Journal articles on the topic 'Hydrogen embrittlement of metals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrogen embrittlement of metals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Herlach, D., C. Kottler, T. Wider, and K. Maier. "Hydrogen embrittlement of metals." Physica B: Condensed Matter 289-290 (August 2000): 443–46. http://dx.doi.org/10.1016/s0921-4526(00)00431-2.
Full textFukai, Yuh. "Hydrogen in metals VII, Hydrogen embrittlement(1)." Bulletin of the Japan Institute of Metals 25, no. 7 (1986): 633–39. http://dx.doi.org/10.2320/materia1962.25.633.
Full textFukai, Yuh. "Hydrogen in metals. VIII Hydrogen embrittlement. (2)." Bulletin of the Japan Institute of Metals 25, no. 11 (1986): 931–40. http://dx.doi.org/10.2320/materia1962.25.931.
Full textFukai, Yuh. "Hydrogen in metals. IX Hydrogen embrittlement. (3)." Bulletin of the Japan Institute of Metals 26, no. 3 (1987): 208–18. http://dx.doi.org/10.2320/materia1962.26.208.
Full textBirnbaum, H. K., and I. M. Robertson. "Hydrogen embrittlement." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 612–13. http://dx.doi.org/10.1017/s0424820100155037.
Full textLi, Xinfeng, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, and Xiaolong Song. "Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention." Acta Metallurgica Sinica (English Letters) 33, no. 6 (April 22, 2020): 759–73. http://dx.doi.org/10.1007/s40195-020-01039-7.
Full textZhong, W., Y. Cai, and D. Tománek. "Computer simulation of hydrogen embrittlement in metals." Nature 362, no. 6419 (April 1993): 435–37. http://dx.doi.org/10.1038/362435a0.
Full textMurakami, Yukitaka, Toshihiko Kanezaki, and Yoji Mine. "Hydrogen Effect against Hydrogen Embrittlement." Metallurgical and Materials Transactions A 41, no. 10 (June 22, 2010): 2548–62. http://dx.doi.org/10.1007/s11661-010-0275-6.
Full textLambert, H., and Y. S. Chen. "Hydrogen embrittlement: future directions—discussion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2098 (June 12, 2017): 20170029. http://dx.doi.org/10.1098/rsta.2017.0029.
Full textPryadko, T. V., V. A. Dekhtyarenko, V. I. Bondarchuk, M. A. Vasilyev, and S. M. Voloshko. "Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42, no. 10 (December 8, 2020): 1419–29. http://dx.doi.org/10.15407/mfint.42.10.1419.
Full textSong, Jun, and W. A. Curtin. "A nanoscale mechanism of hydrogen embrittlement in metals." Acta Materialia 59, no. 4 (February 2011): 1557–69. http://dx.doi.org/10.1016/j.actamat.2010.11.019.
Full textDear, Felicity F., and Guy C. G. Skinner. "Mechanisms of hydrogen embrittlement in steels: discussion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2098 (June 12, 2017): 20170032. http://dx.doi.org/10.1098/rsta.2017.0032.
Full textCho, Lawrence, Yuran Kong, John G. Speer, and Kip O. Findley. "Hydrogen Embrittlement of Medium Mn Steels." Metals 11, no. 2 (February 20, 2021): 358. http://dx.doi.org/10.3390/met11020358.
Full textSkinner, Guy C. G., and Felicity F. Dear. "Political, economic and environmental concerns: discussion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2098 (June 12, 2017): 20170026. http://dx.doi.org/10.1098/rsta.2017.0026.
Full textHino, Makoto, Shunsuke Mukai, Takehiro Shimada, Koki Okada, and Keitaro Horikawa. "Inferences of Baking Time on Hydrogen Embrittlement for High Strength Steel Treated with Various Zinc Based Electroplating." Materials Science Forum 1016 (January 2021): 156–61. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.156.
Full textKim, Young, Sung Kim, and Byung Choe. "The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel." Metals 9, no. 4 (April 3, 2019): 406. http://dx.doi.org/10.3390/met9040406.
Full textViswanathan, V., and Nage Deepashri. "Influence of pH on Hydrogen Absorption in Duplex Stainless Steel." Advanced Materials Research 794 (September 2013): 592–97. http://dx.doi.org/10.4028/www.scientific.net/amr.794.592.
Full textKo, Seok-Woo, Ji-Min Lee, and Byoungchul Hwang. "Effect of Nb addition and Pre-strain on Hydrogen Embrittlement of Low-carbon Steels with Ferrite-pearlite Structure." Korean Journal of Metals and Materials 58, no. 11 (November 5, 2020): 752–58. http://dx.doi.org/10.3365/kjmm.2020.58.11.752.
Full textSergeev, N. N., A. N. Sergeev, S. N. Kutepov, A. E. Gvozdev, and E. V. Ageev. "A REVIEW OF THEORECTICAL CONCEPTS OF HYDROGEN CRACKING IN METALS AND ALLOYS." Proceedings of the Southwest State University 21, no. 3 (June 28, 2017): 6–33. http://dx.doi.org/10.21869/2223-1560-2017-21-3-6-33.
