Academic literature on the topic 'Hydrogen embrittlement of metals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogen embrittlement of metals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrogen embrittlement of metals"
Herlach, D., C. Kottler, T. Wider, and K. Maier. "Hydrogen embrittlement of metals." Physica B: Condensed Matter 289-290 (August 2000): 443–46. http://dx.doi.org/10.1016/s0921-4526(00)00431-2.
Full textFukai, Yuh. "Hydrogen in metals VII, Hydrogen embrittlement(1)." Bulletin of the Japan Institute of Metals 25, no. 7 (1986): 633–39. http://dx.doi.org/10.2320/materia1962.25.633.
Full textFukai, Yuh. "Hydrogen in metals. VIII Hydrogen embrittlement. (2)." Bulletin of the Japan Institute of Metals 25, no. 11 (1986): 931–40. http://dx.doi.org/10.2320/materia1962.25.931.
Full textFukai, Yuh. "Hydrogen in metals. IX Hydrogen embrittlement. (3)." Bulletin of the Japan Institute of Metals 26, no. 3 (1987): 208–18. http://dx.doi.org/10.2320/materia1962.26.208.
Full textBirnbaum, H. K., and I. M. Robertson. "Hydrogen embrittlement." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 612–13. http://dx.doi.org/10.1017/s0424820100155037.
Full textLi, Xinfeng, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, and Xiaolong Song. "Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention." Acta Metallurgica Sinica (English Letters) 33, no. 6 (April 22, 2020): 759–73. http://dx.doi.org/10.1007/s40195-020-01039-7.
Full textZhong, W., Y. Cai, and D. Tománek. "Computer simulation of hydrogen embrittlement in metals." Nature 362, no. 6419 (April 1993): 435–37. http://dx.doi.org/10.1038/362435a0.
Full textMurakami, Yukitaka, Toshihiko Kanezaki, and Yoji Mine. "Hydrogen Effect against Hydrogen Embrittlement." Metallurgical and Materials Transactions A 41, no. 10 (June 22, 2010): 2548–62. http://dx.doi.org/10.1007/s11661-010-0275-6.
Full textLambert, H., and Y. S. Chen. "Hydrogen embrittlement: future directions—discussion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2098 (June 12, 2017): 20170029. http://dx.doi.org/10.1098/rsta.2017.0029.
Full textPryadko, T. V., V. A. Dekhtyarenko, V. I. Bondarchuk, M. A. Vasilyev, and S. M. Voloshko. "Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42, no. 10 (December 8, 2020): 1419–29. http://dx.doi.org/10.15407/mfint.42.10.1419.
Full textDissertations / Theses on the topic "Hydrogen embrittlement of metals"
Stroe, MIOARA ELVIRA. "Hydrogen embrittlement of ferrous materials." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210889.
Full textThe aim of this work is twofold: to better understand the hydrogen embrittlement mechanisms and to translate the acquired knowledge into a more appropriate qualification test.
The phenomena of hydrogen entry and transport inside the metals, together with the different types of damages due to the presence of hydrogen, are presented.
The analysis of the most important models proposed up to now for hydrogen embrittlement (HE) indicated that the slow dynamic plastic straining is a key factor for the embritteling process. There is a synergistic effect of hydrogen – dislocations interactions: on one hand hydrogen facilitates the dislocations movement (according to the HELP mechanism) and on the other hand dislocations transport hydrogen during their movement when their velocity is lower than a critical value.
This work is focused on supermartensitic stainless steels, base and welded materials. The interest on these materials is due to their broad use in offshore oil production.
First, the material’s characterisation with regards to hydrogen content and localisation was performed. This was conducted in charging conditions that are representative of industrial applications.
Because of previous industrial experience it was necessary to find a more appropriate qualification test method to asses the risk of HE.
In this work we proposed the stepwise repeated slow strain rate test (SW R – SSRT) as a qualification test method for supermartensitic stainless steels.
This test method combines hydrogen charging, test duration, plastic, dynamic and slow strains. Thus, this test method is coherent with both the model HELP proposed for hydrogen embrittlement and the observations of industrial failures.
The stepwise repeated slow strain rate test (SW RSSRT) is interesting not only as a qualification test of martensitic stainless steels, but also as a qualification test of conditions for using these materials (type of straining, range of strain and stress, strain rate, hydrogen charging conditions, etc.).
