Academic literature on the topic 'Hydrogen infrastructure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogen infrastructure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrogen infrastructure"

1

SATOKAWA, Shigeo. "Infrastructure of Hydrogen Supply." Journal of the Society of Mechanical Engineers 108, no. 1045 (2005): 908–9. http://dx.doi.org/10.1299/jsmemag.108.1045_908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

AKAMATSU, Hideaki. "Infrastructure Refinement for Hydrogen Society." Journal of The Institute of Electrical Engineers of Japan 125, no. 6 (2005): 352–55. http://dx.doi.org/10.1541/ieejjournal.125.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muench, Tobias R. "California's Hydrogen Infrastructure Funding Program." ECS Transactions 42, no. 1 (2019): 91–94. http://dx.doi.org/10.1149/1.4705483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ayers, Katherine E., Larry Moulthrop, and Everett B. Anderson. "Hydrogen Infrastructure Challenges and Solutions." ECS Transactions 41, no. 46 (2019): 75–83. http://dx.doi.org/10.1149/1.4729183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bouwman, Peter. "Electrochemical Hydrogen Compression (EHC) solutions for hydrogen infrastructure." Fuel Cells Bulletin 2014, no. 5 (2014): 12–16. http://dx.doi.org/10.1016/s1464-2859(14)70149-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Asakura, Takaaki, Shigeyuki Yamauchi, and Takayuki Azuma. "E312 COMPACT HYDROGEN PRODUCTION SYSTEM FOR HYDROGEN INFRASTRUCTURE." Proceedings of the International Conference on Power Engineering (ICOPE) 2003.3 (2003): _3–363_—_3–367_. http://dx.doi.org/10.1299/jsmeicope.2003.3._3-363_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

SHIOZAWA, Shusaku, Shinzo SAITO, Kazukiyo OKANO, Masaki UOTANI, Masuro OGAWA, and Ryutaro HINO. "Infrastructure for Future Hydrogen Economy and Nuclear Hydrogen Production." Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 48, no. 11 (2006): 835–52. http://dx.doi.org/10.3327/jaesj.48.835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MULDER, G., J. HETLAND, and G. LENAERS. "Towards a sustainable hydrogen economy: Hydrogen pathways and infrastructure." International Journal of Hydrogen Energy 32, no. 10-11 (2007): 1324–31. http://dx.doi.org/10.1016/j.ijhydene.2006.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

IKEDA, Tetsufumi. "C031005 FCV/Hydrogen Infrastructure Demonstration Program." Proceedings of Mechanical Engineering Congress, Japan 2014 (2014): _C031005–1—_C031005–2. http://dx.doi.org/10.1299/jsmemecj.2014._c031005-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stiller, Christoph, Ann Svensson, Eva Rosenberg, Steffen Møller-Holst, and Ulrich Bünger. "Building a hydrogen infrastructure in Norway." World Electric Vehicle Journal 3, no. 1 (2009): 104–13. http://dx.doi.org/10.3390/wevj3010104.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hydrogen infrastructure"

1

Pulido, Jon R. (Jon Ramon) 1974. "Modeling hydrogen fuel distribution infrastructure." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/29529.

Full text
Abstract:
Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2004.<br>Includes bibliographical references (p. 70-73).<br>This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after sensitivity analysis. After reviewing the literature regarding the production, distribution, and dispensing of hydrogen fuel, a hybrid product pathway and network flow model is created and solved. In the literature review, an extensive analysis is performed of the forthcoming findings of the National Academy of Engineering Board on Energy and Environmental Systems (BEES). Additional considerations from operations research literature and general supply chain theory are applied to the problem under consideration. The second section develops a general model for understanding hydrogen production, distribution, and dispensing systems based on the findings of the BEES committee. The second chapter also frames the analysis that the thesis will review using the model. In the problem formulation chapter, the details of the analytic model at examined at length and heuristics solution methods are proposed. Three heuristic methodologies are described and implemented. An in-depth discussion of the final model solution method is described. In the fourth chapter, the model uses the state of California as a test case for hydrogen consumption in order to generate preliminary results for the model The results of the MIP solutions for certain market penetration scenarios and the heuristic solutions for each scenario are shown and sensitivity analysis is performed. The final chapter summarizes the results of the model, compares the performance of heuristics, and indicates further areas for research, both in terms of developing strong lower bounds<br>(cont.) for the heuristics, better optimization techniques, and expanded models for consideration.<br>by Jon R. Pulido.<br>M.Eng.in Logistics
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, Kevin Braun. "Hydrogen infrastructure: resource evaluation and capacity modeling." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Martin_09007dcc8071f0b7.pdf.

