Journal articles on the topic 'Hydrogen Embrittlement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrogen Embrittlement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Su, Jian-Qing, Shu-Jun Gao, and Zhuang-Qi Hu. "Hydrogen embrittlement of B-doped Ni3Al-based alloy." Journal of Materials Research 13, no. 11 (1998): 3052–59. http://dx.doi.org/10.1557/jmr.1998.0417.
Full textBirnbaum, H. K., and I. M. Robertson. "Hydrogen embrittlement." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 612–13. http://dx.doi.org/10.1017/s0424820100155037.
Full textXiao, Li, Jia Gu, Hongwei Yang, Lei Chen, and Gang Liu. "Research on Mechanism of Methanol–Hydrogen Co-Transport Inhibiting Hydrogen Embrittlement in Pipeline Steel." Metals 15, no. 4 (2025): 429. https://doi.org/10.3390/met15040429.
Full textAraújo, Bruno Allison, Gabriel Dias Travassos, Antonio Almeida Silva, Eudésio Oliveira Vilar, Jorge Palma Carrasco, and Carlos José de Araújo. "Experimental Characterization of Hydrogen Embrittlement in API 5L X60 and API 5L X80 Steels." Key Engineering Materials 478 (April 2011): 34–39. http://dx.doi.org/10.4028/www.scientific.net/kem.478.34.
Full textZhao You-Peng, Liu Xiao-Yong, Liu Hui, et al. "Study of hydrogen embrittlement behavior and mechanism of Ti-2.5Al-2Zr-1Fe by slow strain rate method." Acta Physica Sinica 73, no. 21 (2024): 0. http://dx.doi.org/10.7498/aps.73.20240896.
Full textLi, Lingxiao, Jiyan Liu, Yuhao Wang, Guozhu Zhang, and Fengshan Du. "Study on the Effect of Microstructure Gradients Caused by Heat Gradients on Hydrogen Embrittlement Sensitivity in Heavy Forgings." Metals 12, no. 4 (2022): 610. http://dx.doi.org/10.3390/met12040610.
Full textKong, Xiao, Hui Jiang, Yuting Lv, Wenlong Xie, Shuoyi Lu, and Dingfeng Xu. "Research Progress on the Hydrogen Embrittlement Resistance Performance of High-Entropy Alloys." Materials 18, no. 12 (2025): 2862. https://doi.org/10.3390/ma18122862.
Full textZhou, Chengshuang, Hongbin Zhou, and Lin Zhang. "The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments." Materials 17, no. 9 (2024): 2157. http://dx.doi.org/10.3390/ma17092157.
Full textHino, Makoto, Shunsuke Mukai, Takehiro Shimada, Koki Okada, and Keitaro Horikawa. "Inferences of Baking Time on Hydrogen Embrittlement for High Strength Steel Treated with Various Zinc Based Electroplating." Materials Science Forum 1016 (January 2021): 156–61. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.156.
Full textRobertson, Ian M., P. Sofronis, A. Nagao, et al. "Hydrogen Embrittlement Understood." Metallurgical and Materials Transactions B 46, no. 3 (2015): 1085–103. http://dx.doi.org/10.1007/s11663-015-0325-y.
Full textRobertson, Ian M., P. Sofronis, A. Nagao, et al. "Hydrogen Embrittlement Understood." Metallurgical and Materials Transactions A 46, no. 6 (2015): 2323–41. http://dx.doi.org/10.1007/s11661-015-2836-1.
Full textMurakami, Yukitaka, Toshihiko Kanezaki, and Yoji Mine. "Hydrogen Effect against Hydrogen Embrittlement." Metallurgical and Materials Transactions A 41, no. 10 (2010): 2548–62. http://dx.doi.org/10.1007/s11661-010-0275-6.