Ce travail se rapporte à l’endommagement provoqué par la présence simultanée de l’hydrogène sous forme atomique et une contrainte (appliquée où résiduelle).
Ce travail a comme but une meilleure compréhension du mécanisme de la fragilisation par l’hydrogène (FPH) et la recherche d’un essai de qualification qui soit cohérent avec ce mécanisme.
Les phénomènes liés à l’entrée et au transport de l’hydrogène au sein des métaux, ensemble avec les différents types d’endommagements dus à la présence de l’hydrogène, sont présentés.
L’analyse des modèles proposés jusqu’au présent pour la fragilisation par l’hydrogène (FPH) suggère que la déformation lente plastique dynamique est le facteur clé pour le processus de la fragilisation. Il y a un effet synergétique des interactions entre l’hydrogène et les dislocations: d’un coté l’hydrogène facilite le mouvement des dislocations (d’après le modèle HELP) et d’un autre coté les dislocations transportent l’hydrogène pendant leur mouvement, pourvu que leur vitesse soit en dessous d’une valeur critique.
Le travail a été conduit sur des aciers supermartensitiques, matériau de base et soudé. L’intérêt pour ces matériaux réside de leur large utilisation dans la production du pétrole en offshore.
D’abord, le matériau a été caractérisé du point de vu de la teneur et de la localisation de l’hydrogène. Les essais ont été conduits dans des conditions représentatives pour les cas industriels.
L’expérience industrielle d’auparavant indique qu’il est nécessaire de trouver un test de qualification plus approprié pour estimer la susceptibilité à la fragilisation par l’hydrogène.
Dans ce travail on propose un essai de traction lente incrémentée (SW R – SSRT) comme méthode de qualification pour les aciers supermartensitiques.
L’essai combine le chargement en hydrogène, la durée d’essai, la déformation lente, plastique et dynamique. Donc, cette méthode d’essai est cohérente avec le modèle HELP proposé pour FPH et les observations des accidents industriels.
Cet essai est intéressant pas seulement comme essai de qualification pour les aciers supermartensitiques, mais aussi comme essai de qualification pour les conditions d’utilisation des ces matériaux (type de déformation, niveau de déformation et contrainte, vitesse de déformation, conditions de chargement en hydrogène, etc.).
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Hsieh, Jang-Hsing. "Hydrogen embrittlement of cold worked plain carbon steel." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/12016.
Full textJothi, Sathiskumar. "Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials." Thesis, Swansea University, 2015. https://cronfa.swan.ac.uk/Record/cronfa42212.
Full textDowson, A. L. "Some aspects of hydrogen absorption and hydrogen embrittlement in alpha titanium." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382542.
Full textBuntain, Ryan John. "Effect of Microstructure on Hydrogen Assisted Cracking in Dissimilar Welds of Low Alloy Steel Pipes Joined with Nickel Based Filler Metals." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577785066479763.
Full textBrahimi, Salim. "Effect of surface processing variables on hydrogen embrittlement of steel fasteners." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112560.
Full textUehara, André Yugou. "Fragilização por hidrogênio de parafusos cementados." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265279.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T17:02:04Z (GMT). No. of bitstreams: 1 Uehara_AndreYugou_M.pdf: 4445631 bytes, checksum: ba69e40eee3a8de5233ab826f19564d7 (MD5) Previous issue date: 2011
Resumo: Este trabalho tem por objetivo investigar a etapa de decapagem ácida e os processos de desidrogenação e retrabalho realizados durante a zincagem de parafusos quanto à fragilização por hidrogênio. Parafusos fabricados conforme a norma JIS B 1127 (1995), cementados, de 6 mm de diâmetro e 16 mm de comprimento de rosca foram organizados em 39 diferentes grupos. A decapagem foi avaliada quanto ao volume de ácido clorídrico (700 ml, 900 ml e 1000 ml) e presença, ou ausência, de inibidor para este ácido, utilizando tempos de decapagem de 15, 30, 45 e 60 minutos para cada condição de volume de ácido e inibidor utilizados. A desidrogenação foi avaliada utilizando parafusos decapados (solução: 1000 ml de ácido, ausência de inibidor e decapados por 15, 30, 45 e 60 minutos) e desidrogenados a uma temperatura de 1000C e tempo total de processo de 1, 2 e 3,5 horas. O retrabalho foi avaliado utilizando parafusos de 8 ?m de espessura de camada zincada, retrabalhados por 4 minutos em 700 ml de ácido, ausência de inibidor e 300 ml de água, avaliando as hipóteses do retrabalho único e duplo sem desidrogenação e do retrabalho único seguido de desidrogenação (1000C - 2 horas). Ensaios de pré-carregamento para a detecção da fragilização por hidrogênio foram realizados em parafusos que sofreram as preparações citadas, sendo o torque de ruptura avaliado nestes parafusos, assim como naqueles obtidos após o tratamento térmico. Análises