antonio Alvaro, Lijie Qiao, Jianying He, and Zhiliang Zhang. "Hydrogen informed Gurson model for hydrogen embrittlement simulation." Engineering Fracture Mechanics 217 (August 2019): 106542. http://dx.doi.org/10.1016/j.engfracmech.2019.106542.
Full textMajor, Š. "Hydrogen Embrittlement and its Effect on Fatigue Life of Nitrided Steel in Gigacycle Fatigue: Analysis and Modelling." Journal of Physics: Conference Series 2315, no. 1 (2022): 012025. http://dx.doi.org/10.1088/1742-6596/2315/1/012025.
Full textKushida, Takahiro, and Takeo Kudo. "Hydrogen Embrittlement is Steels from Viewpoints of Hydrogen Diffusion and Hydrogen Absorption." Materia Japan 33, no. 7 (1994): 932–39. http://dx.doi.org/10.2320/materia.33.932.
Full textThiessen, R. G. "Hydrogen-related challenges for the steelmaker: the search for proper testing." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2098 (2017): 20160408. http://dx.doi.org/10.1098/rsta.2016.0408.
Full textKo, Seok-Woo, Ji-Min Lee, and Byoungchul Hwang. "Effect of Nb addition and Pre-strain on Hydrogen Embrittlement of Low-carbon Steels with Ferrite-pearlite Structure." Korean Journal of Metals and Materials 58, no. 11 (2020): 752–58. http://dx.doi.org/10.3365/kjmm.2020.58.11.752.
Full textHojo, Tomohiko, Yuki Shibayama, Saya Ajito, Motomichi Koyama, and Eiji Akiyama. "Hydrogen Embrittlement of High-Strength Steel Sheets." Materia Japan 61, no. 7 (2022): 413–18. http://dx.doi.org/10.2320/materia.61.413.
Full textNagumo, Michihiko. "Fundamental Aspects of Hydrogen Embrittlement of Iron." Materia Japan 33, no. 7 (1994): 914–21. http://dx.doi.org/10.2320/materia.33.914.
Full textCho, Lawrence, Yuran Kong, John G. Speer, and Kip O. Findley. "Hydrogen Embrittlement of Medium Mn Steels." Metals 11, no. 2 (2021): 358. http://dx.doi.org/10.3390/met11020358.
Full textJayalakshmi, S., J. P. Ahn, K. B. Kim, and E. Fleury. "Hydrogen-induced amorphization and embrittlement resistance in Ti-based in situ composite with bcc-phase in an amorphous matrix." Journal of Materials Research 22, no. 2 (2007): 428–36. http://dx.doi.org/10.1557/jmr.2007.0045.
Full textChoi, Young-Hwan, Jung Hee Lee, Seok-Min Kim, et al. "Temperature-Dependent Hydrogen Embrittlement of Austenitic Stainless Steel on Phase Transformation." Metals 13, no. 1 (2022): 35. http://dx.doi.org/10.3390/met13010035.
Full textPriyadarshi, A., and R. Balasubramaniam. "On critical hydrogen concentration for hydrogen embrittlement of Fe3Al." Bulletin of Materials Science 24, no. 5 (2001): 559–62. http://dx.doi.org/10.1007/bf02706731.
Full textYin, Ruifeng, Ruidong Fu, Wenlong Wei, Jianfu Gao, Yongjiu Liu, and Shuaitao Ge. "Elastic–Plastic Numerical Analysis of the Spinning Process of SA-372 Steel Used in High-Pressure Hydrogen Storage Cylinders (≥100 MPA)." Materials 16, no. 1 (2022): 275. http://dx.doi.org/10.3390/ma16010275.
Full textChu, W. Y., J. X. Li, C. H. Huang, Y. B. Wang, and L. J. Qiao. "Hydrogen Embrittlement of Rail Steels." CORROSION 55, no. 9 (1999): 892–97. http://dx.doi.org/10.5006/1.3284046.
Full textPerrin, M., L. Gaillet, C. Tessier, and H. Idrissi. "Hydrogen embrittlement of prestressing cables." Corrosion Science 52, no. 6 (2010): 1915–26. http://dx.doi.org/10.1016/j.corsci.2010.02.041.