Full textShimotomai, Michio. "Heuristic Design of Advanced Martensitic Steels That Are Highly Resistant to Hydrogen Embrittlement by ε-Carbide." Metals 11, no. 2 (February 23, 2021): 370. http://dx.doi.org/10.3390/met11020370.
Full textSingh, Vishal, Rajwinder Singh, Amanjot Singh, and Dhiraj K. Mahajan. "Tracking hydrogen embrittlement using short fatigue crack behavior of metals." Procedia Structural Integrity 13 (2018): 1427–32. http://dx.doi.org/10.1016/j.prostr.2018.12.296.
Full textSong, J., M. Soare, and W. A. Curtin. "Testing continuum concepts for hydrogen embrittlement in metals using atomistics." Modelling and Simulation in Materials Science and Engineering 18, no. 4 (March 11, 2010): 045003. http://dx.doi.org/10.1088/0965-0393/18/4/045003.
Full textLouthan, M. R. "Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst." Journal of Failure Analysis and Prevention 8, no. 3 (May 24, 2008): 289–307. http://dx.doi.org/10.1007/s11668-008-9133-x.
Full textPatel, Mitesh, and Miles A. Stopher. "Hydrogen effects in non-ferrous alloys: discussion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2098 (June 12, 2017): 20170030. http://dx.doi.org/10.1098/rsta.2017.0030.
Full textYoo, Jaeseok, Guo Xian, Myungjin Lee, Yongdeok Kim, and Namhyun Kang. "Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals." Journal of the Korean Welding and Joining Society 31, no. 6 (December 31, 2013): 112–18. http://dx.doi.org/10.5781/kwjs.2013.31.6.112.
Full textKoyama, Motomichi, Seyedeh Mohadeseh Taheri-Mousavi, Haoxue Yan, Jinwoo Kim, Benjamin Clive Cameron, Seyed Sina Moeini-Ardakani, Ju Li, and Cemal Cem Tasan. "Origin of micrometer-scale dislocation motion during hydrogen desorption." Science Advances 6, no. 23 (June 2020): eaaz1187. http://dx.doi.org/10.1126/sciadv.aaz1187.
Full textCreton, Nicolas, Steeve Dejardin, B. Grysakowski, Virgil Optasanu, and Tony Montesin. "A Mechano-Chemical Coupling for Hydrogen Diffusion in Metals Based on a Thermodynamic Approach." Defect and Diffusion Forum 353 (May 2014): 286–91. http://dx.doi.org/10.4028/www.scientific.net/ddf.353.286.
Full textChu, W. Y., and H. K. Birnbaum. "Hydrogen embrittlement of iron-nickel alloys." Metallurgical Transactions A 20, no. 8 (August 1989): 1475–82. http://dx.doi.org/10.1007/bf02665504.
Full textArchakov, Yu I., and I. D. Grebeshkova. "Nature of hydrogen embrittlement of steel." Metal Science and Heat Treatment 27, no. 8 (August 1985): 555–62. http://dx.doi.org/10.1007/bf00699349.
Full textKohls, Daniel, Enori Gemelli, Laercio da Silva Filho, and Majorie Anacleto Bernardo. "Susceptibility Study to Hydrogen Embrittlement of Welded Joints of API 5L X52 Steel in Sulphide Media." Advanced Materials Research 1158 (April 2020): 27–42. http://dx.doi.org/10.4028/www.scientific.net/amr.1158.27.
Full textde Graaf, Sytze, Jamo Momand, Christoph Mitterbauer, Sorin Lazar, and Bart J. Kooi. "Resolving hydrogen atoms at metal-metal hydride interfaces." Science Advances 6, no. 5 (January 2020): eaay4312. http://dx.doi.org/10.1126/sciadv.aay4312.
Full textSong, Yu Su, Li Qing Zhou, and Guang Zhe Chu. "Research of Hydrogen Atom Penetration during the Phosphorization Process of High-Strength Steel." Applied Mechanics and Materials 540 (April 2014): 35–38. http://dx.doi.org/10.4028/www.scientific.net/amm.540.35.
Full textBhadeshia, Harshad Kumar Dharamshi Hansraj. "Prevention of Hydrogen Embrittlement in Steels." ISIJ International 56, no. 1 (2016): 24–36. http://dx.doi.org/10.2355/isijinternational.isijint-2015-430.
Full textSergeev, N. N., S. N. Kutepov, А. Е. Gvozdev, and E. V. Ageev. "DISLOCATION INDUCED MECHANISMS OF HYDROGENE EMBRITTLEMENT OF METALS AND ALLOYES." Proceedings of the Southwest State University 21, no. 2 (April 28, 2017): 32–47. http://dx.doi.org/10.21869/2223-1560-2017-21-2-32-47.
Full textVarias,, A. G. "Hydrogen Embrittlement and Sub-Critical Crack Growth in Hydride Forming Metals." Journal of the Mechanical Behavior of Materials 16, no. 3 (June 2005): 211–39. http://dx.doi.org/10.1515/jmbm.2005.16.3.211.