química e metalográfica e ensaios de microdureza Vickers e tração, além de análise fratográfica por microscopia eletrônica de varredura (MEV) também foram realizados. A análise metalográfica revelou uma matriz ferrítica composta por grãos equiaxiais com carbonetos esferoidizados para o fio máquina, enquanto que o parafuso possui estrutura ferrítico-perlítica no núcleo e martensita revenida na camada cementada. Os ensaios de microdureza e de tração revelaram que o fio máquina e o parafuso possuem níveis de resistência mecânica dentro do esperado conforme as condições utilizadas, enquanto que não houve diferenças significativas entre os valores de torque de ruptura obtidos em ambas as situações analisadas. A etapa de decapagem ácida revelou que, nos grupos que não utilizaram inibidor, o número de falhas aumenta num primeiro momento com o aumento do tempo de decapagem, reduzindo após um determinado tempo de decapagem relacionado ao volume de ácido utilizado. O número de falhas sofre grande redução com a utilização do inibidor, porém mesmo a baixas concentrações de ferro, a utilização de maiores volumes de ácido associado a maiores tempos de decapagem aumentam o risco de fragilização. Apenas houve falha para a desidrogenação realizada a 1000C, por 1 hora, revelando a importância de adequados controles de temperatura, procedimentos de homogeneização e parâmetros de temperatura e tempo. Não houve falhas para o retrabalho revelando a importância de adequados procedimentos de retrabalho (tempo e solução) e de desidrogenação, enquanto que a análise da superfície de fratura revelou apenas os micromecanismos de fratura intergranular e dimples, sendo este último mais freqüentemente associado a regiões mais próximas ao núcleo, além da presença de trincas secundárias
Abstract: The main aim of this work is to investigate the effects on hydrogen embrittlement of bolts due to acid pickling, baking, and strip processes performed during zinc plating. Carburized bolts type "hexagon flange head tapping screws", with 6 mm of diameter and 16 mm of thread length were organized into 39 different groups. Acid pickling was evaluated using volumes of hydrochloric acid of 700 ml, 900 ml, and 1000 ml, presence, or absence, of acid inhibitor, and pickling periods of 15, 30, 45, and 60 minutes for each condition of acid volume and inhibitor used. Baking was evaluated using 1000C, and periods of 1, 2, and 3.5 hours for bolts that were subjected to acid pickling with a solution of 1000 ml of acid, absence of inhibitor, and pickling periods of 15, 30, 45, and 60 minutes. Strip was evaluated using bolts with zinc layer thickness of 8 ?m, stripped for 4 minutes in a solution of 700 ml of acid, absence of inhibitor, and 300 ml of water, performing the hypotheses of single and double strip without baking, and single strip followed by baking (1000C - 2 hours). Preloading tests for the detection of hydrogen embrittlement were conducted in bolts that were subjected to the preparations mentioned, while torsional tests were also conducted at these bolts, as well as in those obtained after heat treatment. Chemical and metallographic analysis, Vickers microhardness and tensile tests, and fractographic analysis using scanning electron microscopy (SEM) were also conducted. Metallographic analysis revealed a ferritic matrix composed of equiaxed grains with spheroidized carbides for the wire, while the bolts showed a ferritic-pearlitic microstructure at the center and tempered martensite at the hardened layer. Microhardness and tensile tests revealed that wire and bolts have strength levels as expected according to the conditions used, while no significant differences between the breaking torque values were obtained in both situations analyzed. Acid pickling revealed that in the groups, which did not use inhibitor, the number of failures increases at a first stage with increasing pickling periods, however it starts to decrease after a certain pickling period related to the volume of acid used. The number of failures is greatly reduced with the use of the inhibitor, but even at low concentrations of iron, the use of larger amounts of acid associated with longer pickling periods increases the risk of hydrogen embrittlement. Failures were observed only at 1000C - 1 hour as baking parameters, showing the importance of proper temperature controls, homogenization procedures, and temperature and time parameters. There were no failures related to strip, revealing the importance of adequate procedures for strip (period and solution used) and baking procedures as observed. The fracture surface analysis revealed only intergranular and dimples micromechanisms of fracture, where the latter being more often associated with regions closer to the core of the bolts, also showing the presence of secondary cracks
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Carvalho, Ícaro Zanetti de. "Fragilização por hidrogênio nos aços AISI 4340 (AMS 6414K e AMS 6415S) temperados e revenidos." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263642.