Full textHojo, Tomohiko, Yutao Zhou, Junya Kobayashi, et al. "Effects of Thermomechanical Processing on Hydrogen Embrittlement Properties of UltraHigh-Strength TRIP-Aided Bainitic Ferrite Steels." Metals 12, no. 2 (2022): 269. http://dx.doi.org/10.3390/met12020269.
Full textCai, S. W., Y. Zong, T. S. Hua, and R. G. Song. "Study on the inhibition of hydrogen embrittlement of 7050 aluminum alloy in humid air by MAO coating." Anti-Corrosion Methods and Materials 67, no. 4 (2020): 387–94. http://dx.doi.org/10.1108/acmm-12-2019-2237.
Full textKim, Jae-Yun, Seok-Woo Ko, and Byoungchul Hwang. "Effect of Microstructure on Strain Aging and Hydrogen Embrittlement Behavior of Bake Hardening Steels." Korean Journal of Metals and Materials 60, no. 11 (2022): 811–18. http://dx.doi.org/10.3365/kjmm.2022.60.11.811.
Full textBarrera, O., and A. C. F. Cocks. "Mesoscopic model of hydrogen embrittlement in particle strengthened materials." Philosophical Magazine 102, no. 8 (2021): 698–717. http://dx.doi.org/10.1080/14786435.2021.2012611.
Full textVlasov, N. M., and O. I. Chelyapina. "Mechanisms of hydrogen embrittlement and fracture of nanocrystalline materials." Russian Metallurgy (Metally) 2017, no. 4 (2017): 245–49. http://dx.doi.org/10.1134/s0036029517040231.
Full textHardie, D., J. Xu, E. A. Charles, and Y. Wei. "Hydrogen embrittlement of stainless steel overlay materials for hydrogenators." Corrosion Science 46, no. 12 (2004): 3089–100. http://dx.doi.org/10.1016/j.corsci.2004.03.017.
Full textTakasugi, T., and S. Hanada. "Environmental embrittlement of boron-doped Ni3(Al, Ti) single crystals at room temperature." Journal of Materials Research 8, no. 10 (1993): 2534–42. http://dx.doi.org/10.1557/jmr.1993.2534.
Full textMeng, Ling Dong, Qing Zhang, and Zhi Jie Liang. "The Experimental Study on Sensitivity of Hydrogen Embrittlement of 20Cr2Ni4A High-Strength Steel Cleaned by Ultrasonic and Deruster." Advanced Materials Research 291-294 (July 2011): 1136–40. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1136.
Full textCastens, Matthias, Stefanie Hoja, Holger Surm, Franz Hoffmann, Rainer Fechte-Heinen, and Matthias Steinbacher. "Hydrogen Absorption during Case Hardening of Steels EN20MnCr5 (SAE5120) and EN18CrNiMo7-6 (SAE4820)." Metals 12, no. 1 (2021): 6. http://dx.doi.org/10.3390/met12010006.
Full textLiu, Y., K. Y., J. H. Zhang, G. Lu, and Z. Q. Hu. "First-principles investigation on environmental embrittlement of TiAl." Journal of Materials Research 13, no. 2 (1998): 290–301. http://dx.doi.org/10.1557/jmr.1998.0040.
Full textPeral, Luis Borja, Inés Fernández-Pariente, Chiara Colombo, Cristina Rodríguez, and Javier Belzunce. "The Positive Role of Nanometric Molybdenum–Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels." Materials 14, no. 23 (2021): 7269. http://dx.doi.org/10.3390/ma14237269.
Full textKhanchandani, Heena, Se-Ho Kim, Rama Srinivas Varanasi, TS Prithiv, Leigh T. Stephenson, and Baptiste Gault. "Hydrogen and deuterium charging of site-specific specimen for atom probe tomography." Open Research Europe 1 (October 14, 2021): 122. http://dx.doi.org/10.12688/openreseurope.14176.1.
Full textKhanchandani, Heena, Se-Ho Kim, Rama Srinivas Varanasi, TS Prithiv, Leigh T. Stephenson, and Baptiste Gault. "Hydrogen and deuterium charging of site-specific specimen for atom probe tomography." Open Research Europe 1 (October 14, 2021): 122. http://dx.doi.org/10.12688/openreseurope.14176.1.
Full textBhadeshia, Harshad Kumar Dharamshi Hansraj. "Prevention of Hydrogen Embrittlement in Steels." ISIJ International 56, no. 1 (2016): 24–36. http://dx.doi.org/10.2355/isijinternational.isijint-2015-430.
Full text