Journal articles on the topic 'Hydrogen evolution reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrogen evolution reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jeon, Dasom, Jinwoo Park, Changhwan Shin, Hyunwoo Kim, Ji-Wook Jang, Dong Woog Lee, and Jungki Ryu. "Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production." Science Advances 6, no. 15 (April 2020): eaaz3944. http://dx.doi.org/10.1126/sciadv.aaz3944.
Full textChen, Ziyao, Huai Qin Fu, Mengyang Dong, Yu Zou, Porun Liu, and Huijun Zhao. "Hydrogen Spillover in Electrochemical Hydrogen Evolution Reaction." General Chemistry 8, no. 3-4 (2022): 220007. http://dx.doi.org/10.21127/yaoyigc20220007.
Full textEftekhari, Ali. "Electrocatalysts for hydrogen evolution reaction." International Journal of Hydrogen Energy 42, no. 16 (April 2017): 11053–77. http://dx.doi.org/10.1016/j.ijhydene.2017.02.125.
Full textLi, Hao, Zhien Zhang, and Zhijian Liu. "Non-Monotonic Trends of Hydrogen Adsorption on Single Atom Doped g-C3N4." Catalysts 9, no. 1 (January 14, 2019): 84. http://dx.doi.org/10.3390/catal9010084.
Full textLin, Shiru, Haoxiang Xu, Yekun Wang, Xiao Cheng Zeng, and Zhongfang Chen. "Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning." Journal of Materials Chemistry A 8, no. 11 (2020): 5663–70. http://dx.doi.org/10.1039/c9ta13404b.
Full textWu, Hengbo, Jie Wang, Wei Jin, and Zexing Wu. "Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis." Nanoscale 12, no. 36 (2020): 18497–522. http://dx.doi.org/10.1039/d0nr04458j.
Full textSui, Chenxi, Kai Chen, Liming Zhao, Li Zhou, and Qu-Quan Wang. "MoS2-modified porous gas diffusion layer with air–solid–liquid interface for efficient electrocatalytic water splitting." Nanoscale 10, no. 32 (2018): 15324–31. http://dx.doi.org/10.1039/c8nr04082f.
Full textYu, Xiaomei, Wei Shi, Jiajiao Wei, Tiantian Liu, Yuanyuan Li, Mengyuan He, Zhengyu Wei, et al. "Green fabrication of ultrafine N-Mo x C/CoP hybrids for boosting electrocatalytic water reduction." Nanotechnology 35, no. 6 (November 22, 2023): 065704. http://dx.doi.org/10.1088/1361-6528/ad0985.
Full textDong, Ying, Jing Li, and Xiao-Yu Yang. "Cu catalysts detour hydrogen evolution reaction." Matter 5, no. 8 (August 2022): 2537–40. http://dx.doi.org/10.1016/j.matt.2022.06.057.
Full textStanković, S., B. N. Grgur, B. Jović, N. Krstajić, O. Pavlović, and M. Vojnović. "Hydrogen Evolution Reaction from EDTA Solutions." Materials Science Forum 413 (September 2002): 185–90. http://dx.doi.org/10.4028/www.scientific.net/msf.413.185.
Full textShein, Anatoly B., and Vladimir I. Kichigin. "The kinetics of the hydrogen evolution reaction on CeM2Ge2 (M = Fe, Co, Ni) electrodes in alkaline solutions." Вестник Пермского университета. Серия «Химия» = Bulletin of Perm University. CHEMISTRY 12, no. 3 (2022): 170–85. http://dx.doi.org/10.17072/2223-1838-2022-3-170-185.
Full textXu, Yuelong, and Shasha Wang. "Preparation of porous carbon nanowires for hydrogen evolution reaction." Journal of Physics: Conference Series 2566, no. 1 (August 1, 2023): 012066. http://dx.doi.org/10.1088/1742-6596/2566/1/012066.
Full textJuodkazytė, Jurga, Kȩstutis Juodkazis, and Saulius Juodkazis. "Atoms vs. Ions: Intermediates in Reversible Electrochemical Hydrogen Evolution Reaction." Catalysts 11, no. 9 (September 21, 2021): 1135. http://dx.doi.org/10.3390/catal11091135.