Full textDissertação (mestrado - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-20T02:38:33Z (GMT). No. of bitstreams: 1 Carvalho_IcaroZanettide_M.pdf: 13083038 bytes, checksum: c152edb400a89f8aecfa16c8073e6488 (MD5) Previous issue date: 2012
Resumo: O fenômeno da fragilização por hidrogênio no aço AISI 4340 foi investigado devido ao fato do mesmo ser um aço baixa liga de alta resistência bastante suscetível a este fenômeno. A análise foi feita por meio do ensaio de tenacidade à fratura por flexão baseado na norma ASTM E 399 - 09. A matéria prima utilizada foi fabricada segundo dois diferentes processos, sendo o primeiro pelo método convencional de fundição e o segundo pelo processo VAR (vacuum arc refining) de maneira a se obter uma liga com menores quantidades de impurezas. Corpos-de-prova foram retirados da posição L-C das ligas, temperados a 845 oC e revenidos a 3 diferentes temperaturas (350 oC, 400 oC e 500 oC). O carregamento de hidrogênio foi feito por meio de uma célula eletroquímica, onde os corpos-de-prova foram imersos numa solução de H2SO4 0,01 M com aplicação de uma densidade de corrente de 10 mA/cm2 e dois diferentes tempos de hidrogenação, de maneira a se obter dois níveis de contaminação. Após os ensaios, foram feitas fractografias dos corpos-de-prova ensaiados para cada condição de revenimento e contaminação por hidrogênio, sendo observadas as alterações nos micromecanismos de fratura para as diferentes condições. Os resultados obtidos no ensaio de tenacidade à fratura por flexão foram correlacionados ao micromecanismo de fratura em função da dureza e contaminação por hidrogênio. O aço AISI 4340 convencional nas condições de revenimento de 400 oC e 350 oC mostrou-se bastante susceptível à fragilização por hidrogênio, apresentando reduções da ordem de 10% e 20%, respectivamente, nos valores de tenacidade à fratura de corpos-de-prova contaminados. O mesmo não foi observado no aço AISI 4340 convencional temperado e revenido a 500 oC, que não sofreu fragilização devido à sua baixa dureza. O aço AISI 4340 VAR em todas as condições de revenimento apresentou-se muito menos susceptível ao fenômeno, não sendo evidenciadas variações expressivas nas tenacidades à fratura dos corpos-de-prova contaminados e nas superfícies de fratura resultantes
Abstract: The phenomenon of hydrogen embrittlement in AISI 4340 steel was investigated due to the fact that it is a high strength low alloy steel quite susceptible to this phenomenon. The analysis was done through the fracture toughness test by bending based on ASTM E 399-09. The material used was manufactured according two different processes, the first by conventional casting process and the second by VAR (vacuum arc refining) process in order to obtain an alloy with minor amounts of impurities. Specimens were removed from the position L-C of the alloy, quenched at 845 oC and tempered at 3 different temperatures (350 oC, 400 oC and 500 oC). The hydrogen loading was made by means of an electrochemical cell where the specimens were immersed in a solution of 0.01 M H2SO4 by applying a current density of 10 mA/cm2 and two different hydrogenation times, in order to obtain two levels of contamination. After the tests were performed fractographies of specimens tested for each condition of temper and contamination by hydrogen, with observed changes in the micromechanisms of fracture for the different conditions. The test results of fracture toughness by bending were correlated with the micromechanisms of fracture, the microstructure and hydrogen contamination. The conventional AISI 4340 steel under conditions of tempering of 400 °C and 350 °C proved to be very susceptible to hydrogen embrittlement, with reductions of 10% and 20%, respectively, on the values of fracture toughness of contaminated specimens. The same was not observed in conventional AISI 4340 quenched and tempered at 500 °C, which did not presented embrittlement due to its low hardness. The AISI 4340 VAR steel in all conditions of temper proved to be much less susceptible to the phenomenon, not showing significant variations in fracture toughness of the contaminated specimens and the resulting fracture surfaces
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Nigro, Claudio F. "Phase field modeling of flaw-induced hydride precipitation kinetics in metals." Licentiate thesis, Malmö högskola, Institutionen för materialvetenskap och tillämpad matematik (MTM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-7787.