Full text
Abstract:
Thesis (Ph. D.)--Missouri University of Science and Technology, 2009.<br>Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 15, 2009) Includes bibliographical references (p. 72-80).
APA, Harvard, Vancouver, ISO, and other styles
3

Meyer, Patrick E. "Vehicle & infrastructure relationships in hydrogen transportation networks : development of the H₂VISION modeling tool /." Online version of thesis, 2006. https://ritdml.rit.edu/dspace/handle/1850/2670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lahnaoui, Amin. "Optimization of the infrastructure cost of hydrogen transported at different states of aggregation in France and Germany." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAE008.

Full text
Abstract:
L'hydrogène vert pour la mobilité via les véhicules électriques à pile à combustible représente une alternative au carburant conventionnel pour décarboniser le secteur des transports et développer un système énergétique durable. Néanmoins, les propriétés physiques et chimiques de l'hydrogène rendent inefficaces le transport et le stockage de ce vecteur d'énergie à ses conditions de pression et de température standard. Par conséquent, cette thèse vise à étudier les techniques de transport de l'hydrogène et à modéliser l'infrastructure optimale pour différents scénarios de production et de demande en France et en Allemagne, couplée à une visualisation géographique de la distribution.Pour le cadre considéré et pour permettre la comparaison entre les deux pays, l'énergie éolienne en tant que source d'énergie a été étudiée pour la production d'hydrogène à l'aide d'un électrolyseur pour répondre à la demande de véhicules électriques à pile à combustible. Le réseau de transport d'hydrogène est limité à l'infrastructure routière pour étudier l'impact de différents états d'agrégation sur le flux d'hydrogène transporté entre différents sites de production et de distribution d'hydrogène à partir de 15 scénarios.Dans un premier plan, plusieurs technologies de transport et de stockage d'hydrogène sont analysées en calculant les besoins énergétiques de transformation et pour déduire les coûts de traitement, de stockage et de transport d'hydrogène. Ainsi, le travail de compression a été modélisé à l'aide d'un compresseur à plusieurs étages et comparé à 875 compresseurs industriels ; le travail de liquéfaction a été calculé en utilisant le travail idéal associé à différents processus de liquéfaction ; tandis que les processus d'hydrogénation et de déshydrogénation ont été simulés à l'aide d'ASPEN. Parce que l'hydrogène a été transporté à l'aide de différents tubes et camions-citernes, une évaluation technique est effectuée pour étudier les différentes options de stockage et définir les paramètres associés au transport par camion. Enfin, les différents coûts d'investissement, d'exploitation, de besoins énergétiques, de carburant et de logistique sont estimés.Dans un second plan, ces coûts sont formulés comme des fonctions de coûts unitaires annuels basés sur la valeur actuelle nette et incluant le stockage, le transport routier, la liquéfaction, la compression et la déshydrogénation. Enfin, pour conclure quant à la part des sept technologies utilisées pour transporter et stocker l'hydrogène entre les différents sites, une optimisation, basée sur une programmation linéaire, a été réalisée. Ce sous-modèle a ensuite été inclus dans une optimisation générale pour relier les sites de production aux sites de distribution en utilisant le réseau routier. Ce modèle a permis de conclure aux différents coûts de déploiement des infrastructures dans le cadre des 15 scénarios analysés associés à une visualisation géographique de l’hydrogène transporté en Allemagne et en France.Les résultats du sous-modèle ont montré qu'en moyenne, le gaz comprimé à haute pression est principalement utilisé à une distance de transport inférieure à 250 km contrairement à l'hydrogène liquide qui a des coûts énergétiques plus élevés. Le modèle a montré que le choix de la technologie est plus critique à court terme, et que les couts de déploiement de l'infrastructure peuvent être amorties, en remplaçant le transport et le stockage du gaz comprimé à faible et moyenne pression par les liquides organiques porteurs d’hydrogène. Enfin, l'analyse des 15 scénarios a montré