Full textQu, Feng, An, Bi, Du, Yang, and Zheng. "Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging." Materials 12, no. 16 (August 12, 2019): 2575. http://dx.doi.org/10.3390/ma12162575.
Full textKhanzhin, V. G., S. A. Nikulin, O. V. Khanzhin, S. O. Rogachev, and V. Yu Turilina. "Hydrogen embrittlement of steels: IV. Delayed fracture during bending." Russian Metallurgy (Metally) 2013, no. 10 (October 2013): 797–801. http://dx.doi.org/10.1134/s0036029513100054.
Full textZhou, Haiting, Dongdong Ye, Jianjun Chen, Qiang Wang, and Xinwei Fan. "Discussion on the characterisation of hydrogen embrittlement based on eddy current signals." Insight - Non-Destructive Testing and Condition Monitoring 62, no. 1 (January 1, 2020): 11–14. http://dx.doi.org/10.1784/insi.2020.62.1.11.
Full textMooney, Ted. "Hydrogen embrittlement: Switch to black oxide?" Metal Finishing 94, no. 12 (December 1996): 51. http://dx.doi.org/10.1016/s0026-0576(96)80097-3.
Full textSymons, D. M. "Hydrogen embrittlement of Ni-Cr-Fe alloys." Metallurgical and Materials Transactions A 28, no. 3 (March 1997): 655–63. http://dx.doi.org/10.1007/s11661-997-0051-4.
Full textSahiluoma, Patrik, Yuriy Yagodzinskyy, Antti Forsström, Hannu Hänninen, and Sven Bossuyt. "Hydrogen embrittlement of nodular cast iron." Materials and Corrosion 72, no. 1-2 (July 22, 2020): 245–54. http://dx.doi.org/10.1002/maco.202011682.
Full textVehovar, L. "Hydrogen embrittlement of Microalloyed structural steels." Materials and Corrosion/Werkstoffe und Korrosion 45, no. 6 (June 1994): 349–54. http://dx.doi.org/10.1002/maco.19940450605.
Full textBenbelaid, S., M. A. Belouchrani, Y. Assoul, and B. Bezzazi. "Modeling Damage of the Hydrogen Enhanced Localized Plasticity in Stress Corrosion Cracking." International Journal of Damage Mechanics 20, no. 6 (June 3, 2010): 831–44. http://dx.doi.org/10.1177/1056789510369327.
Full textLiu, Y., K. Y., J. H. Zhang, G. Lu, and Z. Q. Hu. "First-principles investigation on environmental embrittlement of TiAl." Journal of Materials Research 13, no. 2 (February 1998): 290–301. http://dx.doi.org/10.1557/jmr.1998.0040.
Full textKhanzhin, V. G., S. A. Nikulin, V. A. Belov, S. O. Rogachev, and V. Yu Turilina. "Hydrogen embrittlement of steels: III. Influence of secondary-phase particles." Russian Metallurgy (Metally) 2013, no. 10 (October 2013): 790–96. http://dx.doi.org/10.1134/s0036029513100042.
Full textŠevc, Peter, Ladislav Falat, Lucia Čiripová, Miroslav Džupon, and Marek Vojtko. "The Effects of Electrochemical Hydrogen Charging on Room-Temperature Tensile Properties of T92/TP316H Dissimilar Weldments in Quenched-and-Tempered and Thermally-Aged Conditions." Metals 9, no. 8 (August 8, 2019): 864. http://dx.doi.org/10.3390/met9080864.
Full textMATSUDA, Hiroyasu. "Examples and Preventive Measures of Hydrogen Embrittlement." JOURNAL OF THE JAPAN WELDING SOCIETY 89, no. 5 (2020): 351–52. http://dx.doi.org/10.2207/jjws.89.351.
Full textSAIDA, Kazuyoshi, Tetsuya FUJIMOTO, and Kazutoshi NISHIMOTO. "Characterisation of Hydrogen Embrittlement Cracking at Ta/Zr Bond Interface and Hydrogen Embrittlement Mechanism of Zr Base Metal." QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 28, no. 2 (2010): 216–21. http://dx.doi.org/10.2207/qjjws.28.216.
Full textHui, Wei-jun, Zhan-hua Wang, Zhi-bao Xu, Yong-jian Zhang, and Xiao-li Zhao. "Hydrogen embrittlement of a microalloyed bainitic forging steel." Journal of Iron and Steel Research International 26, no. 9 (June 4, 2019): 1011–21. http://dx.doi.org/10.1007/s42243-019-00272-4.
Full textTraidia, Abderrazak, Elias Chatzidouros, and Mustapha Jouiad. "Review of hydrogen-assisted cracking models for application to service lifetime prediction and challenges in the oil and gas industry." Corrosion Reviews 36, no. 4 (July 26, 2018): 323–47. http://dx.doi.org/10.1515/corrrev-2017-0079.
Full text