Full textCASTILLO, VIRGIL CHRISTIAN, and JULIET Q. DALAGAN. "Graphene/TiO2 hydrogel: a potential catalyst to hydrogen evolution reaction." Bulletin of Materials Science 39, no. 6 (September 20, 2016): 1461–66. http://dx.doi.org/10.1007/s12034-016-1293-9.
Full textZhang, Rui. "Research Progress on Electrocatalytic Materials for Water Electrolysis." Frontiers in Sustainable Development 5, no. 2 (February 23, 2025): 65–69. https://doi.org/10.54691/d9n32e40.
Full textLin, Shusen, Md Ahasan Habib, Mehedi Hasan Joni, Sumiya Akter Dristy, Rutuja Mandavkar, Jae-Hun Jeong, Young-Uk Chung, and Jihoon Lee. "CoFeBP Micro Flowers (MFs) for Highly Efficient Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts." Nanomaterials 14, no. 8 (April 17, 2024): 698. http://dx.doi.org/10.3390/nano14080698.
Full textPaudel, Dasu Ram, Gopi Chandra Kaphle, Bhoj Raj Poudel, Mukunda KC, Manjinder Singh, and Gunendra Prasad Ojha. "Enhanced Hydrogen Evolution Reaction of a Zn+2-Stabilized Tungstate Electrocatalyst." Electrochem 6, no. 1 (January 24, 2025): 3. https://doi.org/10.3390/electrochem6010003.
Full textBagbudar, Zeynep, and Robert Warburton. "Theoretical Studies of Hydrogen Evolution Involving Imidazolium Proton Donors." ECS Meeting Abstracts MA2024-02, no. 61 (November 22, 2024): 4085. https://doi.org/10.1149/ma2024-02614085mtgabs.
Full textYu, Haoxuan, Mengyang Zhang, Yuntao Cai, Yanling Zhuang, and Longlu Wang. "The Advanced Progress of MoS2 and WS2 for Multi-Catalytic Hydrogen Evolution Reaction Systems." Catalysts 13, no. 8 (July 25, 2023): 1148. http://dx.doi.org/10.3390/catal13081148.
Full textYamada, Yusuke, Kentaro Yano, and Shunichi Fukuzumi. "Photocatalytic Hydrogen Evolution Using 9-Phenyl-10-methyl-acridinium Ion Derivatives as Efficient Electron Mediators and Ru-Based Catalysts." Australian Journal of Chemistry 65, no. 12 (2012): 1573. http://dx.doi.org/10.1071/ch12294.
Full textVigdorovich, V. I., L. E. Tsygankova, N. V. Shel, D. V. Balybin, and D. V. Kryilskiy. "Control of Kinetic Parameters and Rate-Determining Step Nature of Hydrogen Evolution Reaction on Iron." Advanced materials and technologies, no. 4 (2016): 041–45. http://dx.doi.org/10.17277/amt.2016.04.pp.041-045.
Full textChen, Lisong, and Jianlin Shi. "Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER)." Journal of Materials Chemistry A 6, no. 28 (2018): 13538–48. http://dx.doi.org/10.1039/c8ta03741h.
Full textHarrington, David A. "Theory of electrochemical impedance of surface reactions: second-harmonic and large-amplitude response." Canadian Journal of Chemistry 75, no. 11 (November 1, 1997): 1508–17. http://dx.doi.org/10.1139/v97-181.
Full textTretyakova, V. V., A. E. Ponomareva, V. V. Panteleeva, and А. B. Shein. "СОСТАВ, СТРУКТУРА И ЭЛЕКТРОХИМИЧЕСКАЯ АКТИВНОСТЬ СИЛИЦИДА ТИТАНА В РЕАКЦИИ ВЫДЕЛЕНИЯ ВОДОРОДА." Вестник Пермского университета. Серия «Химия» = Bulletin of Perm University. CHEMISTRY 11, no. 4 (2021): 263–70. http://dx.doi.org/10.17072/2223-1838-2021-4-263-270.
Full textHu, Cun, Chao Lv, Shuai Liu, Yan Shi, Jiangfeng Song, Zhi Zhang, Jinguang Cai, and Akira Watanabe. "Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction." Catalysts 10, no. 2 (February 5, 2020): 188. http://dx.doi.org/10.3390/catal10020188.