une meilleure répartition géographique de l'hydrogène en France, contrairement à l'Allemagne qu’a connue une disparité entre les éventuels points de production et de consommation<br>Green hydrogen for mobility via fuel cell electric vehicles represent an alternative to conventional fuel to decarbonize transportation sector and develop a sustainable future energy system. Nevertheless, the physical and chemical properties of hydrogen make the transport and the storage of this energy carrier at its standard pressure and temperature conditions inefficient. Therefore, this thesis aims to investigate hydrogen transport technologies and to model the optimal infrastructure for different production and demand scenarios in France and Germany, coupled with geographical visualization of the distribution.For the framework considered and to allow the comparison between the two countries, wind power as an energy source was studied for hydrogen production using electrolyzer to meet the demand for fuel cell electric vehicles based on car park growth, population projection and different penetration scenarios. The network to transport hydrogen is restrained to the road infrastructure to investigate the impact of different state of aggregations on the hydrogen flow transported between different hydrogen production and distribution locations and capacities defined from 15 scenarios.First, several technologies for transporting and storing hydrogen at its liquid form as liquid hydrogen or as liquid organic hydrogen carrier, and as compressed gas at five different pressure levels are analyzed by calculating the energy requirements to deduce the costs of processing, storing and transporting hydrogen using trucks. Thus, compression work has been modelled using a multistage compressor and compared to 875 industrial compressors; Liquefaction work was calculated using the ideal work associated to a literature review on different liquefaction processes; While hydrogenation and de-hydrogenation process work has been simulated using ASPEN. As the hydrogen is transported using different tube and tank trucks, a technical assessment is performed to investigate the different storage options and define the parameters associated with truck transportation. Finally, the cost parameters chosen for investment and operating the different plants and trucks are estimated based on different literature reviews and cost assessments, in addition to energy, fuel and logistics costs.Then, these costs are formulated as annual levelized costs functions that include storage, road transport, liquefaction, compression, and de-hydrogenation costs based on the net present value methodology. Finally, to conclude to the share of the seven different technologies used to transport and store hydrogen between two locations, an optimization based on linear programming formulation was performed. This sub-model was then included in a more general cost flow optimization to link a set of production nodes to the distribution ones using the road network under capacities and flow constrains. This model allowed to conclude to the different cost of infrastructure deployment within the scope of the 15 different scenarios analyzed associated to a geographical visualization of the hydrogen flow transported in Germany and France.The sub-model results showed that in average compressed gas at a high-pressure level is mainly used at transport distance below 250 km in contrast to liquid hydrogen that has higher energy costs. Concerning early-stage infrastructure deployment, costs could be further minimized by substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier. Finally, the analysis of the 15 scenarios showed a better geographical distribution of hydrogen in France, in contrast to the case of Germany that suffered from a disparity between production and eventual consumption locations
APA, Harvard, Vancouver, ISO, and other styles
5

O'Garra, Tanya. "Public acceptability of and preferences for hydrogen buses and refuelling infrastructure." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meyer, Ryan. "Integrating architecture and infrastructure the design of a solar-powered hydrogen refueling station /." Cincinnati, Ohio : University of Cincinnati, 2009. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1242416199.