Full textWang, Zhou, and Mingxin Huang. "Improving Hydrogen Embrittlement Resistance of Hot-Stamped 1500 MPa Steel Parts That Have Undergone a Q&P Treatment by the Design of Retained Austenite and Martensite Matrix." Metals 10, no. 12 (2020): 1585. http://dx.doi.org/10.3390/met10121585.
Full textKim, Sang-Gyu, Jae-Yun Kim, and Byoungchul Hwang. "Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel." Materials 16, no. 16 (2023): 5709. http://dx.doi.org/10.3390/ma16165709.
Full textShin, Hee-Chang, and Byoungchul Hwang. "Effect of Ni Content and Tempering Temperature on Hydrogen Embrittlement of SA372 Steels for Pressure Vessel." Korean Journal of Metals and Materials 63, no. 5 (2025): 380–88. https://doi.org/10.3365/kjmm.2025.63.5.380.
Full textGou, Jinxin, Xiao Xing, Gan Cui, Zili Li, Jianguo Liu, and Xiangyuan Deng. "Hydrogen-Induced Cracking in CGHAZ of Welded X80 Steel under Tension Load." Metals 13, no. 7 (2023): 1325. http://dx.doi.org/10.3390/met13071325.
Full textChen, Yi-Sheng, Hongzhou Lu, Jiangtao Liang, et al. "Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates." Science 367, no. 6474 (2020): 171–75. http://dx.doi.org/10.1126/science.aaz0122.
Full textBhat, Nidhi, Chitra Agrawal, and Ujwal Shreenag Meda. "Hydrogen Impermeable Materials for Efficient Hydrogen Storage." ECS Transactions 107, no. 1 (2022): 4875–83. http://dx.doi.org/10.1149/10701.4875ecst.
Full textYin, Ruifeng, Ruidong Fu, Ningning Gu, and Yongjiu Liu. "A Study of Hydrogen Embrittlement of SA-372 J Class High Pressure Hydrogen Storage Seamless Cylinder (≥100 MPA)." Materials 15, no. 21 (2022): 7714. http://dx.doi.org/10.3390/ma15217714.
Full textPryadko, T. V., V. A. Dekhtyarenko, V. I. Bondarchuk, M. A. Vasilyev, and S. M. Voloshko. "Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42, no. 10 (2020): 1419–29. http://dx.doi.org/10.15407/mfint.42.10.1419.
Full textMohandas, Naveen Karuthodi, Alex Giorgini, Matteo Vanazzi, Ton Riemslag, Sean Paul Scott, and Vera Popovich. "Hydrogen Embrittlement of Inconel 718 Manufactured by Laser Powder Bed Fusion Using Sustainable Feedstock: Effect of Heat Treatment and Microstructural Anisotropy." Metals 13, no. 2 (2023): 418. http://dx.doi.org/10.3390/met13020418.
Full textCHEN, Pengcheng, Yu'e MA, Fan PENG, and Linglong ZHOU. "Simulating hydrogen embrittlement fracture based on phase field method." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, no. 3 (2022): 504–11. http://dx.doi.org/10.1051/jnwpu/20224030504.
Full textBrahimi, SV, KR Sriraman, and S. Yue. "Hydrogen embrittlement characteristics of two tempered martensitic steel alloys for high-strength bolting." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 17 (2016): 3214–27. http://dx.doi.org/10.1177/0954406216642476.
Full textGibson, Tom. "Designing Around Hydrogen Embrittlement." Mechanical Engineering 145, no. 5 (2023): 42–47. http://dx.doi.org/10.1115/1.2023-sep4.
Full textLi, Xinfeng, Xianfeng Ma, Jin Zhang, Eiji Akiyama, Yanfei Wang, and Xiaolong Song. "Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention." Acta Metallurgica Sinica (English Letters) 33, no. 6 (2020): 759–73. http://dx.doi.org/10.1007/s40195-020-01039-7.
Full textKo, Seok-Woo, Ji-Min Lee, and Byoungchul Hwang. "Effect of Nb addition and Pre-strain on Hydrogen Embrittlement of Low-carbon Steels with Ferrite-pearlite Structure." Korean Journal of Metals and Materials 58, no. 11 (2020): 752–58. http://dx.doi.org/10.3365/kjmm.2020.58.11.752.