Full textHe, Yuhao, Xiangpeng Chen, Yunchao Lei, Yongqi Liu, and Longlu Wang. "Revisited Catalytic Hydrogen Evolution Reaction Mechanism of MoS2." Nanomaterials 13, no. 18 (September 8, 2023): 2522. http://dx.doi.org/10.3390/nano13182522.
Full textMarcandalli, Giulia, Katinka Boterman, and Marc T. M. Koper. "Understanding hydrogen evolution reaction in bicarbonate buffer." Journal of Catalysis 405 (January 2022): 346–54. http://dx.doi.org/10.1016/j.jcat.2021.12.012.
Full textGuo, Wenwu, Quyet Van Le, Ha Huu Do, Amirhossein Hasani, Mahider Tekalgne, Sa-Rang Bae, Tae Hyung Lee, Ho Won Jang, Sang Hyun Ahn, and Soo Young Kim. "Ni3Se4@MoSe2 Composites for Hydrogen Evolution Reaction." Applied Sciences 9, no. 23 (November 22, 2019): 5035. http://dx.doi.org/10.3390/app9235035.
Full textWu, Cong, Chuang Li, Boyu Yang, Siyuan Zhou, Dingcong Shi, Yanbo Wang, Guocheng Yang, Jin He, and Yuping Shan. "Electrospun MnCo2O4nanofibers for efficient hydrogen evolution reaction." Materials Research Express 3, no. 9 (September 13, 2016): 095018. http://dx.doi.org/10.1088/2053-1591/3/9/095018.
Full textBurchardt, T. "The hydrogen evolution reaction on NiPx alloys." International Journal of Hydrogen Energy 25, no. 7 (July 1, 2000): 627–34. http://dx.doi.org/10.1016/s0360-3199(99)00089-0.
Full textXie, Aozhen, Ningning Xuan, Kun Ba, and Zhengzong Sun. "Pristine Graphene Electrode in Hydrogen Evolution Reaction." ACS Applied Materials & Interfaces 9, no. 5 (January 24, 2017): 4643–48. http://dx.doi.org/10.1021/acsami.6b14732.
Full textJiang, Zhenzhen, Wenda Zhou, Aijun Hong, Manman Guo, Xingfang Luo, and Cailei Yuan. "MoS2 Moiré Superlattice for Hydrogen Evolution Reaction." ACS Energy Letters 4, no. 12 (October 30, 2019): 2830–35. http://dx.doi.org/10.1021/acsenergylett.9b02023.
Full textWang, Hao, and Lijun Gao. "Recent developments in electrochemical hydrogen evolution reaction." Current Opinion in Electrochemistry 7 (January 2018): 7–14. http://dx.doi.org/10.1016/j.coelec.2017.10.010.
Full textSAHA, SOUMEN, SONALIKA VAIDYA, KANDALAM V. RAMANUJACHARY, SAMUEL E. LOFLAND, and ASHOK K. GANGULI. "Ternary alloy nanocatalysts for hydrogen evolution reaction." Bulletin of Materials Science 39, no. 2 (April 2016): 433–36. http://dx.doi.org/10.1007/s12034-016-1182-2.
Full textAwaludin, Zaenal, Takeyoshi Okajima, and Takeo Ohsaka. "Electroreduced Tantalum Pentaoxide for Hydrogen Evolution Reaction." Chemistry Letters 43, no. 8 (August 5, 2014): 1248–50. http://dx.doi.org/10.1246/cl.140312.
Full textMiao, H. J., and D. L. Piron. "Composite-coating electrodes for hydrogen evolution reaction." Electrochimica Acta 38, no. 8 (June 1993): 1079–85. http://dx.doi.org/10.1016/0013-4686(93)80216-m.
Full textPalowska, Renata, Joanna Bogusz, Leszek Zaraska, Marcin Kozieł, Marta Gajewska, Lifeng Liu, Grzegorz Dariusz Sulka, and Agnieszka Brzozka. "Nickel Phosphide Nanomaterials for Hydrogen Evolution Reaction." ECS Meeting Abstracts MA2020-02, no. 15 (November 23, 2020): 1429. http://dx.doi.org/10.1149/ma2020-02151429mtgabs.
Full textRajeswari, Janarthanan, Pilli Satyananda Kishore, Balasubramanian Viswanathan, and Thirukkallam Kanthadai Varadarajan. "Facile Hydrogen Evolution Reaction on WO3 Nanorods." Nanoscale Research Letters 2, no. 10 (September 1, 2007): 496–503. http://dx.doi.org/10.1007/s11671-007-9088-y.
Full textThiel, Werner R. "Hydrogen Evolution from Peroxides− a Concerted Reaction." European Journal of Organic Chemistry 2004, no. 14 (July 2004): 3108–12. http://dx.doi.org/10.1002/ejoc.200400127.
Full textXie, Song, Hao Dong, Xiang Peng, and Paul K. Chu. "Non-precious Electrocatalysts for the Hydrogen Evolution Reaction." Innovation Discovery 1, no. 2 (May 17, 2024): 11. http://dx.doi.org/10.53964/id.2024011.
Full textLiu, Xiangye, Xin Wang, Xiaotao Yuan, Wujie Dong, and Fuqiang Huang. "Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis." Journal of Materials Chemistry A 4, no. 1 (2016): 167–72. http://dx.doi.org/10.1039/c5ta07047c.
Full textZhou, JiaYu, Zili Li, JianGuo Liu, Xiao Xing, Gan Cui, ShouXin Zhang, Ran Cheng, and YiShu Wang. "Effect of AC interference on hydrogen evolution reaction of x80 steel." Anti-Corrosion Methods and Materials 67, no. 2 (January 20, 2020): 197–204. http://dx.doi.org/10.1108/acmm-11-2019-2216.
Full textAl-Odail, Faisal A., Alexandros Anastasopoulos, and Brian E. Hayden. "The hydrogen evolution reaction and hydrogen oxidation reaction on thin film PdAu alloy surfaces." Physical Chemistry Chemical Physics 12, no. 37 (2010): 11398. http://dx.doi.org/10.1039/b924656h.
Full textZhang, Yingbo, Junan Pan, Gu Gong, Renxuan Song, Ye Yuan, Mengzhu Li, Weifeng Hu, Pengcheng Fan, Lexing Yuan, and Longlu Wang. "In Situ Surface Reconstruction of Catalysts for Enhanced Hydrogen Evolution." Catalysts 13, no. 1 (January 5, 2023): 120. http://dx.doi.org/10.3390/catal13010120.
Full textGutić, Sanjin J., Ana S. Dobrota, Edvin Fako, Natalia V. Skorodumova, Núria López, and Igor A. Pašti. "Hydrogen Evolution Reaction-From Single Crystal to Single Atom Catalysts." Catalysts 10, no. 3 (March 4, 2020): 290. http://dx.doi.org/10.3390/catal10030290.
Full textSun, Xiaorui, and Jia Yang. "A Mini Review on Borate Photocatalysts for Water Decomposition: Synthesis, Structure, and Further Challenges." Molecules 29, no. 7 (March 29, 2024): 1549. http://dx.doi.org/10.3390/molecules29071549.
Full textSingh, Harjinder, Imtiaz Ahmed, Rathindranath Biswas, Shouvik Mete, Krishna Kamal Halder, Biplab Banerjee, and Krishna Kanta Haldar. "Genomic DNA-mediated formation of a porous Cu2(OH)PO4/Co3(PO4)2·8H2O rolling pin shape bifunctional electrocatalyst for water splitting reactions." RSC Advances 12, no. 6 (2022): 3738–44. http://dx.doi.org/10.1039/d1ra09098d.
Full textPopic, Jovan, and Dragutin Drazic. "Electrochemistry of active chromium, part III: Effects of temperature." Journal of the Serbian Chemical Society 68, no. 11 (2003): 871–82. http://dx.doi.org/10.2298/jsc0311871p.
Full textLei, Yu, Hongdian Chen, Chenyang Shu, and Changguo Chen. "Fe- and S-Modified BiOI as Catalysts to Oxygen Evolution and Hydrogen Evolution Reactions in Overall Photoelectrochemical Water Splitting." Materials 17, no. 1 (December 19, 2023): 6. http://dx.doi.org/10.3390/ma17010006.
Full textQuach, Qui, Erik Biehler, and Tarek M. Abdel-Fattah. "Synthesis of Palladium Nanoparticles Supported over Fused Graphene-like Material for Hydrogen Evolution Reaction." Catalysts 13, no. 7 (July 17, 2023): 1117. http://dx.doi.org/10.3390/catal13071117.
Full text