Full text
Abstract:
Thesis (Master of Architecture)--University of Cincinnati, 2009.<br>Advisor: Jerry Larson. Title from electronic thesis title page (viewed July 27, 2009). Includes abstract. Keywords: architecture; infrastructure; solar energy; concentrating solar power; hydrogen economy. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Meyer, Ryan Thomas. "Integrating Architecture and Infrastructure: The Design of a Solar-Powered Hydrogen Refueling Station." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1242416199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Joffe, David. "Modelling Technical, Spatial, Economic and Environmental Aspects of Hydrogen Infrastructure Development for London's Buses." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shayegan, Sepideh. "An analysis of the financial costs of introducing a hydrogen infrastructure for transport in London." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/11389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ochoa, Bique Anton [Verfasser], Edwin [Akademischer Betreuer] Zondervan, Edwin [Gutachter] Zondervan, and Jorg [Gutachter] Thöming. "Strategic design of a hydrogen infrastructure under uncertainty / Anton Ochoa Bique ; Gutachter: Edwin Zondervan, Jorg Thöming ; Betreuer: Edwin Zondervan." Bremen : Staats- und Universitätsbibliothek Bremen, 2019. http://d-nb.info/1200094670/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hydrogen infrastructure"

1

Technologies, Inc Staff Directed. Hydrogen Infrastructure Report, 7-97. Business/Technology Books (B/T Books), 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hydrogen Infrastructure for Energy Applications. Elsevier, 2018. http://dx.doi.org/10.1016/c2016-0-03214-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Compendium of Hydrogen Energy : Volume 2: Hydrogen Storage, Transportation and Infrastructure. Elsevier Science & Technology, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sacile, Roberto, Hanane Dagdougui, Chiara Bersani, and Ahmed Ouammi. Hydrogen Infrastructure for Energy Applications: Production, Storage, Distribution and Safety. Elsevier Science & Technology Books, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sacile, Roberto, Hanane Dagdougui, Chiara Bersani, and Ahmed Ouammi. Hydrogen Infrastructure for Energy Applications: Production, Storage, Distribution and Safety. Elsevier Science & Technology Books, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wellnitz, Joerg, Agata Godula-Jopek, and Walter Jehle. Hydrogen Storage Technologies: New Materials, Transport, and Infrastructure. Wiley & Sons, Limited, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wellnitz, Joerg, Agata Godula-Jopek, and Walter Jehle. Hydrogen Storage Technologies: New Materials, Transport, and Infrastructure. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wellnitz, Joerg, Agata Godula-Jopek, and Walter Jehle. Hydrogen Storage Technologies: New Materials, Transport, and Infrastructure. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wellnitz, Joerg, Agata Godula-Jopek, and Walter Jehle. Hydrogen Storage Technologies: New Materials, Transport, and Infrastructure. Wiley & Sons, Limited, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wellnitz, Joerg, Agata Godula-Jopek, and Walter Jehle. Hydrogen Storage Technologies: New Materials, Transport, and Infrastructure. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hydrogen infrastructure"

1

Dohi, Hideyuki, Masahiro Kasai, and Kiyoaki Onoue. "Hydrogen Infrastructure." In Green Energy and Technology. Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56042-5_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ogden, Joan. "Introduction to a Future Hydrogen Infrastructure." In Transition to Renewable Energy Systems. Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527673872.ch38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mente, Tobias, and Thomas Böllinghaus. "Numerical Investigations on Hydrogen-Assisted Cracking (HAC) in Duplex Stainless Steels." In Materials for Energy Infrastructure. Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-724-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Wijk, Ad, and Frank Wouters. "Hydrogen–The Bridge Between Africa and Europe." In Shaping an Inclusive Energy Transition. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74586-8_5.

Full text
Abstract:
AbstractThis chapter describes a European energy system based on 50% renewable electricity and 50% green hydrogen, which can be achieved by 2050. The green hydrogen shall consist of hydrogen produced in Europe, complemented by hydrogen imports, especially from North Africa. Hydrogen import from North Africa will be beneficial for both Europe and North Africa. A bold energy sector strategy with an important infrastructure component is suggested, which differs from more traditional bottom-up sectoral strategies. This approach guarantees optimized use of (existing) infrastructure, has low risk and cost, improves Europe’s energy security and supports European technology leadership. In North Africa it would foster economic development, boost export, create future-oriented jobs in a high-tech sector and support social stability.
APA, Harvard, Vancouver, ISO, and other styles
5