Full textFraga, Francisco Edson Nogueira. "Variaveis de influencia do teste G-BOP." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263151.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-05T03:36:29Z (GMT). No. of bitstreams: 1 Fraga_FranciscoEdsonNogueira_M.pdf: 7668507 bytes, checksum: 806c3c771652dfe2aa90373e2fca42ba (MD5) Previous issue date: 2005
Resumo: Trinca induzida por hidrogênio é um dos defeitos mais graves que ocorrem em juntas soldadas de diversos aços. Esta falha mecânica ocorre com bastante freqüência na zona afetada pelo calor (ZAC) destes materiais. Com o desenvolvimento de novos aços, o risco da ocorrência de trincamento na ZAC tem se reduzido cada vez mais e passado a ocorrer com mais freqüência no metal de solda (MS). O teste G-BOP (Gapped Bead-on-Plate) destaca-se dentre os vários testes autodestrutivos pela grande aplicação em avaliar susceptibilidade de ocorrência de trincas de hidrogênio somente no cordão de solda. As principais vantagens deste teste são: baixo custo quando comparado a outros testes, simplicidade na execução e facilidade em quantificar trincas a frio no MS. Apesar de todas as vantagens, este teste tem sérias limitações e uma delas é o fato de não ser normalizado. Visando contribuir com informações que possam agregar maior confiabilidade e contribuir para a normalização do teste G-BOP, este trabalho teve como objetivo principal estudar de maneira sistemática e científica a influência das principais variáveis do teste G-BOP (dimensão do rebaixo, energia nominal de soldagem e temperatura de preaquecimento) sobre a variável de resposta, que é o percentual de trinca induzida por hidrogênio na seção transversal do metal de solda, As três variáveis foram estudadas segundo uma análise estatística de variância, identificando a influência individual de cada uma e a interação entre elas sobre os resultados do teste. Para o desenvolvimento experimental foi utilizado como material de base um aço ASTM A-285 grau C, como metal de adição, um arame tubular de classificação AWS E71T-1 e o 'CO IND. 2¿ como gás de proteção auxiliar. Para os níveis de cada uma das variáveis analisadas aqui, identificou-se que a energia nominal de soldagem e a temperatura de preaquecimento são variáveis que tem influência significativa sobre os resultados do teste G-BOP e que a variável dimensão do rebaixo não tem influência significativa. Identificou-se ainda que a interação entre estas variáveis também não apresenta influência significativa sobre os resultados do teste
Abstract: Hydrogen induced cracking (HIC) is a serious defect that occurs in welded joints of several steel types. This mechanical failure occurs frequently on the heat affected zone (HAZ). With the development of new steels the probability of HIC occurring on the HAZ has reduced, however it has started to occur on the weld metal (WM). The Gapped bead-on-plate test (G-BOP) stands out from several other self-restraint tests for its great application to evaluate HIC only on the weld metal. The main advantages of this test are: low cost, simple execution and crack quantification on WM. Despite its advantages, this test has a serious limitation that it is not normalized. To contribute to getting information that can add greater trustworthiness to G-BOP test and help to normalize it, the objective of this study is to evaluate the influence of the main variable of the G-BOP test (gap, welding heat and preheat temperature) in the output variable (HIC %). A variance analysis was used to identify the influence of these variables in the test results. For the experimental development the ASTM A-285 grade C steel was used as base metal as well as AWS E71T-1 flux core and 'CO IND. 2¿ shielding. It was concluded that the heat input and the preheat temperature have significant influence in the test result. The gap and the interaction between these variables don't have any influence in the test result
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia de Fabricação
Books on the topic "Hydrogen embrittlement of metals"
Gaseous hydrogen embrittlement of materials in energy technologies. Cambridge, UK: Woodhead Publishing, 2012.
Find full textInternational Conference on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions (5th 2002 Moran, Wyo.). Hydrogen effects on material behavior and corrosion deformation interactions: Proceedings of the International Conference on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions : held at Jackson Lake Lodge, Moran, Wyoming, September 22-26, 2002. Warrendale, Pa: TMS, 2003.
Find full textInternational, Conference on Effect of Hydrogen on Behavior of Materials (5th 1994 Moran Wyo ). Hydrogen effects in materials: Proceedings of the Fifth International Conference on the Effect of Hydrogen on the Behavior of Materials sponsored by the Structural Materials Division (SMD), Mechanical Metallurgy and Corrosion & Environmental Effects Committees of the Minerals, Metals & Materials Society, held at Jackson Lake Lodge, Moran, Wyoming, September 11-14, 1994. Warrendale, Pa: The Society, 1996.
Find full textBeloglazov, S. M. Ėlektrokhimicheskiĭ vodorod i metally: Povedenie, borʹba s okhrupchivaniem. Kaliningrad: Kaliningradskiĭ gos. universitet, 2004.
Find full textN, Singh R. Studies on stress reorientation of hydrides in Zr-2.5Nb pressure tube alloy. Mumbai: Bhabha Atomic Research Centre, 2002.
Find full textVaris, Päivi. Corrosion fatigue of titanium in sea water under cathodic polarisation. Espoo [Finland]: Technical Research Centre of Finland, 1992.
Find full textBeloglazov, S. M. Electrochemical hydrogen and metals absorption behaviour: Fatigue durability, and delayed fracture. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textWyo.) International Hydrogen Conference (8th 2012 Grand Teton National Park. Hydrogen-materials interactions: Proceedings of the 2012 International Hydrogen Conference, September 9-12, 2012, Grand Teton National Park, Wyoming, USA. New York, N.Y: ASME Press, 2014.
Find full textInternational Conference on Effect of Hydrogen on Behavior of Materials (4th 1989 Moran, Wyo.). Hydrogen effects on material behavior: Proceedings of the Fourth International Conference on the Effect of Hydrogen on the Behavior of Materials sponsored by the Physical Metallurgy, Mechanical Metallurgy, and the Corrosion and Environmental Effects committees of the Minerals, Metals, and Materials Society, Carnegie Mellon University, and Sandia National Laboratories, held at Jackson Lake Lodge, Moran, Wyoming, September 12-15, 1989. Warrendale, Pa: The Society, 1990.
Find full textBook chapters on the topic "Hydrogen embrittlement of metals"
Kaesche, Helmut. "Hydrogen Embrittlement." In Corrosion of Metals, 401–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-96038-3_14.
Full textMilella, Pietro Paolo. "Hydrogen Embrittlement and Sensitization Cracking." In Fatigue and Corrosion in Metals, 689–729. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_14.
Full textLee, Jonathan A. "A Theory for Hydrogen Embrittlement of Transition Metals and their Alloys." In Hydrogen Effects in Materials, 569–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803363.ch49.
Full textShimamura, S., and S. Tanimori. "Electronic Structure Approach to Hydrogen Embrittlement in fcc Transition Metals." In Mesoscopic Dynamics of Fracture, 185–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-35369-1_16.
Full textJagodzinski, Yu N., L. N. Larikov, and A. Yu Smouk. "Void Formation in Hydrogen Charged Metals Induced by Plastic Deformation as the Initial Stage of Embrittlement." In Hydrogen Effects in Materials, 375–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803363.ch35.
Full textChêne, J., and A. M. Brass. "Deuterium and Tritium Applications to the Quantitative Study of Hydrogen Local Concentration in Metals and Related Embrittlement." In Hydrogen Effects in Materials, 47–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803363.ch4.
Full textFrolova, Kseniya, Vladimir Polyanskiy, Dmitriy Tretyakov, and Yuri Yakovlev. "Identification of Zones of Local Hydrogen Embrittlement of Metals by the Acoustoelastic Effect." In Springer Proceedings in Physics, 495–503. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19894-7_38.
Full textMuktepavela, F., M. Vasylyev, and V. G. Kostychenko. "Humid Atmosphere Induced Processes of Hydrogen Formation and Embrittlement of Sn-Al Eutectic." In Hydrogen Materials Science and Chemistry of Metal Hydrides, 51–58. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0600-2_6.
Full textOhtsuka, Toshiaki, Atsushi Nishikata, Masatoshi Sakairi, and Koji Fushimi. "Hydrogen Embrittlement and Hydrogen Absorption." In SpringerBriefs in Molecular Science, 79–96. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6820-1_5.
Full textLatanision, R. M., and R. H. Jones. "Workshop Summary: Hydrogen Embrittlement." In Chemistry and Physics of Fracture, 591–94. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3665-2_36.