Full textTao, Ping, Wei Zhou, Xinting Miao, Jian Peng, and Wenming Liu. "Review of Characterization on Hydrogen Embrittlement by Micro-Sample Testing Methods." Metals 13, no. 10 (2023): 1753. http://dx.doi.org/10.3390/met13101753.
Full textYagita, Ryo, and Yohei Abe. "Effects of Sheared Edge and Overlap Length on Reduction in Tensile Fatigue Limit before and after Hydrogen Embrittlement of Resistance Spot-Welded Ultra-High-Strength Steel Sheets." Metals 13, no. 12 (2023): 2002. http://dx.doi.org/10.3390/met13122002.
Full textKohls, Daniel, Enori Gemelli, Laercio da Silva Filho, and Majorie Anacleto Bernardo. "Susceptibility Study to Hydrogen Embrittlement of Welded Joints of API 5L X52 Steel in Sulphide Media." Advanced Materials Research 1158 (April 2020): 27–42. http://dx.doi.org/10.4028/www.scientific.net/amr.1158.27.
Full textWatanabe, N., G. Zhang, Hiroshi Yukawa, et al. "Hydrogen Solubility and Resistance to Hydrogen Embrittlement of Nb-Pd Based Alloys for Hydrogen Permeable Membrane." Advanced Materials Research 26-28 (October 2007): 873–76. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.873.
Full textSmith, Ali. "Hydrogen Embrittlement and Hydrogen Trapping Behaviour in Advanced High Strength Steels." Materials Science Forum 1016 (January 2021): 1344–49. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.1344.
Full textTakai, Kenichi. "Hydrogen Existing States and Hydrogen Embrittlement." Zairyo-to-Kankyo 60, no. 5 (2011): 230–35. http://dx.doi.org/10.3323/jcorr.60.230.
Full textKim, Jae-Yun, Seok-Woo Ko, and Byoungchul Hwang. "Effect of Microstructure on Strain Aging and Hydrogen Embrittlement Behavior of Bake Hardening Steels." Korean Journal of Metals and Materials 60, no. 11 (2022): 811–18. http://dx.doi.org/10.3365/kjmm.2022.60.11.811.
Full textRejeesh, R., Yeo-jin Jang, and Yeong-Do Park. "Hydrogen Embrittlement in Resistance Spot and Laser Welds for Advanced High-Strength Steels: Mechanisms, Susceptibility, and Evaluation." Journal of Welding and Joining 43, no. 3 (2025): 280–99. https://doi.org/10.5781/jwj.2025.43.3.7.
Full textAnastasovska, Elena, Elisaveta Doncheva, and Filip Zdraveski. "A review study on hydrogen embrittlement of steel." Structural Integrity and Life 24, no. 3 (2024): 277–81. https://doi.org/10.69644/ivk-2024-03-0277.
Full textYun, Hee Soo, Van Hung Dao, Hyusang Kwon, Jihun Lee, and Seung Hoon Nahm. "Evaluation of Hydrogen Embrittlement Sensitivity with Respect to Crystallographic Orientation of Single Crystal Ni Base Alloys." Korean Journal of Metals and Materials 63, no. 5 (2025): 389–98. https://doi.org/10.3365/kjmm.2025.63.5.389.
Full textShiraga, Tetsuo. "Hydrogen Embrittlement of Steel." Zairyo-to-Kankyo 60, no. 5 (2011): 236–40. http://dx.doi.org/10.3323/jcorr.60.236.
Full textHerlach, D., C. Kottler, T. Wider, and K. Maier. "Hydrogen embrittlement of metals." Physica B: Condensed Matter 289-290 (August 2000): 443–46. http://dx.doi.org/10.1016/s0921-4526(00)00431-2.