Sreedhar Babu, M., Shibu Clement, N. K. S. Rajan, and Tehsinraza Mulla. "Emission Analysis of a Small Capacity Producer Gas Engine at Higher Hydrogen Concentration and Compression Ratios." In Recent Advances in Mechanical Infrastructure. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9971-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nuttall, William J., and Adetokunboh T. Bakenne. "Hydrogen Infrastructures." In Fossil Fuel Hydrogen. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30908-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wurster, R., and C. Stiller. "Build-up strategies for a hydrogen supply and refuelling infrastructure including a comparative outlook on battery-electric vehicles and their infrastructure requirements." In Sustainable Automotive Technologies 2010. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10798-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Agll, Abdulhakim, Tarek Hamad, Sushrut G. Bapat, Yousif Hamad, and John W. Sheffield. "Development of a Design of a Drop‐In Hydrogen Fueling Station to Support the Early Market Buildout of Hydrogen Infrastructure: Topic-9." In Mediterranean Green Buildings & Renewable Energy. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30746-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grafenhofer, Irene, and Hans-Stefan Siller. "How to Build a Hydrogen Refuelling Station Infrastructure in Germany: An Interdisciplinary Project Approach for Mathematics Classrooms." In International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62968-1_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Podlepetsky, Boris, and Nikolay Samotaev. "Hazardous Gases Sensing: Influence of Ionizing Radiation on Hydrogen Sensors." In Internet of Things. IoT Infrastructures. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47075-7_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrogen infrastructure"

1

Mintz, Marianne. "Hydrogen Distribution Infrastructure." In HYDROGEN IN MATERIALS & VACUUM SYSTEMS: First International Workshop on Hydrogen in Materials and Vacuum Systems. AIP, 2003. http://dx.doi.org/10.1063/1.1597363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bentley, Jeffrey, Scott Hynek, and Ware Fuller. "The hydrogen infrastructure - Near-term technologies and implications." In Intersociety Energy Conversion Engineering Conference. American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haddad, Marwa, Jean-Marc Nicod, and Marie-Cecile Pera. "Hydrogen Infrastructure: Data-Center Supply-Refueling Station Synergy." In 2017 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2017. http://dx.doi.org/10.1109/vppc.2017.8330978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wnuk, Lawrence. "Hydrogen Fuel Cell Transit Buses and Infrastructure - Contrasting Innovations." In Third International Conference on Urban Public Transportation Systems. American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413210.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayden, Louis E., and John C. Tverberg. "Materials in Support of a Newly Emerging Hydrogen Infrastructure." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2562.

Full text
Abstract:
There is an ever-increasing need to explore the use of hydrogen as a renewable energy source. Attendant to this expansion is the need to evaluate the currently used materials for the transport and storage of hydrogen to meet these needs. Historically, most pipelines were constructed using various carbon steels. Carbon steels are susceptible to hydrogen embrittlement, high ductile to brittle transition temperature, and hydrogen induced cracking. Other materials evaluated include austenitic stainless steel, aluminum, nickel alloys and fiber reinforced composite materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Kohler, Jonathan, Martin Wietschel, Lorraine Whitmarsh, Dogan Keles, and Wolfgang Schade. "Infrastructure investment for a transition to hydrogen road vehicles." In 2008 First International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA 2008). IEEE, 2008. http://dx.doi.org/10.1109/infra.2008.5439664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hormaza Mejia, Nohora A., and Jack Brouwer. "Gaseous Fuel Leakage From Natural Gas Infrastructure." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88271.

Full text
Abstract:
Hydrogen has often been studied as a possible fuel of the future due to its capabilities to support zero emissions and sustainable energy conversion. Hydrogen can be used in a fuel cell to generate electricity at high efficiencies and with zero emissions. In addition, hydrogen can be renewably produced via electrolysis reactions that are powered from otherwise curtailed renewable energy. One possible means of storing and delivering renewable hydrogen is to inject it into the existing natural gas (NG) system and thus decarbonize gas end-uses. The NG system has potential to serve as a storage, transmission and distribution system for renewably produced hydrogen. Despite the potential of hydrogen to reduce the carbon intensity of the NG system, the unique characteristics of hydrogen (low molecular weight, high diffusivity, lower volumetric heating value, propensity to embrittle pipeline materials) has led to justified concerns over the safety of introducing hydrogen blends into the NG system. While many studies have attempted to quantitatively predict leakage rates of hydrogen using classical fluid mechanics theories, such as Hagen-Poiseuille flow, there have been limited studies which quantitatively assess gaseous fuel leakage to support the predictions made from theoretical analyses and computations. In this paper we present a summary of the literature related to gaseous fuel leakage and results from preliminary experiments which support the idea that entrance effects may significantly affect gaseous fuel leakage from practical leak scenarios such as NG fittings, resulting in similar leakage rates between hydrogen and NG.
APA, Harvard, Vancouver, ISO, and other styles
8