Full textConference papers on the topic "Hydrogen embrittlement of metals"
Fukuyama, Seiji, Masaaki Imade, Zhang Lin, and Kiyoshi Yokogawa. "Hydrogen Embrittlement of Metals in 70 MPa Hydrogen at Room Temperature." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71628.
Full textVÁŇOVÁ, Petra, Jaroslav SOJKA, Mária MELICHEROVÁ, Kateřina KONEČNÁ, and Taťána RADKOVSKÁ. "Hydrogen embrittlement of TRIP steel after previous deformation." In METAL 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/metal.2020.3502.
Full textIshijima, Yasuhiro, Takafumi Motooka, Fumiyoshi Ueno, Masahiro Yamamoto, Gunzo Uchiyama, Jun’ichi Sakai, Ken’ichi Yokoyama, et al. "Hydrogen Absorption Behavior of Titanium Alloys by Cathodic Polarization." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16079.
Full textAverina, Julia, Dmitry Zhukov, Victoria Tsevkova, Irina Safarova, and Elena Subcheva. "HYDROGEN EMBRITTLEMENT AND PECULIAR PRORERTIES OF DETERMINING THE CONCENTRATION OF HYDROGEN IN STRUCTURAL STEELS." In METAL 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/metal.2020.3494.
Full textZhang, L., M. Wen, Z. Y. Li, J. Y. Zheng, X. X. Liu, Y. Z. Zhao, and C. L. Zhou. "Materials Safety for Hydrogen Gas Embrittlement of Metals in High-Pressure Hydrogen Storage for Fuel Cell Vehicles." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78269.
Full textFukuyama, Seiji, Masaaki Imade, and Kiyoshi Yokogawa. "Development of New Material Testing Apparatus in High-Pressure Hydrogen and Evaluation of Hydrogen Gas Embrittlement of Metals." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26820.
Full textFukuyama, Seiji, Masaaki Imade, Takashi Iijima, and Kiyoshi Yokogawa. "Development of New Material Testing Apparatus in 230 MPa Hydrogen and Evaluation of Hydrogen Gas Embrittlement of Metals." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61849.
Full textKhalil, Sarah, and Tarek M. Hatem. "Hydrogen Embrittlement Characteristics in Irradiated Stainless Steel." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24081.
Full textMatsumoto, Toru. "Hydrogen Embrittlement Characteristics of Plating Processes on High-Strength Steels." In Annual Aerospace/Airline Plating and Metal Finishing Forum and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. http://dx.doi.org/10.4271/880871.
Full textRonevich, Joseph, Chris San Marchi, and Dorian K. Balch. "Evaluating the Resistance of Austenitic Stainless Steel Welds to Hydrogen Embrittlement." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93823.
Full textReports on the topic "Hydrogen embrittlement of metals"
Pinnell, William B. Hydrogen Embrittlement of Metal Fasteners Due to Phosphoric Acid Containment System (PACS) Exposure. Volume 5 - Delivery Order 4, Task 2. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada400419.
Full textSomerday, Brian P., and Christopher W. San Marchi. Hydrogen Embrittlement of Structural Steels. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1171455.
Full textSpencer, Gerald L. Hydrogen Embrittlement of Gun Steel. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada188972.
Full textSymons, D. M., and A. W. Thompson. The hydrogen embrittlement of alloy X-750. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10195863.
Full textSofronis, Petros, and Ian M. Robertson. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089010.
Full textSummerfield, G. C., J. S. King, B. Heuser, and J. E. Epperson. Dislocation-hydrogen correlation in metals. Office of Scientific and Technical Information (OSTI), November 1987. http://dx.doi.org/10.2172/5330578.
Full textThomas, James P., and Charles E. Chopin. Transport Modeling of Hydrogen in Metals for Application to Hydrogen Assisted Cracking of Metals. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada299682.
Full textDuncan, A. J. Evaluation of Hydrogen Embrittlement of SAFKEG 3940A Package in KAMS. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/820087.
Full textMcWatters, Bruce Ray, Rion A. Causey, Ryan J. DePuit, Nancy Y. C. Yang, and Markus D. Ong. Nanostructures from hydrogen implantation of metals. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/993629.
Full textBuxbaum, R. E., R. Subramanian, J. H. Park, and D. L. Smith. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/195724.
Full text