Full textHempel, Christian, Marcel Mandel, Caroline Quitzke, et al. "Hydrogen Diffusion in Deformed Austenitic TRIP Steel—A Study of Mathematical Prediction and Experimental Validation." Materials 17, no. 24 (2024): 6114. https://doi.org/10.3390/ma17246114.
Full textTang, Xiaoli. "Material Selection of 316 Stainless Steel for High-Pressure Hydrogen Systems." AM&P Technical Articles 182, no. 7 (2024): 22–26. http://dx.doi.org/10.31399/asm.amp.2024-07.p022.
Full textYukawa, Hiroshi, T. Nambu, and Yoshihisa Matsumoto. "Design and Development of Nb-W-Mo Alloy Membrane for Hydrogen Separation and Purification." Defect and Diffusion Forum 333 (January 2013): 61–71. http://dx.doi.org/10.4028/www.scientific.net/ddf.333.61.
Full textZhang, Fan, Zeen Wu, Tiebang Zhang, Rui Hu, and Xiaoye Wang. "Microstructure Sensitivity on Environmental Embrittlement of a High Nb Containing TiAl Alloy under Different Atmospheres." Materials 15, no. 23 (2022): 8508. http://dx.doi.org/10.3390/ma15238508.
Full textYe, Haixiao, Liejun Li, Zhitao Xiong, Songjun Chen, and Zhengwu Peng. "Effect of retained ferrite on hydrogen embrittlement resistance of medium-carbon steel via rapid induction heating." Journal of Physics: Conference Series 2954, no. 1 (2025): 012119. https://doi.org/10.1088/1742-6596/2954/1/012119.
Full textSong, Guang Sheng, Michael Dolan, Daniel Liang, and Michael Kellam. "Post-Hydrogen Permeation Characterization of V-Based Crystalline Alloy Membranes." Materials Science Forum 654-656 (June 2010): 2422–25. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2422.
Full textKim, Sang-Gyu, Jae-Yun Kim, Hyun-Joo Seo, et al. "Hydrogen Embrittlement Characteristics of Tempered Martensitic Steels under Electrochemical and High-Pressure Hydrogen Environments." Korean Journal of Metals and Materials 61, no. 11 (2023): 807–14. http://dx.doi.org/10.3365/kjmm.2023.61.11.807.
Full textYang, Shiyuan, Debiao Meng, Peng Nie, Abílio M. P. De Jesus, and Yan Sun. "Fatigue Behaviour of Metallic Materials Under Hydrogen Environment: Historical Perspectives, Recent Developments, and Future Prospects." Applied Sciences 15, no. 14 (2025): 7818. https://doi.org/10.3390/app15147818.
Full textИндейцев, Д. А., та Е. В. Осипова. "Влияние водорода на флуктуационное охрупчивание алюминия". Письма в журнал технической физики 45, № 17 (2019): 31. http://dx.doi.org/10.21883/pjtf.2019.17.48221.17896.
Full textLai, Yunting, Qinzheng Ma, Dungui Zuo, Guodong Zhang, Kaixing Liao, and Zhongwei Zhang. "Mechanical Properties and Fracture Analysis of High Strength Bolts in Nuclear Power Plant." Journal of Physics: Conference Series 2083, no. 2 (2021): 022064. http://dx.doi.org/10.1088/1742-6596/2083/2/022064.
Full textJayashree R, Jaswanthi D K, and Sharmila S. "Analysis of hydrogen embrittlement in zinc electroplating." International Journal of Science and Research Archive 9, no. 1 (2023): 208–12. http://dx.doi.org/10.30574/ijsra.2023.9.1.0369.
Full textXiong, Yinchen, Xiaofei Guo, and Han Dong. "Impact of Size and Distribution of k-Carbides on the Hydrogen Embrittlement and Trapping Behaviors of a Fe-Mn-Al-C Low-Density Steel." Materials 17, no. 11 (2024): 2698. http://dx.doi.org/10.3390/ma17112698.
Full text