Gibbons, Matthew R., Wade J. Richards, and Kevin C. Shields. "Detection of hydrogen in titanium aircraft components using neutron tomography." In Nondestructive Evaluation Techniques for Aging Infrastructure and Manufacturing, edited by Raymond D. Rempt and Alfred L. Broz. SPIE, 1996. http://dx.doi.org/10.1117/12.259083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reinhardt, Walter W. "Detection and characterization of stress corrosion cracking and hydrogen-induced cracking in carbon steel piping and vessels." In Nondestructive Evaluation of Aging Infrastructure, edited by Walter G. Reuter. SPIE, 1995. http://dx.doi.org/10.1117/12.209364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Massey, Kent Martin Paul, Jakub Vrba, Scott Hamilton, James Patrick McAreavey, Caragh Jane McWhirr, and Daniel Richard Kenneth Paterson. "The UK - The Global Hydrogen Centre." In SPE Offshore Europe Conference & Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205422-ms.

Full text
Abstract:
Abstract The paper proposes that the UK should be the global centre of hydrogen production and explores why and how this ambition could be achieved. The paper focuses on what government and industry need to do to realise this dream. We explain the technology, commerciality and legislation required in order to raise ambitions and create a sense of urgency within the hydrogen community. The paper justifies this bold statement, highlighting the fundamentals that the UK enjoys and compares these against other rival global centres, by considering the existing infrastructure whilst explaining the merits of the UKs diverse gas supply chain. The paper also explores and debunks technology readiness and perceived risks associated with hydrogen production. The paper concludes that the UK should adopt a bolder ambition for hydrogen, and suggests how the UK can move forward faster with recommendations for new commercial frameworks. The paper also demonstrates that the current perceived risks linked with blue hydrogen development, both technological and subsurface, are overstated. The paper sets out a commercial landscape that would enable rapid hydrogen development. The paper focuses on blue hydrogen production infrastructure, setting a timeframe of achievability whilst allowing for demand side influences. The paper also considers how to future-proof hydrogen infrastructure to facilitate green hydrogen co-production. The paper highlights the possible errors of decommissioning depleted oil fields where carbon dioxide (CO2) storage could be used to extend the life of the facilities, with possible enhanced oil recovery as an upside. The paper discusses how the liabilities currently hindering integrated hydrogen developments are more theoretical than real, by consideration of minimised leak paths and corrosion mechanisms. The paper also explains why these liabilities should ultimately be underwritten by government institutions.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrogen infrastructure"

1

Heydorn, Edward C. California Hydrogen Infrastructure Project. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1068156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tan-Ping Chen. Hydrogen Delivey Infrastructure Option Analysis. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/982359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wipke, K. Controlled Hydrogen Fleet & Infrastructure Analysis. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/15016868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Melendez, M., and A. Milbrandt. Hydrogen Infrastructure Transition Analysis: Milestone Report. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/876663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robert Leitner, David Bodde, Dennis Wiese, John Skardon, and Bethany Carter. CU-ICAR Hydrogen Infrastructure Final Report. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1025580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dr. Scott Staley. Controlled Hydrogen Fleet and Infrastructure Demonstration Project. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1021459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barth, Rachel Reina, Kevin L. Simmons, and Christopher W. San Marchi. Polymers for hydrogen infrastructure and vehicle fuel systems :. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1104755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wipke, K., S. Spirk, J. Kurtz, and T. Ramsden. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/992352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thomas, C. E., and I. F. Jr Kuhn. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/125028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stottler, Gary. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1034418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography